[1]
Thomas, D.; Kansara, M. Epigenetic modifications in osteogenic differentiation and transformation. J. Cell. Biochem., 2006, 98(4), 757-769.
[2]
Wang, L.L. Biology of osteogenic sarcoma. Cancer J., 2005, 11(4), 294-305.
[3]
Nakagomi, K.; Kohwi, Y.; Dickinson, L.A.; Kohwi-Shigematsu, T. A novel DNA-binding motif in the nuclear matrix attachment DNA-binding protein SATB1. Mol. Cell. Biol., 1994, 14(3), 1852-1860.
[4]
Dobreva, G.; Dambacher, J.; Grosschedl, R. SUMO modification of a novel MAR-binding protein, SATB2, modulates immunoglobulin mu gene expression. Genes Dev., 2003, 17(24), 3048-3061.
[5]
Alcamo, E.A.; Chirivella, L.; Dautzenberg, M.; Dobreva, G.; Fariñas, I.; Grosschedl, R.; McConnell, S.K. Satb2 regulates callosal projection neuron identity in the developing cerebral cortex. Neuron, 2008, 57(3), 364-377.
[6]
Dobreva, G.; Chahrour, M.; Dautzenberg, M.; Chirivella, L.; Kanzler, B.; Fariñas, I.; Karsenty, G.; Grosschedl, R. SATB2 is a multifunctional determinant of craniofacial patterning and osteoblast differentiation. Cell, 2006, 125(5), 971-986.
[7]
Wang, S.; Zhou, J.; Wang, X.Y.; Hao, J.M.; Chen, J.Z.; Zhang, X.M.; Jin, H.; Liu, L.; Zhang, Y.F.; Liu, J.; Ding, Y.Q.; Li, J.M. Down-regulated expression of SATB2 is associated with metastasis and poor prognosis in colorectal cancer. J. Pathol., 2009, 219(1), 114-122.
[8]
Mansour, M.A.; Asano, E.; Hyodo, T.; Akter, K.A.; Takahashi, M.; Hamaguchi, M.; Senga, T. Special AT-rich sequence-binding protein 2 suppresses invadopodia formation in HCT116 cells via palladin inhibition. Exp. Cell Res., 2015, 332(1), 78-88.
[9]
Yang, M.H.; Yu, J.; Jiang, D.M.; Li, W.L.; Wang, S.; Ding, Y.Q. microRNA-182 targets special AT-rich sequence-binding protein 2 to promote colorectal cancer proliferation and metastasis. J. Transl. Med., 2014, 12, 109.
[10]
Chung, J.; Lau, J.; Cheng, L.S.; Grant, R.I.; Robinson, F.; Ketela, T.; Reis, P.P.; Roche, O.; Kamel-Reid, S.; Moffat, J.; Ohh, M.; Perez-Ordonez, B.; Kaplan, D.R.; Irwin, M.S. SATB2 augments ΔNp63α in head and neck squamous cell carcinoma. EMBO Rep., 2010, 11(10), 777-783.
[11]
Aprelikova, O.; Yu, X.; Palla, J.; Wei, B.R.; John, S.; Yi, M.; Stephens, R.; Simpson, R.M.; Risinger, J.I.; Jazaeri, A.; Niederhuber, J. The role of miR-31 and its target gene SATB2 in cancer-associated fibroblasts. Cell Cycle, 2010, 9(21), 4387-4398.
[12]
Seong, B.K.A.; Lau, J.; Adderley, T.; Kee, L.; Chaukos, D.; Pienkowska, M.; Malkin, D.; Thorner, P.; Irwin, M.S. SATB2 enhances migration and invasion in osteosarcoma by regulating genes involved in cytoskeletal organization. Oncogene, 2015, 34(27), 3582-3592.
[13]
Iwano, M.; Plieth, D.; Danoff, T.M.; Xue, C.; Okada, H.; Neilson, E.G. Evidence that fibroblasts derive from epithelium during tissue fibrosis. J. Clin. Invest., 2002, 110(3), 341-350.
[14]
Zhang, S.; Wang, X.; Osunkoya, A.O.; Iqbal, S.; Wang, Y.; Chen, Z.; Müller, S.; Chen, Z.; Josson, S.; Coleman, I.M.; Nelson, P.S.; Wang, Y.A.; Wang, R.; Shin, D.M.; Marshall, F.F.; Kucuk, O.; Chung, L.W.; Zhau, H.E.; Wu, D. EPLIN downregulation promotes epithelial-mesenchymal transition in prostate cancer cells and correlates with clinical lymph node metastasis. Oncogene, 2011, 30(50), 4941-4952.
[15]
Thisoda, P.; Rangkadilok, N.; Pholphana, N.; Worasuttayangkurn, L.; Ruchirawat, S.; Satayavivad, J. Inhibitory effect of Andrographis paniculata extract and its active diterpenoids on platelet aggregation. Eur. J. Pharmacol., 2006, 553(1-3), 39-45.
[16]
Li, J.; Huang, W.; Zhang, H.; Wang, X.; Zhou, H. Synthesis of andrographolide derivatives and their TNF-alpha and IL-6 expression inhibitory activities. Bioorg. Med. Chem. Lett., 2007, 17(24), 6891-6894.
[17]
Sui, Y.; Wu, F.; Lv, J.; Li, H.; Li, X.; Du, Z.; Sun, M.; Zheng, Y.; Yang, L.; Zhong, L.; Zhang, X.; Zhang, G. Identification of the novel TMEM16A inhibitor dehydroandrographolide and its anticancer activity on SW620 cells. PLoS One, 2015, 10(12) e0144715
[18]
Hsieh, M.J.; Lin, C.W.; Chiou, H.L.; Yang, S.F.; Chen, M.K. Dehydroandrographolide, an iNOS inhibitor, extracted from Andrographis paniculata (Burm.f.) Nees, induces autophagy in human oral cancer cells. Oncotarget, 2015, 6(31), 30831-30849.
[19]
Fan, Y.; Weng, Z.; Gao, H.; Hu, J.; Wang, H.; Li, L.; Liu, H. Isoalantolactone enhances the radiosensitivity of UMSCC-10A cells via specific inhibition of Erk1/2 phosphorylation. PLoS One, 2015, 10(12) e0145790
[20]
Pabla, N.; Dong, G.; Jiang, M.; Huang, S.; Kumar, M.V.; Messing, R.O.; Dong, Z. Inhibition of PKCδ reduces cisplatin-induced nephrotoxicity without blocking chemotherapeutic efficacy in mouse models of cancer. J. Clin. Invest., 2011, 121(7), 2709-2722.
[21]
Kucuksayan, H.; Ozes, O.N.; Akca, H. Downregulation of SATB2 is critical for induction of epithelial-to-mesenchymal transition and invasion of NSCLC cells. Lung Cancer, 2016, 98, 122-129.
[22]
Malumbres, M.; Barbacid, M. Cell cycle, CDKs and cancer: A changing paradigm. Nat. Rev. Cancer, 2009, 9(3), 153-166.
[23]
Pines, J.; Hunter, T. Cyclins A and B1 in the human cell cycle. Ciba Found. Symp., 1992, 170, 187-196.
[24]
Santamaria, D.; Ortega, S. Cyclins and CDKS in development and cancer: lessons from genetically modified mice. Front. Biosci., 2006, 11, 1164-1188.
[25]
Bendris, N.; Lemmers, B.; Blanchard, J.M. Cell cycle, cytoskeleton dynamics and beyond: the many functions of cyclins and CDK inhibitors. Cell Cycle, 2015, 14(12), 1786-1798.
[26]
Han, H.J.; Russo, J.; Kohwi, Y.; Kohwi-Shigematsu, T. SATB1 reprogrammes gene expression to promote breast tumour growth and metastasis. Nature, 2008, 452(7184), 187-193.
[27]
Xiang, J.; Zhou, L.; Li, S.; Xi, X.; Zhang, J.; Wang, Y.; Yang, Y.; Liu, X.; Wan, X. AT-rich sequence binding protein 1: Contribution to tumor progression and metastasis of human ovarian carcinoma. Oncol. Lett., 2012, 3(4), 865-870.
[28]
Conner, J.R.; Hornick, J.L. SATB2 is a novel marker of osteoblastic differentiation in bone and soft tissue tumours. Histopathology, 2013, 63(1), 36-49.
[29]
Luo, L.J.; Yang, F.; Ding, J.J.; Yan, D.L.; Wang, D.D.; Yang, S.J.; Ding, L.; Li, J.; Chen, D.; Ma, R.; Wu, J.Z.; Tang, J.H. MiR-31 inhibits migration and invasion by targeting SATB2 in triple negative breast cancer. Gene, 2016, 594(1), 47-58.
[30]
Wei, J.; Shi, Y.; Zheng, L.; Zhou, B.; Inose, H.; Wang, J.; Guo, X.E.; Grosschedl, R.; Karsenty, G. miR-34s inhibit osteoblast proliferation and differentiation in the mouse by targeting SATB2. J. Cell Biol., 2012, 197(4), 509-521.
[31]
Hassan, M.Q.; Gordon, J.A.; Beloti, M.M.; Croce, C.M.; van Wijnen, A.J.; Stein, J.L.; Stein, G.S.; Lian, J.B. A network connecting Runx2, SATB2, and the miR-23a~27a~24-2 cluster regulates the osteoblast differentiation program. Proc. Natl. Acad. Sci. USA, 2010, 107(46), 19879-19884.
[32]
Zhang, J.; Tu, Q.; Grosschedl, R.; Kim, M.S.; Griffin, T.; Drissi, H.; Yang, P.; Chen, J. Roles of SATB2 in osteogenic differentiation and bone regeneration. Tissue Eng. Part A, 2011, 17(13-14), 1767-1776.
[33]
Ge, C.; Xiao, G.; Jiang, D.; Yang, Q.; Hatch, N.E.; Roca, H.; Franceschi, R.T. Identification and functional characterization of ERK/MAPK phosphorylation sites in the Runx2 transcription factor. J. Biol. Chem., 2009, 284(47), 32533-32543.
[34]
Artigas, N.; Ureña, C.; Rodríguez-Carballo, E.; Rosa, J.L.; Ventura, F. Mitogen-activated protein kinase (MAPK)-regulated interactions between Osterix and Runx2 are critical for the transcriptional osteogenic program. J. Biol. Chem., 2014, 289(39), 27105-27117.
[35]
Evdokimova, V.; Tognon, C.E.; Sorensen, P.H. On translational regulation and EMT. Semin. Cancer Biol., 2012, 22(5-6), 437-445.
[36]
Sung, J.Y.; Park, S.Y.; Kim, J.H.; Kang, H.G.; Yoon, J.H.; Na, Y.S.; Kim, Y.N.; Park, B.K. Interferon consensus sequence-binding
protein (ICSBP) promotes epithelial-to-mesenchymal transition
(EMT)-like phenomena, cell-motility, and invasion via TGF-β
signaling in U2OS cells. Cell Death Dis., 2014, 5e1224.
[37]
Tang, J.; Shen, L.; Yang, Q.; Zhang, C. Overexpression of metadherin mediates metastasis of osteosarcoma by regulating epithelial-mesenchymal transition. Cell Prolif., 2014, 47(5), 427-434.