Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Synthesis of Tetrahydrobenzo[b]thiophene-3-carbohydrazide Derivatives as Potential Anti-cancer Agents and Pim-1 Kinase Inhibitors

Author(s): Rafat M. Mohareb*, Wagnat W. Wardakhan and Nermeen S. Abbas

Volume 19, Issue 14, 2019

Page: [1737 - 1753] Pages: 17

DOI: 10.2174/1871520619666190402153429

Price: $65

Abstract

Background: Tetrahydrobenzo[b]thiophene derivatives are well known to be biologically active compounds and many of them occupy a wide range of anticancer agent drugs.

Objective: One of the main aim of this work was to synthesize target molecules not only possessing anti-tumor activities but also kinase inhibitors. To achieve this goal, our strategy was to synthesize a series of 4,5,6,7- tetrahydrobenzo[b]thiophene-3-carbohydrazide derivatives using cyclohexan-1,4-dione and cyanoacetylhydrazine to give the 2-amino-6-oxo-4,5,6,7-tetrahydrobenzo[b]thiophene-3-carbohydrazide (3) as the key starting material for many heterocyclization reactions.

Methods: Compound 3 was reacted with some aryldiazonium salts and the products were cyclised when reacted with either malononitrile or ethyl cyanoacetate. Thiazole derivatives were also obtained through the reaction of compound 3 with phenylisothiocyanate followed by heterocyclization with α-halocarbonyl derivatives. Pyrazole, triazole and pyran derivatives were also obtained.

Results: The compounds obtained in this work were evaluated for their in-vitro cytotoxic activity against c-Met kinase, and the six typical cancer cell lines (A549, H460, HT-29, MKN-45, U87MG, and SMMC-7721). The results of anti-proliferative evaluations and c-Met kinase, Pim-1 kinse inhibitions revealed that some compounds showed high activities.

Conclusion: The most promising compounds 5b, 5c, 7c, 7d, 11b, 14a, 16b, 18b, 19, 21a, 23c, 23d and 23i against c-Met kinase were further investigated against the five tyrosin kinases (c-Kit, Flt-3, VEGFR-2, EGFR, and PDGFR). Compounds 5b, 5c, 7d, 7e, 11b, 11c, 16c, 16d, 18c, 19, 23e, 23k and 23m were selected to examine their Pim-1 kinase inhibitions activity where compounds 7d, 7e, 11b, 11c, 16d, 18c and 23e showed high activities. All of the synthesized compounds have no impaired effect toward the VERO normal cell line.

Keywords: Thiophene, thiazole, pyrazole, triazole, pyran, tyrosine kinase.

Graphical Abstract

[1]
Luo, Q.O.; Connel, D.L.; Kahn, C.; Yu, X.Q. Colorectal cancer metastatic disease progression in Australia: A population-based analysis. Cancer Epidemiol., 2017, 49, 92-100.
[2]
Wang, W.Y.; Zhang, Y.; Yang, L.; Li, H. The innate immune signaling in cancer and cardiometabolic diseases: Friends or foes. Cancer Lett., 2017, 387, 46-60.
[3]
Ferlay, J.; Soerjomataram, I.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D.M.; Bray, F. Cancer incidence and mortality worlwide: Sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer, 2015, 136, 359-386.
[4]
Almeida, V.L.; Leitão, L.; Barret, L.C.; Montanari, C.A.; Donnici, C.L.; Lopes, M.T.P. Cãncer agentes antineoplâsicos ciclo-celular especáficos ciclo-celular nío especáficos que interagem com DNA: Uma introduçío. Quim. Nova, 2005, 28, 118-129.
[5]
Akhdar, H.; Legendre, C.; Aninat, C.; Morel, F. Anticancer drug metabolism: Chemotherapy resistance and new therapeutic approaches. In: Topics on Drug Metabolism, Paxton, J. Ed.; In Tech.: Rijeka, 2012, pp. 137-170.
[6]
Luqmani, Y.A. Mechanisms of drug resistance in cancer chemotherapy. Med. Princ. Pract., 2005, 14, 35-48.
[7]
Ismael, G.F.; Rosa, D.D.; Mano, M.S.; Awada, A. Novel cytotoxic drugs: old challenges, new solutions. Cancer Treat. Ver., 2008, 34, 81-91.
[8]
Narang, A.S.; Desai, D.S. Anticancer drug development: Unique aspects of pharmaceutical development.In: Pharmaceutical Perspectives of Cancer Therapeutics; Lu, Y.; Mahato, R.I., Eds.; Springer Science: New York, 2009.
[9]
Ferreira, D.; Adega, F.; Chaves, R. The importance of cancer cell lines as in vitro models in cancer methylome analysis and anticancer drugs testing.In: Cancer Proteomics -Novel Approaches in Biomarkers Discovery, Oncogenomics, Therapeutic Targets in Cancer; Camarillo, C.L.; Ocampo, E.A., Eds.; 1st ed InTech: Rijeka, 2013.
[10]
Mishra, R.; Jha, K.K.; Kumar, S.; Tomer, I.S. Synthesis, properties and biological activity of thiophene: A review. Der Pharm Chem., 2011, 3, 38-54.
[11]
Meotti, F.C.; Silva, D.O.; Santos, A.R.S.; Zeni, G.; Rocha, J.B.T.; Nogueira, C.W. Thiophenes and furans derivatives: A new class of potencial pharmacological agents. Environ. Toxicol. Pharmacol., 2003, 15, 37-44.
[12]
Chaudhary, A.; Jha, K.K.; Kumar, S. Biological diversity of thiophene: A review. J. Adv. Sci. Res., 2012, 3, 3-10.
[13]
Mohammad, A.I.C.; Satyendra, D.; Apurba, T.; Patel, M.; Monika, K.; Girish, K.; Mohan, S.; Saravanan, J. Synthesis and antimicrobial screening of some novel substituted thiophenes. Hyg. J. Drugs Med., 2012, 4, 112-118.
[14]
Wermuth, C.G. The Practice of Medicinal Chemistry, 3th; ed.; London, Academic Press, 2011.
[15]
Garton, A.J.; Crew, A.P.; Franklin, M.; Cooke, A.R.; Wynne, G.M.; Castaldo, L.; Kahler, J.; Winski, S.L.; Franks, A.; Brown, E.N.; Bittner, M.A.; Keily, J.F.; Briner, P.; Hidden, C.; Srebernak, M.C.; Pirrit, C.; O’Connor, M.; Chan, A.; Vulevic, B.; Henninger, D.; Hart, K.; Sennello, R.; Li, A.H.; Zhang, T.; Richardson, F.; Emerson, D.L.; Castelhano, A.L.; Arnold, D.; Gibson, N.W. OSI-930: A novel selective inhibitor of Kit and kinase insert domain receptor tyrosine kinases with antitumor activity in mouse xenograft models. Cancer Res., 2006, 66, 1015-1024.
[16]
Yap, T.A.; Arkenau, H.T.; Camidge, D.R.; George, S.; Serkova, N.J.; Gwyther, S.J.; Spratlin, J.L.; Lal, R.; Spicer, J.; Desouza, N.M.; Leach, M.O.; Chick, J.; Poondru, S.; Boinpally, R.; Gedrich, R.; Brock, K.; Stephens, A.; Eckhardt, S.G.; Kaye, S.B.; Demetri, G.; Scurr, M. First-in-human phase i trial of two schedules of osi-930, a novel multikinase inhibitor, incorporating translational proof-of-mechanism studies. Clin. Cancer Res., 2013, 19, 909-919.
[17]
Buchdunger, E.; Cioffi, C.L.; Law, N.; Stover, D.; Ohno-Jones, S.; Druker, B.J.; Lydon, N.B. Abl protein-tyrosine kinase inhibitor STI571 inhibits in vitro signal transduction mediated by c-kit and platelet-derived growth factor receptors. J. Pharmacol. Exp. Ther., 2000, 295, 139-145.
[18]
Arora, M.; Saravanan, J.; Mohan, S.; Bhattacharjee, S. Synthesis, characterization and antimicrobial activity of some schiff bases of 2-amino-n-(p-acetamidophenyl carboxamido)-4, 5, 6, 7-tetramethylene thiophenes. Int. J. Pharma Sci., 2013, 5, 315-319.
[19]
Rao, S.D.; Rasheed, S.; Basha, T.S.K.; Raju, N.C.; Naresh, K. SiO2/ZnCl2 catalyzed a -aminophosphonates and phosphonated N-(substitued phenyl) sulfonamides of 2-aminothiophene synthesis and biological evaluation. Der Pharm Chem., 2013, 5, 61-74.
[20]
Khan, K.M.; Nullah, Z.; Lodhi, M.A.; Jalil, S.; Choudhary, M.I. (2006) Synthesis and anti-inflammatory activity of some selected aminothiophene analogs. J. Enzyme Inhib. Med. Chem. 2006, 21,, , 139-143.
[21]
Fortes, A.C. 1.; Almeida, A.A.; Mendonça-Júnior, F.J.; Freitas, R.M.; Soares-Sobrinho, J.L.; Soares, M.F. Anxiolytic properties of new chemical entity, 5TIO1. Neurochem. Res., 2013, 38, 726-731.
[22]
Rodrigues, K.A.F.; Dias, C.N.S.; Néris, P.L.N.; Rocha, J.C.; Scotti, M.T.; Scotti, L.; Mascarenhas, S.R.; Veras, R.C.; Medeiros, I.A.; Keesen, T.D.L.; Oliveira, T.B.; Lima, M.C.A.; Balliano, T.L.; Aquino, T.M.; Moura, R.O.; Junior, F.J.; Oliveira, M.R. 2-amino thiophene derivatives present antileishmanial activity mediated by apoptosis and immunomodulation in vitro. Eur. J. Med. Chem., 2015, 106, 1-14.
[23]
Duffy, J.L.; Kirk, B.A.; Konteatis, Z.; Campbell, E.L.; Liang, R.; Brady, E.J.; Candelore, M.R.; Ding, V.D.H.; Jiang, G.; Liu, F.; Qureshi, S.A.; Saperstein, R.; Szalkowski, D.; Tong, S.; Tota, L.M.; Xie, D.; Yang, X.; Zafian, P.; Zheng, S.; Chapman, K.T.; Zhang, B.B.; Tata, J.R. Discovery and investigation of a novel class of thiophene-derived antagonists of the human glucagon receptor. Bioorg. Med. Chem. Lett., 2005, 15, 1401-1405.
[24]
Abo-Salem, H.M.; El-Sawy, E.R.; Fathy, A.; Mandour, A.H. Synthesis, antifungal activity, and molecular docking study of some novel highly substituted 3- indolylthiophene derivatives. Egypt. Pharmaceut. J., 2014, 13, 71-86.
[25]
Tavadyan, L.A.; Manukyan, Z.H.; Harutyunyan, L.H.; Musayelyan, M.V.; Sahakyan, A.D.; Tonikyan, H.G. Antioxidant Properties of Selenophene, Thiophene and Their Aminocarbonitrile Derivatives. Antioxidants, 2017, 6, 10-10.
[26]
Jagadish, E.R.; Mohan, S.; Saravanan, J.; Satyendra, D.; Sree, S.P.; Apurba, T.; Manoj, K.; Rama, K.S. Synthesis and in-vitro anti-platelet aggregation activity of some new substituted thiophenes. Hyg. J. Drugs Med., 2013, 5, 87-96.
[27]
Romagnoli, R.; Baraldi, P.G.; Carrion, M.D.; Cara, C.L.; Preti, D.; Fruttarolo, F.; Pavani, M.G.; Tabrizi, M.A.; Tolomeo, M.; Grimaudo, S.; Cristina, A.D.; Balzarini, J.; Hadfield, J.A.; Brancale, A.; Hamel, E. Synthesis and biological evaluation of 2- and 3-aminobenzo[b] thiophene derivatives as antimitotic agents and inhibitors of tubulin polymerization. J. Med. Chem., 2007, 50, 2273-2277.
[28]
Liu, L.; Siegmund, A.; Xi, N.; Kaplan-Lefko, P.; Rex, K.; Chen, A.; Lin, J.; Moriguchi, J.; Berry, L.; Huang, L.Y.; Teffera, Y.; Yang, Y.J.; Zhang, Y.H.; Bellon, S.F.; Lee, M.; Shimanovich, R.; Bak, A.; Dominguez, C.; Norman, M.H.; Harmange, J.C.; Dussault, I.; Kim, T.S. Discovery of a potent, selective, and orally bioavailable c-Met Inhibitor: 1-(2-Hydroxy-2-methylpropyl)-N-(5-(7-methoxyquinolin-4-yloxy)pyridin-2-yl)-5-methyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazole-4-carboxamide (AMG 458). J. Med. Chem., 2008, 51, 3688-3691.
[29]
Peach, M.L.; Tan, N.; Tan, N.; Choyke, S.J.; Giubellino, A.; Athauda, G.; Burke, T.R.; Nicklaus, M.C.; Bottaro, D.P. Directed discovery of agents targeting the met tyrosine kinase domain by virtual screening. J. Med. Chem., 2009, 52, 943-951.
[30]
Knudsen, B.S.; Gmyrek, G.A.; Inra, J.; Scherr, D.S.; Vaughan, E.D.; Nanus, D.M.; Kattan, M.W.; Gerald, W.L.; Woude, G.F. High expression of the Met receptor in prostate cancer metastasis to bone. Urology, 2002, 60, 1113-1117.
[31]
Verras, M.; Lee, J.; Xue, H.; Li, T.H.; Wang, Y.; Sun, Z. The androgen receptor negatively regulates the expression of c-Met: implications for a novel mechanism of prostate cancer progression. Cancer Res., 2007, 67, 967-975.
[32]
Bacco, F.D.; Luraghi, P.; Medico, E.; Reato, G.; Girolami, F.; Perera, T.; Gabriele, P.; Comoglio, P.M.; Boccaccio, C. Induction of MET by ionizing radiat.on and its role in radioresistance and invasive growth of cancer. J. Natl. Cancer Inst., 2011, 103, 645-661.
[33]
Zhu, W.; Wang, W.; Xu, S.; Wang, J.; Tang, Q.; Wu, C.; Zhao, Y.; Zheng, P. Synthesis, and docking studies of phenylpyrimidine-carboxamide derivatives bearing 1H-pyrrolo[2,3-b]pyridine moiety as c-Met inhibitors. Bioorg. Med. Chem., 2016, 24, 1749-1756.
[34]
Zhang, Z.; Lee, J.C.; Li, L.; Olivas, V.; Au, V.; LaFramboise, T.; Abdel-Rahman, M.; Wang, X.; Levine, A.D.; Rho, J.K.; Choi, Y.J.; Choi, C.M.; Kim, S.W.; Jang, S.J.; Park, Y.S.; Kim, W.S.; Lee, D.H.; Lee, J.S.; Miller, V.A.; Arcila, M.; Ladanyi, M.; Moonsamy, P.; Sawyers, C.; Boggon, T.J.; Ma, P.C.; Costa, C.; Taron, M.; Rosell, R.; Halmos, B.; Bivona, T.G. Activation of the AXL kinase causes resistance to EGFR-targeted therapy in lung cancer. Nat. Genet., 2012, 44, 852-860.
[35]
Blume-Jensen, P.; Hunter, T. Oncogenic kinase signalling. Nature, 2001, 411, 355-365.
[36]
DiSalvo, J.; Bayne, M.L.; Conn, G.; Kwok, P.W.; Trivedi, P.G.; Soderman, D.D.; Palisi, T.M.; Sullivan, K.A.; Thomas, K.A. Purification and characterization of a naturally occurring vascular endothelial growth factor. Placenta growth factor heterodimer. J. Biol. Chem., 1995, 270, 7717-7723.
[37]
Senger, D.R.; Galli, S.J.; Dvorak, A.M.; Perruzzi, C.A.; Harvey, V.S.; Dvorak, H.F. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science, 1983, 219, 983-985.
[38]
Ferrara, N. Vegf and the quest for tumour angiogenesis factors. Nat. Rev. Cancer, 2002, 2, 795-803.
[39]
Jonathan, B.B.; Georgina, A.H. New substructure filters for removal of Pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. J. Med. Chem., 2010, 53, 2719-2740.
[40]
McGovern, S.L.; Caselli, E.; Grigorieff, N.; Shoichet, B.K. A common mechanism underlying promiscuous inhibitors from virtual and high-throughput screening. J. Med. Chem., 2002, 45, 1712-1722.
[41]
McGovern, S.L.; Shoichet, B.K. Kinase inhibitors: Not just for kinases anymore. J. Med. Chem., 2003, 46, 1478-1483.
[42]
Feng, B.Y.; Shelat, A.; Doman, T.N.; Guy, R.K.; Shoichet, B.K. High-throughput assays for promiscuous inhibitors. Nat. Chem. Biol., 2005, 1, 146-148.
[43]
Feng, B.Y.; Shoichet, B.K. Synergy and antagonism of promiscuous inhibition in multiple-compound libraries. J. Med. Chem., 2006, 49, 2151-2154.
[44]
Metz, J.T.; Huth, J.R.; Hajduk, P.J. Enhancement of chemical rules for predicting compound reactivity towards protein thiol groups. J. Computer. Aided Mol. Des., 2007, 21, 139-144.
[45]
Huth, J.R.; Song, D.; Mendoza, R.R.; Black-Schaefer, C.L.; Mack, J.C.; Dorwin, S.A.; Ladror, U.S.; Severin, J.M.; Walter, K.A.; Bartley, D.M.; Hajduk, P. Toxicological evaluation of thiol-reactive compounds identified using a La assay to detect reactive molecules by nuclear magnetic resonance. Chem. Res. Toxicol., 2007, 20, 1752-1759.
[46]
Jonathan, B.B.; Michael, A.W. Chemistry: Chemical con artists foil drug discovery. Nature, 2014, 513, 481-483.
[47]
Jayme, L.D.; Michael, A.W. The essential roles of chemistry in high-throughput screening triage. Future Med. Chem., 2014, 6, 1265-1290.
[48]
Martin, P.; Stephane, J. Pan assay interference compounds (PAINS) and other promiscuous compounds in antifungal research. J. Med. Chem., 2016, 59, 497-503.
[49]
Cheng, F.; Li, A.W. SAR: a comprehensive source and free tool for assessmentof chemical ADMET properties. J. Chem. Inf. Mod., 2012, 52, 3099-3105.
[50]
Drew, M.G.B. Phenylhydrazone derivatives of dimedone: Hydrogen bonding, spectral (I3C and H Nuclear Magnetic Resonance) and conformational considerations. Crystal and molecular structures of 5,5-Dimethylcyclohexane-1, 2,3-trione 2-(4-Methylphenylhydrazone) (1) and 5,5-Dimethylcyclohexane-1,2,3-trione 2-(4-Nitrophenyl-hydrazone) (2). J. Chem. Soc. Perkin Trans., 1982, II, 1297-1303.
[51]
Mohareb, R.M.; Zohdi, H.F.; Sherif, S.M.; Wardakhan, W.W. Heterocyclic synthesis with isothiocyanate: An expeditious synthetic route for polyfunctionally substituted 3-(thiazol-2′-ylidene)pyridines and their fused derivatives. Tetrahedron, 1994, 50, 5807-5820.
[52]
El-Kousy, M.; Mohareb, R.M.; Sherif, S.M. Heterocyclic Synthesis With Isothiocyanate: An expecditious synthetic route to polyfunctionally substituted thiophene, pyrazole, oxazole, 2,3-dihydrothiazole, 2-(pyrazol-4-ylideno)thiazole and 5-(thiazol-2-ylideno)-pyrimidine derivatives. J. Chem. Res., 1993, 312, 1981.
[53]
Mohareb, R.M.; Fleita, D.H.; Sakka, O.K. Novel synthesis of hydrazide-hydrazone derivatives and their utilization in the synthesis of coumarin, pyridine, thiazole and thiophene derivatives with antitumor activity. Molecules, 2010, 23, 16-27.
[54]
Wardakhan, W.W.; El-Sayed, N.N.; Mohareb, R.M. Synthesis and anti-tumor evaluation of novel hydrazide and hydrazide-hydrazone derivatives. Acta Pharm., 2013, 63, 45-57.
[55]
Angelova, V.T.; Valcheva, V.; Vassilev, N.G.; Buyukliev, R.; Momekov, G.; Dimitrov, I.; Saso, L.; Djukic, M.; Shivachev, B. (2016) Antimycobacterial activity of novel hydrazide-hydrazone derivatives with 2H-chromene and coumarin scaffold. Bioorg. Med. Chem. Lett., 2016, 27, 223-227.
[56]
Xu, X.; Shi, W.; Zhou, Y.; Wang, Y.; Zhang, M.; Song, L.; Deng, H. Convenient one-pot synthesis of monofluorinated functionalized 4-H-pyran derivatives via multi-component reactions. J. Fluorine. Chem., 2015, 176, 127-133.
[57]
Penta, S.; Gadidasu, K.K.; Basavoju, S.; Rao, V.R. (2013) An efficient one-pot synthesis of pyrazolyl-[1,2,4]triazolo[3,4-b][1,3,4] thiadiazin-6-yl)-2H-pyran-2-one derivatives via multicomponent approach and their potential antimicrobial and nematicidal activities. Tetrahed. Lett., 2013, (54), 5663-5666.
[58]
Vereshchagin, A.N.; Michail, N.E.; Ryzhkov, F.V.; Nasybullin, R.F.; Bobrovsky, S.I.; Goloveshkin, M.P. A.S.; Egorov, M.P. Multicomponent assembling of salicylaldehydes, malononitrile, and 4-hydroxy-6-methyl-2H-pyran-2-one: A fast and efficient approach to medicinally relevant 2-amino-4H-chromene scaffold. C. R. Chimie., 2015, 18, 1344-1349.
[59]
Hazeri, N.; Maghsoodlou, M.T.; Mir, F.; Kangani, M.; Saravani, H.; Molashahi, E. An efficient one-pot three-component synthesis of tetrahydrobenzo[b]pyran and 3,4-dihydropyrano[c]chromene derivatives using starch solution as catalyst. Chin. J. Catal., 2014, 35, 391-395.
[60]
Wagh, Y.B.; Tayade, Y.A.; Padvi, S.A.; Patil, B.S.; Patil, N.B.; Dalal, D.S. A cesium fluoride promoted efficient and rapid multicomponent synthesis of functionalized 2-amino-3-cyano-4H-pyran and spirooxindole derivatives. Chin. Chem. Lett., 2015, 26, 1273-1277.
[61]
Jolodar, O.G.; Shirini, F.; Seddighi, M. Introduction of a novel basic ionic liquid containing dual basic functional groups for the efficient synthesis of spiro-4H-pyrans. J. Mol. Liquid., 2016, 224, 1092-1111.
[62]
Azzam, R.A.; Mohareb, R.M. Multicomponent reactions of acetoacetanilide derivatives with aromatic aldehydes and cyanomethylene reagents to produce 4H-pyran and 1,4-dihydropyridine derivatives with antitumor activities. Chem. Pharm. Bull., 2015, 63, 1055-1064.
[63]
Tabassum, S.; Govindaraju, S.; Khan, R.R.; Pasha, M.A. Ultrasound mediated, iodine catalyzed green synthesis of novel 2-amino-3-cyano-4H-pyran derivatives. Ultrasonic. Sonochem., 2015, 24, 1-7.
[64]
El-Sayed, N.N.E.; Abdelaziz, M.A.; Wardakhan, W.; Mohareb, R.M. The Knoevenagel reaction of cyanoacetylhydrazine with pregnenolone: Synthesis of thiophene, thieno[2,3-d]pyrimidine, 1,2,4-triazole, pyran and pyridine derivatives with anti-inflammatory and anti-ulcer activities. Steroids, 2016, 107, 98-111.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy