[1]
Song, L.L.; Li, Y.M. Current noninvasive tests for colorectal cancer screening: An overview of colorectal cancer screening tests. World J. Gastrointest. Oncol., 2016, 8(11), 793-800.
[2]
Siegel, R.; Naishadham, D.; Jemal, A. Cancer statistics, 2013. CA Cancer J. Clin., 2013, 63(1), 11-30.
[3]
Fearon, E.R.; Vogelstein, B. A genetic model for colorectal tumorigenesis. Cell, 1990, 61(5), 759-767.
[4]
Cunningham, D.; Atkin, W.; Lenz, H.J.; Lynch, H.T.; Minsky, B.; Nordlinger, B.; Starling, N. Colorectal cancer. Lancet, 2010, 375(9719), 1030-1047.
[5]
Sameer, A.S. Colorectal cancer: molecular mutations and polymorphisms. Front. Oncol., 2013, 3, 114.
[6]
Jiménez, B.; Mirnezami, R.; Kinross, J.; Cloarec, O.; Keun, H.C.; Holmes, E.; Goldin, R.D.; Ziprin, P.; Darzi, A.; Nicholson, J.K. 1H HR-MAS NMR spectroscopy of tumor-induced local metabolic “field-effects” enables colorectal cancer staging and prognostication. J. Proteome Res., 2013, 12(2), 959-968.
[7]
Williams, M.D.; Zhang, X.; Park, J.J.; Siems, W.F.; Gang, D.R.; Resar, L.M.; Reeves, R.; Hill, H.H., Jr Characterizing metabolic changes in human colorectal cancer. Anal. Bioanal. Chem., 2015, 407(16), 4581-4595.
[8]
Graziano, F.; Ruzzo, A.; Giacomini, E.; Ricciardi, T.; Aprile, G.; Loupakis, F.; Lorenzini, P.; Ongaro, E.; Zoratto, F.; Catalano, V.; Sarti, D.; Rulli, E.; Cremolini, C.; De Nictolis, M.; De Maglio, G.; Falcone, A.; Fiorentini, G.; Magnani, M. Glycolysis gene expression analysis and selective metabolic advantage in the clinical progression of colorectal cancer. Pharmacogenomics J., 2017, 17(3), 258.
[9]
Yeh, C.S.; Wang, J.Y.; Chung, F.Y.; Lee, S.C.; Huang, M.Y.; Kuo, C.W.; Yang, M.J.; Lin, S.R. Significance of the glycolytic pathway and glycolysis related-genes in tumorigenesis of human colorectal cancers. Oncol. Rep., 2008, 19(1), 81-91.
[10]
Bi, X.; Lin, Q.; Foo, T.W.; Joshi, S.; You, T.; Shen, H.M.; Ong, C.N.; Cheah, P.Y.; Eu, K.W.; Hew, C.L. Proteomic analysis of colorectal cancer reveals alterations in metabolic pathways: mechanism of tumorigenesis. Mol. Cell. Proteomics, 2006, 5(6), 1119-1130.
[11]
Brown, D.G.; Rao, S.; Weir, T.L.; O’Malia, J.; Bazan, M.; Brown, R.J.; Ryan, E.P. Metabolomics and metabolic pathway networks from human colorectal cancers, adjacent mucosa, and stool. Cancer Metab., 2016, 4, 11.
[12]
Nam, S.O.; Yotsumoto, F.; Miyata, K.; Fukagawa, S.; Yamada, H.; Kuroki, M.; Miyamoto, S. Warburg effect regulated by amphiregulin in the development of colorectal cancer. Cancer Med., 2015, 4(4), 575-587.
[13]
Wang, G.; Fu, X.L.; Wang, J.J.; Guan, R.; Tang, X.J. Novel strategies to discover effective drug targets in metabolic and immune therapy for glioblastoma. Curr. Cancer Drug Targets, 2016. [Epub ahead of print].
[14]
Ottensmeier, C.H.; Perry, K.L.; Harden, E.L.; Stasakova, J.; Jenei, V.; Fleming, J.; Wood, O.; Woo, J.; Woelk, C.H.; Thomas, G.J.; Thirdborough, S.M. Upregulated Glucose Metabolism Correlates Inversely with CD8+ T-cell Infiltration and Survival in Squamous Cell Carcinoma. Cancer Res., 2016, 76(14), 4136-4148.
[15]
Eleftheriadis, T.; Pissas, G.; Antoniadi, G.; Liakopoulos, V.; Stefanidis, I. Malate dehydrogenase-2 inhibitor LW6 promotes metabolic adaptations and reduces proliferation and apoptosis in activated human T-cells. Exp. Ther. Med., 2015, 10(5), 1959-1966.
[16]
McIntyre, A.; Harris, A.L. Metabolic and hypoxic adaptation to anti-angiogenic therapy: a target for induced essentiality. EMBO Mol. Med., 2015, 7(4), 368-379.
[17]
Quintieri, L.; Selmy, M.; Indraccolo, S. Metabolic effects of antiangiogenic drugs in tumors: therapeutic implications. Biochem. Pharmacol., 2014, 89(2), 162-170.
[18]
Stacker, S.A.; Achen, M.G. The VEGF signaling pathway in cancer: the road ahead. Chin. J. Cancer, 2013, 32(6), 297-302.
[19]
Jia, Y.; Guo, M. Epigenetic changes in colorectal cancer. Chin. J. Cancer, 2013, 32(1), 21-30.
[20]
Harris, A.L. Hypoxia--a key regulatory factor in tumour growth. Nat. Rev. Cancer, 2002, 2(1), 38-47.
[21]
Chen, C.; Pore, N.; Behrooz, A.; Ismail-Beigi, F.; Maity, A. Regulation of glut1 mRNA by hypoxia-inducible factor-1. Interaction between H-ras and hypoxia. J. Biol. Chem., 2001, 276(12), 9519-9525.
[22]
Mazurek, S.; Boschek, C.B.; Eigenbrodt, E. The role of phosphometabolites in cell proliferation, energy metabolism, and tumor therapy. J. Bioenerg. Biomembr., 1997, 29(4), 315-330.
[23]
Hu, J.; Yan, W.Y.; Xie, L.; Cheng, L.; Yang, M.; Li, L.; Shi, J.; Liu, B.R.; Qian, X.P. Coexistence of MSI with KRAS mutation is associated with worse prognosis in colorectal cancer. Medicine (Baltimore), 2016, 95(50), e5649.
[24]
Iwamoto, M.; Kawada, K.; Nakamoto, Y.; Itatani, Y.; Inamoto, S.; Toda, K.; Kimura, H.; Sasazuki, T.; Shirasawa, S.; Okuyama, H.; Inoue, M.; Hasegawa, S.; Togashi, K.; Sakai, Y. Regulation of 18F-FDG accumulation in colorectal cancer cells with mutated KRAS. J. Nucl. Med., 2014, 55(12), 2038-2044.
[25]
Yun, J.; Rago, C.; Cheong, I.; Pagliarini, R.; Angenendt, P.; Rajagopalan, H.; Schmidt, K.; Willson, J.K.; Markowitz, S.; Zhou, S.; Diaz, L.A., Jr; Velculescu, V.E.; Lengauer, C.; Kinzler, K.W.; Vogelstein, B.; Papadopoulos, N. Glucose deprivation contributes to the development of KRAS pathway mutations in tumor cells. Science, 2009, 325(5947), 1555-1559.
[26]
Jadvar, H.; Alavi, A.; Gambhir, S.S. 18F-FDG uptake in lung, breast, and colon cancers: molecular biology correlates and disease characterization. J. Nucl. Med., 2009, 50(11), 1820-1827.
[27]
Maddalena, F.; Lettini, G.; Gallicchio, R.; Sisinni, L.; Simeon, V.; Nardelli, A.; Venetucci, A.A.; Storto, G.; Landriscina, M. Evaluation of Glucose Uptake in Normal and Cancer Cell Lines by Positron Emission Tomography. Mol. Imaging, 2015, 14, 490-498.
[28]
Levine, A.J.; Puzio-Kuter, A.M. The control of the metabolic switch in cancers by oncogenes and tumor suppressor genes. Science, 2010, 330(6009), 1340-1344.
[29]
Semenza, G.L. HIF-1 mediates metabolic responses to intratumoral hypoxia and oncogenic mutations. J. Clin. Invest., 2013, 123(9), 3664-3671.
[30]
Lee-Kong, S.A.; Ruby, J.A.; Chessin, D.B.; Pucciarelli, S.; Shia, J.; Riedel, E.R.; Nitti, D.; Guillem, J.G. Hypoxia-related proteins in patients with rectal cancer undergoing neoadjuvant combined modality therapy. Dis. Colon Rectum, 2012, 55(9), 990-995.
[31]
Zeng, M.; Kikuchi, H.; Pino, M.S.; Chung, D.C. Hypoxia activates the K-ras proto-oncogene to stimulate angiogenesis and inhibit apoptosis in colon cancer cells. PLoS One, 2010, 5(6), e10966.
[32]
Kikuchi, H.; Pino, M.S.; Zeng, M.; Shirasawa, S.; Chung, D.C. Oncogenic KRAS and BRAF differentially regulate hypoxia-inducible factor-1alpha and -2alpha in colon cancer. Cancer Res., 2009, 69(21), 8499-8506.
[33]
Wieman, H.L.; Wofford, J.A.; Rathmell, J.C. Cytokine stimulation promotes glucose uptake via phosphatidylinositol-3 kinase/Akt regulation of Glut1 activity and trafficking. Mol. Biol. Cell, 2007, 18(4), 1437-1446.
[34]
Toda, K.; Kawada, K.; Iwamoto, M.; Inamoto, S.; Sasazuki, T.; Shirasawa, S.; Hasegawa, S.; Sakai, Y. Metabolic Alterations Caused by KRAS Mutations in Colorectal Cancer Contribute to Cell Adaptation to Glutamine Depletion by Upregulation of Asparagine Synthetase. Neoplasia, 2016, 18(11), 654-665.
[35]
Iwamoto, M.; Kawada, K.; Nakamoto, Y.; Itatani, Y.; Inamoto, S.; Toda, K.; Kimura, H.; Sasazuki, T.; Shirasawa, S.; Okuyama, H.; Inoue, M.; Hasegawa, S.; Togashi, K.; Sakai, Y. Regulation of 18F-FDG accumulation in colorectal cancer cells with mutated KRAS. J. Nucl. Med., 2014, 55(12), 2038-2044.
[36]
Yun, J.; Mullarky, E.; Lu, C.; Bosch, K.N.; Kavalier, A.; Rivera, K.; Roper, J.; Chio, I.I.; Giannopoulou, E.G.; Rago, C.; Muley, A.; Asara, J.M.; Paik, J.; Elemento, O.; Chen, Z.; Pappin, D.J.; Dow, L.E.; Papadopoulos, N.; Gross, S.S.; Cantley, L.C. Vitamin C selectively kills KRAS and BRAF mutant colorectal cancer cells by targeting GAPDH. Science, 2015, 350(6266), 1391-1396.
[37]
Wang, H.J.; Hsieh, Y.J.; Cheng, W.C.; Lin, C.P.; Lin, Y.S.; Yang, S.F.; Chen, C.C.; Izumiya, Y.; Yu, J.S.; Kung, H.J.; Wang, W.C. JMJD5 regulates PKM2 nuclear translocation and reprograms HIF-1α-mediated glucose metabolism. Proc. Natl. Acad. Sci. USA, 2014, 111(1), 279-284.
[38]
Koss, K.; Maxton, D.; Jankowski, J.A. Faecal dimeric M2 pyruvate kinase in colorectal cancer and polyps correlates with tumour staging and surgical intervention. Colorectal Dis., 2008, 10(3), 244-248.
[39]
Huang, J.X.; Zhou, Y.; Wang, C.H.; Yuan, W.W.; Zhang, Z.D.; Zhang, X.F. Tumor M2-pyruvate kinase in stool as a biomarker for diagnosis of colorectal cancer: A meta-analysis. J. Cancer Res. Ther., 2014, 10(Suppl.), C225-C228.
[40]
Zhang, B.; Chen, J.Y.; Chen, D.D.; Wang, G.B.; Shen, P. Tumor type M2 pyruvate kinase expression in gastric cancer, colorectal cancer and controls. World J. Gastroenterol., 2004, 10(11), 1643-1646.
[41]
Demır, A.S.; Erdenen, F.; Müderrısoğlu, C.; Toros, A.B.; Bektaş, H.; Gelışgen, R.; Tabak, Ö.; Altunoğlu, E.; Uzun, H.; Erdem Huq, G.E.; Aral, H. Diagnostic and prognostic value of tumor M2-pyruvate kinase levels in patients with colorectal canhcer. Turk. J. Gastroenterol., 2013, 24(1), 36-42.
[42]
Wang, J.; Wang, H.; Liu, A.; Fang, C.; Hao, J.; Wang, Z. Lactate dehydrogenase A negatively regulated by miRNAs promotes aerobic glycolysis and is increased in colorectal cancer. Oncotarget, 2015, 6(23), 19456-19468.
[43]
Vander Heiden, M.G.; Cantley, L.C.; Thompson, C.B. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science, 2009, 324(5930), 1029-1033.
[44]
Cantor, J.R.; Sabatini, D.M. Cancer cell metabolism: one hallmark, many faces. Cancer Discov., 2012, 2(10), 881-898.
[45]
Zhao, D.; Zou, S.W.; Liu, Y.; Zhou, X.; Mo, Y.; Wang, P.; Xu, Y.H.; Dong, B.; Xiong, Y.; Lei, Q.Y.; Guan, K.L. Lysine-5 acetylation negatively regulates lactate dehydrogenase A and is decreased in pancreatic cancer. Cancer Cell, 2013, 23(4), 464-476.
[46]
Bui, T.; Thompson, C.B. Cancer’s sweet tooth. Cancer Cell, 2006, 9(6), 419-420.
[47]
Loupakis, F.; Yang, D.; Yau, L.; Feng, S.; Cremolini, C.; Zhang, W.; Maus, M.K.; Antoniotti, C.; Langer, C.; Scherer, S.J.; Müller, T.; Hurwitz, H.I.; Saltz, L.; Falcone, A.; Lenz, H.J. Primary tumor location as a prognostic factor in metastatic colorectal cancer. J. Natl. Cancer Inst., 2015, 107(3), dju427.
[48]
Herling, A.; König, M.; Bulik, S.; Holzhütter, H.G. Enzymatic features of the glucose metabolism in tumor cells. FEBS J., 2011, 278(14), 2436-2459.
[49]
Mathupala, S.P.; Ko, Y.H.; Pedersen, P.L. Hexokinase-2 bound to mitochondria: cancer’s stygian link to the “Warburg Effect” and a pivotal target for effective therapy. Semin. Cancer Biol., 2009, 19(1), 17-24.
[50]
Draoui, N.; Schicke, O.; Seront, E.; Bouzin, C.; Sonveaux, P.; Riant, O.; Feron, O. Antitumor activity of 7-aminocarboxycoumarin derivatives, a new class of potent inhibitors of lactate influx but not efflux. Mol. Cancer Ther., 2014, 13(6), 1410-1418.
[51]
Sun, Q.; Chen, X.; Ma, J.; Peng, H.; Wang, F.; Zha, X.; Wang, Y.; Jing, Y.; Yang, H.; Chen, R.; Chang, L.; Zhang, Y.; Goto, J.; Onda, H.; Chen, T.; Wang, M.R.; Lu, Y.; You, H.; Kwiatkowski, D.; Zhang, H. Mammalian target of rapamycin up-regulation of pyruvate kinase isoenzyme type M2 is critical for aerobic glycolysis and tumor growth. Proc. Natl. Acad. Sci. USA, 2011, 108(10), 4129-4134.
[52]
Düvel, K.; Yecies, J.L.; Menon, S.; Raman, P.; Lipovsky, A.I.; Souza, A.L.; Triantafellow, E.; Ma, Q.; Gorski, R.; Cleaver, S.; Vander Heiden, M.G.; MacKeigan, J.P.; Finan, P.M.; Clish, C.B.; Murphy, L.O.; Manning, B.D. Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol. Cell, 2010, 39(2), 171-183.
[53]
Maiese, K.; Chong, Z.Z.; Shang, Y.C.; Wang, S. mTOR: on target for novel therapeutic strategies in the nervous system. Trends Mol. Med., 2013, 19(1), 51-60.
[54]
Kim, D.D.; Eng, C. The promise of mTOR inhibitors in the treatment of colorectal cancer. Expert Opin. Investig. Drugs, 2012, 21(12), 1775-1788.
[55]
Mitsuishi, Y.; Taguchi, K.; Kawatani, Y.; Shibata, T.; Nukiwa, T.; Aburatani, H.; Yamamoto, M.; Motohashi, H. Nrf2 redirects glucose and glutamine into anabolic pathways in metabolic reprogramming. Cancer Cell, 2012, 22(1), 66-79.
[56]
Du, W.; Jiang, P.; Mancuso, A.; Stonestrom, A.; Brewer, M.D.; Minn, A.J.; Mak, T.W.; Wu, M.; Yang, X. TAp73 enhances the pentose phosphate pathway and supports cell proliferation. Nat. Cell Biol., 2013, 15(8), 991-1000.
[57]
Zhou, C.F.; Li, X.B.; Sun, H.; Zhang, B.; Han, Y.S.; Jiang, Y.; Zhuang, Q.L.; Fang, J.; Wu, G.H. Pyruvate kinase type M2 is upregulated in colorectal cancer and promotes proliferation and migration of colon cancer cells. IUBMB Life, 2012, 64(9), 775-782.
[58]
Sun, Q.; Chen, X.; Ma, J.; Peng, H.; Wang, F.; Zha, X.; Wang, Y.; Jing, Y.; Yang, H.; Chen, R.; Chang, L.; Zhang, Y.; Goto, J.; Onda, H.; Chen, T.; Wang, M.R.; Lu, Y.; You, H.; Kwiatkowski, D.; Zhang, H. Mammalian target of rapamycin up-regulation of pyruvate kinase isoenzyme type M2 is critical for aerobic glycolysis and tumor growth. Proc. Natl. Acad. Sci. USA, 2011, 108(10), 4129-4134.
[59]
Kato, H.; Nakajima, S.; Saito, Y.; Takahashi, S.; Katoh, R.; Kitamura, M. mTORC1 serves ER stress-triggered apoptosis via selective activation of the IRE1-JNK pathway. Cell Death Differ., 2012, 19(2), 310-320.
[60]
Polak, P.; Hall, M.N. mTOR and the control of whole body metabolism. Curr. Opin. Cell Biol., 2009, 21(2), 209-218.
[61]
Iurlaro, R.; León-Annicchiarico, C.L.; Muñoz-Pinedo, C. Regulation of cancer metabolism by oncogenes and tumor suppressors. Methods Enzymol., 2014, 542, 59-80.
[62]
He, T.L.; Zhang, Y.J.; Jiang, H.; Li, X.H.; Zhu, H.; Zheng, K.L. The c-Myc-LDHA axis positively regulates aerobic glycolysis and promotes tumor progression in pancreatic cancer. Med. Oncol., 2015, 32(7), 187.
[63]
Zalata, K.R.; Elshal, M.F.; Foda, A.A.; Shoma, A. Genetic dissimilarity between primary colorectal carcinomas and their lymph node metastases: ploidy, p53, bcl-2, and c-myc expression--a pilot study. Tumour Biol., 2015, 36(8), 6579-6584.
[64]
Dang, CV; Le, A A; Gao, P MYC-induced cancer cell energy metabolism
and therapeutic opportunities. Clinical cancer research:
an official journal of the American Association for Cancer Research, 2009, 15, 6479-6483.
[65]
Guertin, D.A.; Sabatini, D.M. Defining the role of mTOR in cancer. Cancer Cell, 2007, 12(1), 9-22.
[66]
Golestan, A. MSc, Mojtahedi Z PhD, Ghalamfarsa G PhD, Hamidinia M MSc, Takhshid MA PhD. The Effects of NDRG2 Overexpression on Cell Proliferation and Invasiveness of SW48 ColorectalCancer Cell Line. Iran. J. Med. Sci., 2015, 40(5), 430-439.
[67]
Lorentzen, A.; Mitchelmore, C. NDRG2 gene copy number is not altered in colorectal carcinoma. World J. Clin. Oncol., 2017, 8(1), 67-74.
[68]
Clevers, H. Wnt/beta-catenin signaling in development and disease. Cell, 2006, 127(3), 469-480.
[69]
Jen, K.Y.; Cheung, V.G. Identification of novel p53 target genes in ionizing radiation response. Cancer Res., 2005, 65(17), 7666-7673.
[70]
Kimata, M.; Matoba, S.; Iwai-Kanai, E.; Nakamura, H.; Hoshino, A.; Nakaoka, M.; Katamura, M.; Okawa, Y.; Mita, Y.; Okigaki, M.; Ikeda, K.; Tatsumi, T.; Matsubara, H. p53 and TIGAR regulate cardiac myocyte energy homeostasis under hypoxic stress. Am. J. Physiol. Heart Circ. Physiol., 2010, 299(6), H1908-H1916.
[71]
Peña-Rico, M.A.; Calvo-Vidal, M.N.; Villalonga-Planells, R.; Martínez-Soler, F.; Giménez-Bonafé, P.; Navarro-Sabaté, À.; Tortosa, A.; Bartrons, R.; Manzano, A. TP53 induced glycolysis and apoptosis regulator (TIGAR) knockdown results in radiosensitization of glioma cells. Radiother. Oncol., 2011, 101(1), 132-139.
[72]
Yin, L.; Kosugi, M.; Kufe, D. Inhibition of the MUC1-C oncoprotein induces multiple myeloma cell death by down-regulating TIGAR expression and depleting NADPH. Blood, 2012, 119(3), 810-816.
[73]
Lui, V.W.; Lau, C.P.; Cheung, C.S.; Ho, K.; Ng, M.H.; Cheng, S.H.; Hong, B.; Tsao, S.W.; Tsang, C.M.; Lei, K.I.; Yamasaki, Y.; Mita, A.; Chan, A.T. An RNA-directed nucleoside anti-metabolite, 1-(3-C-ethynyl-beta-d-ribo-pentofuranosyl)cytosine (ECyd), elicits antitumor effect via TP53-induced Glycolysis and Apoptosis Regulator (TIGAR) downregulation. Biochem. Pharmacol., 2010, 79(12), 1772-1780.
[74]
Wanka, C.; Steinbach, J.P.; Rieger, J. Tp53-induced glycolysis and apoptosis regulator (TIGAR) protects glioma cells from starvation-induced cell death by up-regulating respiration and improving cellular redox homeostasis. J. Biol. Chem., 2012, 287(40), 33436-33446.
[75]
Ye, L.; Zhao, X.; Lu, J.; Qian, G.; Zheng, J.C.; Ge, S. Knockdown of TIGAR by RNA interference induces apoptosis and autophagy in HepG2 hepatocellular carcinoma cells. Biochem. Biophys. Res. Commun., 2013, 437(2), 300-306.
[76]
Cheung, E.C.; Athineos, D.; Lee, P.; Ridgway, R.A.; Lambie, W.; Nixon, C.; Strathdee, D.; Blyth, K.; Sansom, O.J.; Vousden, K.H. TIGAR is required for efficient intestinal regeneration and tumorigenesis. Dev. Cell, 2013, 25(5), 463-477.
[77]
Cooper, H.S.; Murthy, S.N.; Shah, R.S.; Sedergran, D.J. Clinicopathologic study of dextran sulfate sodium experimental murine colitis. Lab. Invest., 1993, 69(2), 238-249.
[78]
Won, K.Y.; Lim, S.J.; Kim, G.Y.; Kim, Y.W.; Han, S.A.; Song, J.Y.; Lee, D.K. Regulatory role of p53 in cancer metabolism via SCO2 and TIGAR in human breast cancer. Hum. Pathol., 2012, 43(2), 221-228.
[79]
Sinha, S.; Ghildiyal, R.; Mehta, V.S.; Sen, E. ATM-NFκB axis-driven TIGAR regulates sensitivity of glioma cells to radiomimetics in the presence of TNFαCell Death Dis., 2013. 4e615
[80]
Kroemer, G.; Pouyssegur, J. Tumor cell metabolism: cancer’s Achilles’ heel. Cancer Cell, 2008, 13(6), 472-482.
[81]
Massari, F.; Ciccarese, C.; Santoni, M.; Iacovelli, R.; Mazzucchelli, R.; Piva, F.; Scarpelli, M.; Berardi, R.; Tortora, G.; Lopez-Beltran, A.; Cheng, L.; Montironi, R. Metabolic phenotype of bladder cancer. Cancer Treat. Rev., 2016, 45, 46-57.
[82]
Vander Heiden, M.G.; Cantley, L.C.; Thompson, C.B. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science, 2009, 324(5930), 1029-1033.
[83]
Landis, J.; Shaw, L.M. Insulin receptor substrate 2-mediated phosphatidylinositol 3-kinase signaling selectively inhibits glycogen synthase kinase 3β to regulate aerobic glycolysis. J. Biol. Chem., 2014, 289(26), 18603-18613.
[84]
Taubes, G. Cancer research. Unraveling the obesity-cancer connection.
Science, 2012, 335(6064), 28-30-32.
[85]
Zha, X.; Hu, Z.; Ji, S.; Jin, F.; Jiang, K.; Li, C.; Zhao, P.; Tu, Z.; Chen, X.; Di, L.; Zhou, H.; Zhang, H. NFκB up-regulation of glucose transporter 3 is essential for hyperactive mammalian target of rapamycin-induced aerobic glycolysis and tumor growth. Cancer Lett., 2015, 359(1), 97-106.
[86]
Sandulache, V.C.; Myers, J.N. Altered metabolism in head and neck squamous cell carcinoma: an opportunity for identification of novel biomarkers and drug targets. Head Neck, 2012, 34(2), 282-290.
[87]
Ward, P.S.; Thompson, C.B. Metabolic reprogramming: a cancer hallmark even warburg did not anticipate. Cancer Cell, 2012, 21(3), 297-308.
[88]
Donohoe, D.R.; Garge, N.; Zhang, X.; Sun, W.; O’Connell, T.M.; Bunger, M.K.; Bultman, S.J. The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon. Cell Metab., 2011, 13(5), 517-526.
[89]
Kim, J.W.; Zeller, K.I.; Wang, Y.; Jegga, A.G.; Aronow, B.J.; O’Donnell, K.A.; Dang, C.V. Evaluation of myc E-box phylogenetic footprints in glycolytic genes by chromatin immunoprecipitation assays. Mol. Cell. Biol., 2004, 24(13), 5923-5936.
[90]
Ellis, B.C.; Graham, L.D.; Molloy, P.L. CRNDE, a long non-coding RNA responsive to insulin/IGF signaling, regulates genes involved in central metabolism. Biochim. Biophys. Acta, 2014, 1843(2), 372-386.
[91]
Wei, Z.; Cui, L.; Mei, Z.; Liu, M.; Zhang, D. miR-181a mediates metabolic shift in colon cancer cells via the PTEN/AKT pathway. FEBS Lett., 2014, 588(9), 1773-1779.
[92]
Gerweck, L.E.; Seetharaman, K. Cellular pH gradient in tumor versus normal tissue: potential exploitation for the treatment of cancer. Cancer Res., 1996, 56(6), 1194-1198.
[93]
Helmlinger, G.; Yuan, F.; Dellian, M.; Jain, R.K. Interstitial pH and pO2 gradients in solid tumors in vivo: high-resolution measurements reveal a lack of correlation. Nat. Med., 1997, 3(2), 177-182.
[94]
Quail, D.F.; Joyce, J.A. Microenvironmental regulation of tumor progression and metastasis. Nat. Med., 2013, 19(11), 1423-1437.
[95]
Amend, S.R.; Pienta, K.J. Ecology meets cancer biology: the cancer swamp promotes the lethal cancer phenotype. Oncotarget, 2015, 6(12), 9669-9678.
[96]
Seo, Y.; Kinsella, T.J. Essential role of DNA base excision repair on survival in an acidic tumor microenvironment. Cancer Res., 2009, 69(18), 7285-7293.
[97]
Gorrini, C.; Harris, I.S.; Mak, T.W. Modulation of oxidative stress as an anticancer strategy. Nat. Rev. Drug Discov., 2013, 12(12), 931-947.
[98]
Harris, I.S.; Treloar, A.E.; Inoue, S.; Sasaki, M.; Gorrini, C.; Lee, K.C.; Yung, K.Y.; Brenner, D.; Knobbe-Thomsen, C.B.; Cox, M.A.; Elia, A.; Berger, T.; Cescon, D.W.; Adeoye, A.; Brüstle, A.; Molyneux, S.D.; Mason, J.M.; Li, W.Y.; Yamamoto, K.; Wakeham, A.; Berman, H.K.; Khokha, R.; Done, S.J.; Kavanagh, T.J.; Lam, C.W.; Mak, T.W. Glutathione and thioredoxin antioxidant pathways synergize to drive cancer initiation and progression. Cancer Cell, 2015, 27(2), 211-222.
[99]
Lamonte, G.; Tang, X.; Chen, J.L.; Wu, J.; Ding, C.K.; Keenan, M.M.; Sangokoya, C.; Kung, H.N.; Ilkayeva, O.; Boros, L.G.; Newgard, C.B.; Chi, J.T. Acidosis induces reprogramming of cellular metabolism to mitigate oxidative stress. Cancer Metab., 2013, 1(1), 23.
[100]
Zhao, M.; Liu, Q.; Gong, Y.; Xu, X.; Zhang, C.; Liu, X.; Zhang, C.; Guo, H.; Zhang, X.; Gong, Y.; Shao, C. GSH-dependent antioxidant defense contributes to the acclimation of colon cancer cells to acidic microenvironment. Cell Cycle, 2016, 15(8), 1125-1133.
[101]
Maulucci, G.; Daniel, B.; Cohen, O.; Avrahami, Y.; Sasson, S. Hormetic and regulatory effects of lipid peroxidation mediators in pancreatic beta cells. Mol. Aspects Med., 2016, 49, 49-77.
[102]
Ladell, K.; Hashimoto, M.; Iglesias, M.C.; Wilmann, P.G.; McLaren, J.E.; Gras, S.; Chikata, T.; Kuse, N.; Fastenackels, S.; Gostick, E.; Bridgeman, J.S.; Venturi, V.; Arkoub, Z.A.; Agut, H.; van Bockel, D.J.; Almeida, J.R.; Douek, D.C.; Meyer, L.; Venet, A.; Takiguchi, M.; Rossjohn, J.; Price, D.A.; Appay, V. A molecular basis for the control of preimmune escape variants by HIV-specific CD8+ T cells. Immunity, 2013, 38(3), 425-436.
[103]
Gubser, P.M.; Bantug, G.R.; Razik, L.; Fischer, M.; Dimeloe, S.; Hoenger, G.; Durovic, B.; Jauch, A.; Hess, C. Rapid effector function of memory CD8+ T cells requires an immediate-early glycolytic switch. Nat. Immunol., 2013, 14(10), 1064-1072.
[104]
Chang, C.H.; Curtis, J.D.; Maggi, L.B., Jr; Faubert, B.; Villarino, A.V.; O’Sullivan, D.; Huang, S.C.; van der Windt, G.J.; Blagih, J.; Qiu, J.; Weber, J.D.; Pearce, E.J.; Jones, R.G.; Pearce, E.L. Posttranscriptional control of T cell effector function by aerobic glycolysis. Cell, 2013, 153(6), 1239-1251.
[105]
Pagès, F.; Berger, A.; Camus, M.; Sanchez-Cabo, F.; Costes, A.; Molidor, R.; Mlecnik, B.; Kirilovsky, A.; Nilsson, M.; Damotte, D.; Meatchi, T.; Bruneval, P.; Cugnenc, P.H.; Trajanoski, Z.; Fridman, W.H.; Galon, J. Effector memory T cells, early metastasis, and survival in colorectal cancer. N. Engl. J. Med., 2005, 353(25), 2654-2666.
[106]
Kryczek, I.; Banerjee, M.; Cheng, P.; Vatan, L.; Szeliga, W.; Wei, S.; Huang, E.; Finlayson, E.; Simeone, D.; Welling, T.H.; Chang, A.; Coukos, G.; Liu, R.; Zou, W. Phenotype, distribution, generation, and functional and clinical relevance of Th17 cells in the human tumor environments. Blood, 2009, 114(6), 1141-1149.
[107]
Powell, D.J., Jr; Dudley, M.E.; Robbins, P.F.; Rosenberg, S.A. Transition of late-stage effector T cells to CD27+ CD28+ tumor-reactive effector memory T cells in humans after adoptive cell transfer therapy. Blood, 2005, 105(1), 241-250.
[108]
Wei, S.; Zhao, E.; Kryczek, I.; Zou, W. Th17 cells have stem cell-like features and promote long-term immunity. OncoImmunology, 2012, 1(4), 516-519.
[109]
Chang, C.H.; Qiu, J.; O’Sullivan, D.; Buck, M.D.; Noguchi, T.; Curtis, J.D.; Chen, Q.; Gindin, M.; Gubin, M.M.; van der Windt, G.J.; Tonc, E.; Schreiber, R.D.; Pearce, E.J.; Pearce, E.L. Metabolic Competition in the Tumor Microenvironment Is a Driver of Cancer Progression. Cell, 2015, 162(6), 1229-1241.
[110]
Ho, P.C.; Bihuniak, J.D.; Macintyre, A.N.; Staron, M.; Liu, X.; Amezquita, R.; Tsui, Y.C.; Cui, G.; Micevic, G.; Perales, J.C.; Kleinstein, S.H.; Abel, E.D.; Insogna, K.L.; Feske, S.; Locasale, J.W.; Bosenberg, M.W.; Rathmell, J.C.; Kaech, S.M. Phosphoenolpyruvate Is a Metabolic Checkpoint of Anti-tumor T Cell Responses. Cell, 2015, 162(6), 1217-1228.
[111]
Pollizzi, K.N.; Sun, I.H.; Patel, C.H.; Lo, Y.C.; Oh, M.H.; Waickman, A.T.; Tam, A.J.; Blosser, R.L.; Wen, J.; Delgoffe, G.M.; Powell, J.D. Asymmetric inheritance of mTORC1 kinase activity during division dictates CD8(+) T cell differentiation. Nat. Immunol., 2016, 17(6), 704-711.
[112]
Fox, C.J.; Hammerman, P.S.; Thompson, C.B. Fuel feeds function: energy metabolism and the T-cell response. Nat. Rev. Immunol., 2005, 5(11), 844-852.
[113]
Patsoukis, N.; Bardhan, K.; Chatterjee, P.; Sari, D.; Liu, B.; Bell, L.N.; Karoly, E.D.; Freeman, G.J.; Petkova, V.; Seth, P.; Li, L.; Boussiotis, V.A. PD-1 alters T-cell metabolic reprogramming by inhibiting glycolysis and promoting lipolysis and fatty acid oxidation. Nat. Commun., 2015, 6, 6692.
[114]
Gubser, P.M.; Bantug, G.R.; Razik, L.; Fischer, M.; Dimeloe, S.; Hoenger, G.; Durovic, B.; Jauch, A.; Hess, C. Rapid effector function of memory CD8+ T cells requires an immediate-early glycolytic switch. Nat. Immunol., 2013, 14(10), 1064-1072.
[115]
Greiner, E.F.; Guppy, M.; Brand, K. Glucose is essential for proliferation and the glycolytic enzyme induction that provokes a transition to glycolytic energy production. J. Biol. Chem., 1994, 269(50), 31484-31490.
[116]
Macintyre, A.N.; Gerriets, V.A.; Nichols, A.G.; Michalek, R.D.; Rudolph, M.C.; Deoliveira, D.; Anderson, S.M.; Abel, E.D.; Chen, B.J.; Hale, L.P.; Rathmell, J.C. The glucose transporter Glut1 is selectively essential for CD4 T cell activation and effector function. Cell Metab., 2014, 20(1), 61-72.
[117]
van der Windt, G.J.; Everts, B.; Chang, C.H.; Curtis, J.D.; Freitas, T.C.; Amiel, E.; Pearce, E.J.; Pearce, E.L. Mitochondrial respiratory capacity is a critical regulator of CD8+ T cell memory development. Immunity, 2012, 36(1), 68-78.
[118]
van der Windt, G.J.; O’Sullivan, D.; Everts, B.; Huang, S.C.; Buck, M.D.; Curtis, J.D.; Chang, C.H.; Smith, A.M.; Ai, T.; Faubert, B.; Jones, R.G.; Pearce, E.J.; Pearce, E.L. CD8 memory T cells have a bioenergetic advantage that underlies their rapid recall ability. Proc. Natl. Acad. Sci. USA, 2013, 110(35), 14336-14341.
[119]
Ganapathy-Kanniappan, S.; Geschwind, J.F. Tumor glycolysis as a target for cancer therapy: progress and prospects. Mol. Cancer, 2013, 12, 152.
[120]
Jang, M.; Kim, S.S.; Lee, J. Cancer cell metabolism: implications for therapeutic targets.Exp. Mol. Med., 2013. 45e45
[121]
Zhou, M.; Zhao, Y.; Ding, Y.; Liu, H.; Liu, Z.; Fodstad, O.; Riker, A.I.; Kamarajugadda, S.; Lu, J.; Owen, L.B.; Ledoux, S.P.; Tan, M. Warburg effect in chemosensitivity: targeting lactate dehydrogenase-A re-sensitizes taxol-resistant cancer cells to taxol. Mol. Cancer, 2010, 9, 33.
[122]
Tong, J.; Xie, G.; He, J.; Li, J.; Pan, F.; Liang, H. Synergistic antitumor effect of dichloroacetate in combination with 5-fluorouracil in colorectal cancer. J. Biomed. Biotechnol., 2011, •••, 2011740564.
[123]
Ho, N.; Coomber, B.L. Pyruvate dehydrogenase kinase expression and metabolic changes following dichloroacetate exposure in anoxic human colorectal cancer cells. Exp. Cell Res., 2015, 331(1), 73-81.
[124]
Bandukwala, H.S.; Gagnon, J.; Togher, S.; Greenbaum, J.A.; Lamperti, E.D.; Parr, N.J.; Molesworth, A.M.; Smithers, N.; Lee, K.; Witherington, J.; Tough, D.F.; Prinjha, R.K.; Peters, B.; Rao, A. Selective inhibition of CD4+ T-cell cytokine production and autoimmunity by BET protein and c-Myc inhibitors. Proc. Natl. Acad. Sci. USA, 2012, 109(36), 14532-14537.
[125]
Powell, J.D.; Zheng, Y. Dissecting the mechanism of T-cell anergy with immunophilin ligands. Curr. Opin. Investig. Drugs, 2006, 7(11), 1002-1007.
[126]
Touzot, M.; Soulillou, J.P.; Dantal, J. Mechanistic target of rapamycin inhibitors in solid organ transplantation: from benchside to clinical use. Curr. Opin. Organ Transplant., 2012, 17(6), 626-633.
[127]
Waickman, A.T.; Powell, J.D. mTOR, metabolism, and the regulation of T-cell differentiation and function. Immunol. Rev., 2012, 249(1), 43-58.
[128]
Jin, M.L.; Park, S.Y.; Kim, Y.H.; Park, G.; Lee, S.J. Halofuginone induces the apoptosis of breast cancer cells and inhibits migration via downregulation of matrix metalloproteinase-9. Int. J. Oncol., 2014, 44(1), 309-318.
[129]
de Figueiredo-Pontes, L.L.; Assis, P.A.; Santana-Lemos, B.A.; Jácomo, R.H.; Lima, A.S.; Garcia, A.B.; Thomé, C.H.; Araújo, A.G.; Panepucci, R.A.; Zago, M.A.; Nagler, A.; Falcão, R.P.; Rego, E.M. Halofuginone has anti-proliferative effects in acute promyelocytic leukemia by modulating the transforming growth factor beta signaling pathway. PLoS One, 2011, 6(10), e26713.
[130]
Ellis, B.C.; Graham, L.D.; Molloy, P.L. CRNDE, a long non-coding RNA responsive to insulin/IGF signaling, regulates genes involved in central metabolism. Biochim. Biophys. Acta, 2014, 1843(2), 372-386.
[131]
Wei, Z.; Cui, L.; Mei, Z.; Liu, M.; Zhang, D. miR-181a mediates metabolic shift in colon cancer cells via the PTEN/AKT pathway. FEBS Lett., 2014, 588(9), 1773-1779.
[132]
Chen, G.Q.; Tang, C.F.; Shi, X.K.; Lin, C.Y.; Fatima, S.; Pan, X.H.; Yang, D.J.; Zhang, G.; Lu, A.P.; Lin, S.H.; Bian, Z.X. Halofuginone inhibits colorectal cancer growth through suppression of Akt/mTORC1 signaling and glucose metabolism. Oncotarget, 2015, 6(27), 24148-24162.
[133]
Chen, G.Q.; Gong, R.H.; Yang, D.J.; Zhang, G.; Lu, A.P.; Yan, S.C.; Lin, S.H.; Bian, Z.X. Halofuginone dually regulates autophagic flux through nutrient-sensing pathways in colorectal cancer. Cell Death Dis., 2017, 8(5), e2789.
[134]
Thoreen, C.C.; Kang, S.A.; Chang, J.W.; Liu, Q.; Zhang, J.; Gao, Y.; Reichling, L.J.; Sim, T.; Sabatini, D.M.; Gray, N.S. An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1. J. Biol. Chem., 2009, 284(12), 8023-8032.
[135]
Wang, L.; Xiong, H.; Wu, F.; Zhang, Y.; Wang, J.; Zhao, L.; Guo, X.; Chang, L.J.; Zhang, Y.; You, M.J.; Koochekpour, S.; Saleem, M.; Huang, H.; Lu, J.; Deng, Y. Hexokinase 2-mediated Warburg effect is required for PTEN- and p53-deficiency-driven prostate cancer growth. Cell Reports, 2014, 8(5), 1461-1474.
[136]
Cao, Y.; Rathmell, J.C.; Macintyre, A.N. Metabolic reprogramming towards aerobic glycolysis correlates with greater proliferative ability and resistance to metabolic inhibition in CD8 versus CD4 T cells. PLoS One, 2014, 9(8), e104104.
[137]
Roberts, D.J.; Miyamoto, S. Hexokinase II integrates energy metabolism and cellular protection: Akting on mitochondria and TORCing to autophagy. Cell Death Differ., 2015, 22(2), 248-257.
[138]
Arafa, S.A.; Abdelazeem, A.H.; Arab, H.H.; Omar, H.A. OSU-CG5, a novel energy restriction mimetic agent, targets human colorectal cancer cells in vitro. Acta Pharmacol. Sin., 2014, 35(3), 394-400.
[139]
Zwicker, F.; Kirsner, A.; Peschke, P.; Roeder, F.; Debus, J.; Huber, P.E.; Weber, K.J. Dichloroacetate induces tumor-specific radiosensitivity in vitro but attenuates radiation-induced tumor growth delay in vivo. Strahlenther. Onkol., 2013, 189(8), 684-692.
[140]
Fath, M.A.; Diers, A.R.; Aykin-Burns, N.; Simons, A.L.; Hua, L.; Spitz, D.R. Mitochondrial electron transport chain blockers enhance 2-deoxy-D-glucose induced oxidative stress and cell killing in human colon carcinoma cells. Cancer Biol. Ther., 2009, 8(13), 1228-1236.
[141]
Ying, Q.; Ansong, E.; Diamond, A.M.; Lu, Z.; Yang, W.; Bie, X. Quantitative proteomic analysis reveals that anti-cancer effects of selenium-binding protein 1 in vivo are associated with metabolic pathways. PLoS One, 2015, 10(5), e0126285.
[142]
Gattinoni, L.; Zhong, X.S.; Palmer, D.C.; Ji, Y.; Hinrichs, C.S.; Yu, Z.; Wrzesinski, C.; Boni, A.; Cassard, L.; Garvin, L.M.; Paulos, C.M.; Muranski, P.; Restifo, N.P. Wnt signaling arrests effector T cell differentiation and generates CD8+ memory stem cells. Nat. Med., 2009, 15(7), 808-813.
[143]
Sukumar, M.; Liu, J.; Ji, Y.; Subramanian, M.; Crompton, J.G.; Yu, Z.; Roychoudhuri, R.; Palmer, D.C.; Muranski, P.; Karoly, E.D.; Mohney, R.P.; Klebanoff, C.A.; Lal, A.; Finkel, T.; Restifo, N.P.; Gattinoni, L. Inhibiting glycolytic metabolism enhances CD8+ T cell memory and antitumor function. J. Clin. Invest., 2013, 123(10), 4479-4488.
[144]
Topalian, S.L.; Drake, C.G.; Pardoll, D.M. Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer Cell, 2015, 27(4), 450-461.
[145]
Pardoll, D.M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer, 2012, 12(4), 252-264.
[146]
Patsoukis, N.; Bardhan, K.; Chatterjee, P.; Sari, D.; Liu, B.; Bell, L.N.; Karoly, E.D.; Freeman, G.J.; Petkova, V.; Seth, P.; Li, L.; Boussiotis, V.A. PD-1 alters T-cell metabolic reprogramming by inhibiting glycolysis and promoting lipolysis and fatty acid oxidation. Nat. Commun., 2015, 6, 6692.
[147]
Barañano, K.W.; Hartman, A.L. The ketogenic diet: uses in epilepsy and other neurologic illnesses. Curr. Treat. Options Neurol., 2008, 10(6), 410-419.
[148]
Turati, F.; Edefonti, V.; Bravi, F.; Ferraroni, M.; Talamini, R.; Giacosa, A.; Montella, M.; Parpinel, M.; La Vecchia, C.; Decarli, A. Adherence to the European food safety authority’s dietary recommendations and colorectal cancer risk. Eur. J. Clin. Nutr., 2012, 66(4), 517-522.
[149]
Wiktorowska-Owczarek, A.; Berezińska, M.; Nowak, J.Z. PUFAs: structures, metabolism and functions. Adv. Clin. Exp. Med., 2015, 24(6), 931-941.
[150]
Ferreri, C.; Chatgilialoglu, C. Membrane Lipidomics for Personalized Health; Wiley & Sons Ltd.: Chichester, 2015.
[151]
Das, U.N. Essential Fatty acids - a review. Curr. Pharm. Biotechnol., 2006, 7(6), 467-482.
[152]
Wang, S.; Xie, J.; Li, H.; Yang, K. Differences of polyunsaturated fatty acid in patients with colorectal cancer and healthy people. J. Cancer Res. Ther., 2015, 11(2), 459-463.
[153]
Yang, K.; Li, H.; Dong, J.; Dong, Y.; Wang, C.Z. Expression profile of polyunsaturated fatty acids in colorectal cancer. World J. Gastroenterol., 2015, 21(8), 2405-2412.
[154]
Lee, J.Y.; Zhao, L.; Hwang, D.H. Modulation of pattern recognition receptor-mediated inflammation and risk of chronic diseases by dietary fatty acids. Nutr. Rev., 2010, 68(1), 38-61.
[155]
Eleftheriadis, T.; Pissas, G.; Antoniadi, G.; Liakopoulos, V.; Stefanidis, I. Malate dehydrogenase-2 inhibitor LW6 promotes metabolic adaptations and reduces proliferation and apoptosis in activated human T-cells. Exp. Ther. Med., 2015, 10(5), 1959-1966.
[156]
Hirata, F.; Nomiyama, S.; Hayaishi, O. Indoleamine 2,3-dioxygenase. Note I. Catalytic and molecular properties. Acta Vitaminol. Enzymol., 1975, 29(1-6), 288-290.
[157]
Fallarino, F.; Grohmann, U.; Vacca, C.; Orabona, C.; Spreca, A.; Fioretti, M.C.; Puccetti, P. T cell apoptosis by kynurenines. Adv. Exp. Med. Biol., 2003, 527, 183-190.
[158]
Munn, D.H.; Shafizadeh, E.; Attwood, J.T.; Bondarev, I.; Pashine, A.; Mellor, A.L. Inhibition of T cell proliferation by macrophage tryptophan catabolism. J. Exp. Med., 1999, 189(9), 1363-1372.
[159]
Uyttenhove, C.; Pilotte, L.; Théate, I.; Stroobant, V.; Colau, D.; Parmentier, N.; Boon, T.; Van den Eynde, B.J. Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. Nat. Med., 2003, 9(10), 1269-1274.
[160]
Ferdinande, L.; Decaestecker, C.; Verset, L.; Mathieu, A.; Moles Lopez, X.; Negulescu, A.M.; Van Maerken, T.; Salmon, I.; Cuvelier, C.A.; Demetter, P. Clinicopathological significance of indoleamine 2,3-dioxygenase 1 expression in colorectal cancer. Br. J. Cancer, 2012, 106(1), 141-147.
[161]
Ghanipour, A.; Jirström, K.; Pontén, F.; Glimelius, B.; Påhlman, L.; Birgisson, H. The prognostic significance of tryptophanyl-tRNA synthetase in colorectal cancer. Cancer Epidemiol. Biomarkers Prev., 2009, 18(11), 2949-2956.
[162]
Uyttenhove, C.; Pilotte, L.; Théate, I.; Stroobant, V.; Colau, D.; Parmentier, N.; Boon, T.; Van den Eynde, B.J. Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. Nat. Med., 2003, 9(10), 1269-1274.
[163]
Friberg, M.; Jennings, R.; Alsarraj, M.; Dessureault, S.; Cantor, A.; Extermann, M.; Mellor, A.L.; Munn, D.H.; Antonia, S.J. Indoleamine 2,3-dioxygenase contributes to tumor cell evasion of T cell-mediated rejection. Int. J. Cancer, 2002, 101(2), 151-155.
[164]
Hwu, P.; Du, M.X.; Lapointe, R.; Do, M.; Taylor, M.W.; Young, H.A. Indoleamine 2,3-dioxygenase production by human dendritic cells results in the inhibition of T cell proliferation. J. Immunol., 2000, 164(7), 3596-3599.
[165]
Jürgens, B.; Hainz, U.; Fuchs, D.; Felzmann, T.; Heitger, A. Interferon-gamma-triggered indoleamine 2,3-dioxygenase competence in human monocyte-derived dendritic cells induces regulatory activity in allogeneic T cells. Blood, 2009, 114(15), 3235-3243.
[166]
Sioud, M.; Saebøe-Larssen, S.; Hetland, T.E.; Kaern, J.; Mobergslien, A.; Kvalheim, G. Silencing of indoleamine 2,3-dioxygenase enhances dendritic cell immunogenicity and antitumour immunity in cancer patients. Int. J. Oncol., 2013, 43(1), 280-288.
[167]
Sørensen, R.B.; Hadrup, S.R.; Svane, I.M.; Hjortsø, M.C.; Thor Straten, P.; Andersen, M.H. Indoleamine 2,3-dioxygenase specific, cytotoxic T cells as immune regulators. Blood, 2011, 117(7), 2200-2210.
[168]
Balachandran, V.P.; Cavnar, M.J.; Zeng, S.; Bamboat, Z.M.; Ocuin, L.M.; Obaid, H.; Sorenson, E.C.; Popow, R.; Ariyan, C.; Rossi, F.; Besmer, P.; Guo, T.; Antonescu, C.R.; Taguchi, T.; Yuan, J.; Wolchok, J.D.; Allison, J.P.; DeMatteo, R.P. Imatinib potentiates antitumor T cell responses in gastrointestinal stromal tumor through the inhibition of Ido. Nat. Med., 2011, 17(9), 1094-1100.
[169]
Nayak, A.; Hao, Z.; Sadek, R. A Phase I study of NLG919 for adult patients with recurrent advanced solid tumors. J. Immunother. Cancer, 2014, 2(Suppl. 3), 250.
[170]
Deiab, S.; Mazzio, E.; Eyunni, S.; McTier, O.; Mateeva, N.; Elshami, F.; Soliman, K.F. 1,2,3,4,6-Penta-O-galloylglucose within Galla Chinensis Inhibits Human LDH-A and Attenuates Cell Proliferation in MDA-MB-231 Breast Cancer Cells. Evid. Based Complement. Alternat. Med., 2015, 2015, 276946.
[171]
Estrella, V.; Chen, T.; Lloyd, M.; Wojtkowiak, J.; Cornnell, H.H.; Ibrahim-Hashim, A.; Bailey, K.; Balagurunathan, Y.; Rothberg, J.M.; Sloane, B.F.; Johnson, J.; Gatenby, R.A.; Gillies, R.J. Acidity generated by the tumor microenvironment drives local invasion. Cancer Res., 2013, 73(5), 1524-1535.
[172]
Kareva, I.; Hahnfeldt, P. The emerging “hallmarks” of metabolic reprogramming and immune evasion: distinct or linked? Cancer Res., 2013, 73(9), 2737-2742.
[173]
Da Silva, S.L. Chaar, Jda.S.; Yano, T. Chemotherapeutic potential of two gallic acid derivative compounds from leaves of Casearia sylvestris Sw (Flacourtiaceae). Eur. J. Pharmacol., 2009, 608(1-3), 76-83.
[174]
Fiuza, S.M.; Gomes, C.; Teixeira, L.J.; Girão da Cruz, M.T.; Cordeiro, M.N.; Milhazes, N.; Borges, F.; Marques, M.P. Phenolic acid derivatives with potential anticancer properties--a structure-activity relationship study. Part 1: methyl, propyl and octyl esters of caffeic and gallic acids. Bioorg. Med. Chem., 2004, 12(13), 3581-3589.
[175]
Lee, H.; Lee, H.; Kwon, Y.; Lee, J.H.; Kim, J.; Shin, M.K.; Kim, S.H.; Bae, H. Methyl gallate exhibits potent antitumor activities by inhibiting tumor infiltration of CD4+CD25+ regulatory T cells. J. Immunol., 2010, 185(11), 6698-6705.
[176]
Toda, A.; Piccirillo, C.A. Development and function of naturally occurring CD4+CD25+ regulatory T cells. J. Leukoc. Biol., 2006, 80(3), 458-470.