Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Synthesis of Thiazole, Thiophene, Pyran and Pyridine Derivatives Derived from 3-phenyl-1H-pyrazol-5(4H)-one with Anti-proliferative, Tyrosine Kinase and PIM-1 Kinase Inhibitions

Author(s): Rafat Milad Mohareb* and Ibram Refat Mikhail

Volume 17, Issue 4, 2020

Page: [485 - 501] Pages: 17

DOI: 10.2174/1570180816666190618105907

Price: $65

Abstract

Background: A wide range of pyrazole derivatives gained special attention due to their wide range of pharmacological activities especially the therapeutic activities. Many pharmacological drugs containing the pyrazole nucleus are known in the market.

Methods: The 3-phenyl-1H-pyrazol-5(4H)-one was the key starting compound for many heterocyclic reactions to produce substituted and fused pyrazole derivatives.

Results: Antiproliferative activities of the produced compounds against six cancer cell lines A549, HT-29, MKN-45, U87MG, and SMMC-7721 and H460 were measured through which compounds showed high inhibitions. The most promising compounds were tested against tyrosine kinases (c-Kit, Flt-3, VEGFR-2, EGFR, and PDGFR). Structure-Activity Relationship (SAR) was rationalized by looking at the varying structural features of the molecules. In addition, the most active compounds were selected for Pim-1 inhibition.

Conclusion: Thirty-nine pyrazole derivatives were synthesized. Nine of them 8b, 9, 12b, 12d, 14b, 15b, 18d, 18f, 19b, and 21d were the most active compounds toward the selected cancer cell lines. Compounds 12b, 14b, 18d, 18f, and 21d showed high inhibitions toward the tyrosine kinases, whereas compounds 14b, 18d, and 18f were the most potent inhibitors of Pim-1.

Keywords: Pyrazole derivatives, pyran, pyridine, antiproliferative activity, structure-activity relationship, tyrosine kinase inhibition.

Graphical Abstract

[1]
Thangarasu, P.; Manikandan, A.; Thamaraiselvi, S. Discovery, synthesis and molecular corroborations of medicinally important novel pyrazoles; Drug efficacy determinations through in silico, in vitro and cytotoxicity validations. Bioorg. Chem., 2019, 86, 410-419.
[http://dx.doi.org/10.1016/j.bioorg.2019.02.003] [PMID: 30769266]
[2]
Zhang, T.Y.; Zheng, C.J.; Wu, J.; Sun, L.P.; Piao, H.R. Synthesis of novel dihydrotriazine derivatives bearing 1,3-diaryl pyrazole moieties as potential antibacterial agents. Bioorg. Med. Chem. Lett., 2019, 29(9), 1079-1084.
[http://dx.doi.org/10.1016/j.bmcl.2019.02.033] [PMID: 30842033]
[3]
Omran, D.M.; Ghaly, M.A.; El-Messery, S.M.; Badria, F.A.; Abdel-Latif, E.; Shehata, I.A. Targeting hepatocellular carcinoma: Synthesis of new pyrazole-based derivatives, biological evaluation, DNA binding, and molecular modeling studies. Bioorg. Chem., 2019, 88(10), 2917.
[http://dx.doi.org/10.1016/j.bioorg.2019.04.011] [PMID: 30981111]
[4]
Thomas, R.; Mary, Y.S.; Resmi, K.S.; Narayana, B.; Sarojini, S.B.K.; Armaković, S.; Armaković, S.J.; Vijayakumar, G.; Alsenoy, C.V.; Mohan, B.J. Synthesis and spectroscopic study of two new pyrazole derivatives with detailed computational evaluation of their reactivity and pharmaceutical potential. J. Mol. Struct., 2019, 1181, 599-612.
[http://dx.doi.org/10.1016/j.molstruc.2019.01.014]
[5]
Wang, Y.T.; Shi, T.Q.; Zhu, H.L.; Liu, C.H. Synthesis, biological evaluation and molecular docking of benzimidazole grafted benzsulfamide-containing pyrazole ring derivatives as novel tubulin polymerization inhibitors. Bioorg. Med. Chem., 2019, 27(3), 502-515.
[http://dx.doi.org/10.1016/j.bmc.2018.12.031] [PMID: 30606674]
[6]
Dai, H.; Ge, S.; Guo, J.; Chen, S.; Huang, M.; Yang, J.; Sun, S.; Ling, Y.; Shi, Y. Development of novel bis-pyrazole derivatives as antitumor agents with potent apoptosis induction effects and DNA damage. Eur. J. Med. Chem., 2018, 143, 1066-1076.
[http://dx.doi.org/10.1016/j.ejmech.2017.11.098] [PMID: 29232583]
[7]
Kamble, R.D.; Meshram, R.J.; Hese, S.V.; More, R.A.; Kamble, S.S.; Gacche, R.N.; Dawane, B.S. Synthesis and in silico investigation of thiazoles bearing pyrazoles derivatives as anti-inflammatory agents. Comput. Biol. Chem., 2016, 61, 86-96.
[http://dx.doi.org/10.1016/j.compbiolchem.2016.01.007] [PMID: 26844536]
[8]
El Shehry, M.F.; Ghorab, M.M.; Abbas, S.Y.; Fayed, E.A.; Shedid, S.A.; Ammar, Y.A. Quinoline derivatives bearing pyrazole moiety: Synthesis and biological evaluation as possible antibacterial and antifungal agents. Eur. J. Med. Chem., 2018, 143, 1463-1473.
[http://dx.doi.org/10.1016/j.ejmech.2017.10.046] [PMID: 29113746]
[9]
Burgart, Y.V.; Agafonova, N.A.; Shchegolkov, E.V.; Borisevich, S.S.; Khursan, S.L.; Maslova, V.V.; Triandafilov, G.A.; Solodnikov, S.Y.; Krasnykh, O.P.; Saloutin, V.I. The competitive N1 -, N2 -, O- and C-methylation of 3-trifluoromethyl-1Hpyrazol-5-ol for synthesis of analgesic compounds. J. Fluor. Chem., 2019, 218, 1-10.
[http://dx.doi.org/10.1016/j.jfluchem.2018.11.009]
[10]
Malvar, Ddo. C.; Ferreira, R.T.; de Castro, R.A.; de Castro, L.L.; Freitas, A.C.C.; Costa, E.A.; Florentino, I.F.; Mafra, J.C.M.; de Souza, G.E.; Vanderlinde, F.A. Antinociceptive, anti-inflammatory and antipyretic effects of 1.5-diphenyl-1H-Pyrazole-3-carbohydrazide, a new heterocyclic pyrazole derivative. Life Sci., 2014, 95(2), 81-88.
[http://dx.doi.org/10.1016/j.lfs.2013.12.005] [PMID: 24355293]
[11]
Abdel-Aziz, M. Abuo-Rahma, Gel-D.; Hassan, A.A. Synthesis of novel pyrazole derivatives and evaluation of their antidepressant and anticonvulsant activities. Eur. J. Med. Chem., 2009, 44(9), 3480-3487.
[http://dx.doi.org/10.1016/j.ejmech.2009.01.032] [PMID: 19268406]
[12]
Bhat, L.; Jandeleit, B.; Dias, T.M.; Moors, T.L.; Gallop, M.A. Synthesis and biological evaluation of novel steroidal pyrazoles as substrates for bile acid transporters. Bioorg. Med. Chem. Lett., 2005, 15(1), 85-87.
[http://dx.doi.org/10.1016/j.bmcl.2004.10.027] [PMID: 15582416]
[13]
Vázquez, E.H.; Ortiz, R.A. Espinosa, J.J. -Soto, S.E.; Luis Eyr F.H. Synthesis, hypoglycemic activity and molecular modeling studies of pyrazole-3-carbohydrazides designed by a CoMFA model. J. Med. Chem., 2013, 69, 10-21.
[http://dx.doi.org/10.1016/j.ejmech.2013.07.054]
[14]
Kamel, M.M. Convenient synthesis, characterization, cytotoxicity and toxicity of pyrazole derivatives. Acta Chim. Slov., 2015, 62(1), 136-151.
[http://dx.doi.org/10.17344/acsi.2014.828] [PMID: 25830970]
[15]
Sasmal, P.K.; Reddy, D.S.; Talwar, R.; Venkatesham, B.; Balasubrahmanyam, D.; Kannan, M.; Srinivas, P.; Kumar, K.S.; Devi, B.N.; Jadhav, V.P.; Khan, S.K.; Mohan, P.; Chaudhury, H.; Bhuniya, D.; Iqbal, J.; Chakrabarti, R. Novel pyrazole-3-carboxamide derivatives as cannabinoid-1 (CB1) antagonists: Journey from non-polar to polar amides. Bioorg. Med. Chem. Lett., 2011, 21(1), 562-568.
[http://dx.doi.org/10.1016/j.bmcl.2010.10.055] [PMID: 21075633]
[16]
Abdolahi, N.; Aghaei, M.; Soltani, A.; Azmoodeh, Z.; Balakheyli, H.; Heidari, F. Adsorption of Celecoxib on B12N12 fullerene: Spectroscopic and DFT/TD-DFT study. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2018, 204, 348-353.
[http://dx.doi.org/10.1016/j.saa.2018.06.077] [PMID: 29957413]
[17]
Qi, X.; Zhao, L.; Zhao, Q.; Xu, Q. Simple and sensitive LC-MS/MS method for simultaneous determination of crizotinib and its major oxidative metabolite in human plasma: Application to a clinical pharmacokinetic study. J. Pharm. Biomed. Anal., 2018, 155, 210-215.
[http://dx.doi.org/10.1016/j.jpba.2018.03.053] [PMID: 29653346]
[18]
Balseven, H.; Mustafa İşgör, M.; Mert, S.; Alım, Z.; Beydemir, S.; Ok, S.; Kasımoğulları, R. Facile synthesis and characterization of novel pyrazole-sulfonamides and their inhibition effects on human carbonic anhydrase isoenzymes. Bioorg. Med. Chem., 2013, 21(1), 21-27.
[http://dx.doi.org/10.1016/j.bmc.2012.11.012] [PMID: 23218470]
[19]
Mert, S.; Yaglıoglu, A.S.; Demirtas, I.; Kasımogullari, R. Synthesis and antiproliferative activities of some pyrazole-sulfonamide derivatives. Med. Chem. Res., 2014, 23, 1278-1289.
[http://dx.doi.org/10.1007/s00044-013-0721-2]
[20]
Ahadi, S.; Shakibaei, G.I.; Mirzaei, P.; Bazgir, A. A clean synthesis of 3, 3-bis (5-amino-1h-pyrazol-4-yl)-indolin-2-one derivatives. Heterocycles, 2008, 75, 2293-2299.
[http://dx.doi.org/10.3987/COM-08-11391]
[21]
Fan, W.; Ye, Q.; Xu, H.W.; Jiang, B.; Wang, S.L.; Tu, S.J. Novel double [3 + 2 + 1] heteroannulation for forming unprecedented dipyrazolo-fused 2,6-naphthyridines. Org. Lett., 2013, 15(9), 2258-2261.
[http://dx.doi.org/10.1021/ol4008266] [PMID: 23597067]
[22]
Wang, J.J.; Feng, X.; Xun, Z.; Shi, D.Q.; Huang, Z.B. Multicomponent strategy to pyrazolo [3, 4-e]indolizine derivatives under microwave irradiation. J. Org. Chem., 2015, 80(16), 8435-8442.
[http://dx.doi.org/10.1021/acs.joc.5b01314] [PMID: 26193420]
[23]
Ahadi, S.; Ghahremanzadeh, R.; Mirzaei, P.; Bazgir, A. Synthesis of spiro [benzopyrazolo-naphthyridineindoline]-diones and spiro [chromenopyrazolopyridine-indoline]-diones by one-pot, three-component methods in water. Tetrahedron, 2009, 65, 9316-9321.
[http://dx.doi.org/10.1016/j.tet.2009.09.009]
[24]
Ryabukhin, S.V.; Granat, D.S.; Plaskon, A.S.; Shivanyuk, A.; Lukin, O. Synthesis of pyrazolo [3, 4-d]-4, 5-dihydropyrimidin-6-ones. Tetrahedron Lett., 2014, 55, 1846-1847.
[http://dx.doi.org/10.1016/j.tetlet.2014.01.131]
[25]
Schmitt, D.C.; Niljianskul, N.; Sach, N.W.; Trujillo, J.I. A Parallel Approach to 7-(Hetero)arylpyrazolo[1,5- a]pyrimidin-5-ones. ACS Comb. Sci., 2018, 20(5), 256-260.
[http://dx.doi.org/10.1021/acscombsci.8b00032] [PMID: 29618198]
[26]
Aggarwal, R.; Rani, C.; Kumar, R.; Garg, G.; Sharma, J. Synthesis of new bi (pyrazolo [1, 5-a] pyrimidinyl)-7-one derivatives from dehydroacetic acid and its analogues as antibacterial agents. ARKIVOC, 2014, ii, 120-134.
[27]
Lichitsky, B.; Komogortsev, A.; Dudinov, A.; Krayushkin, M. Three-component condensation of 5-aminopyrazole derivatives with isatins and meldrum’s acid. Synthesis of 1, 7-dihydrospiro [pyrazolo [3, 4-b]-pyridine-4, 3′-indole]-2′, 6 (1′ h, 5h)-diones. Russ. Chem. Bull., 2009, 58, 1504-1508.
[http://dx.doi.org/10.1007/s11172-009-0202-4]
[28]
Chebanov, V.A.; Saraev, V.E.; Desenko, S.M.; Chernenko, V.N.; Shishkina, S.V.; Shishkin, O.V.; Kobzar, K.M.; Kappe, C.O. One-pot, multicomponent route to pyrazoloquinolizinones. Org. Lett., 2007, 9(9), 1691-1694.
[http://dx.doi.org/10.1021/ol070411l] [PMID: 17385876]
[29]
Jiang, B.; Fan, W.; Sun, M.Y.; Ye, Q.; Wang, S.L.; Tu, S.J.; Li, G. Domino reaction of arylglyoxals with pyrazol-5-amines: Selective access to pyrazolo-fused 1,7-naphthyridines, 1,3-diazocanes, and pyrroles. J. Org. Chem., 2014, 79(11), 5258-5268.
[http://dx.doi.org/10.1021/jo500823z] [PMID: 24833111]
[30]
Gosselin, F.; O’Shea, P.D.; Webster, R.A.; Reamer, R.A.; Tillyer, R.D.; Edward, J.J.; Grabowski, E.J.J. Highly regioselective synthesis of 1-aryl-3,4,5-substituted pyrazoles. Synlett, 2006, 3267-3270.
[http://dx.doi.org/10.1055/s-2006-956487]
[31]
Liu, L.; Siegmund, A.; Xi, N.; Kaplan-Lefko, P.; Rex, K.; Chen, A.; Lin, J.; Moriguchi, J.; Berry, L.; Huang, L.; Teffera, Y.; Yang, Y.; Zhang, Y.; Bellon, S.F.; Lee, M.; Shimanovich, R.; Bak, A.; Dominguez, C.; Norman, M.H.; Harmange, J.C.; Dussault, I.; Kim, T.S. Discovery of a potent, selective, and orally bioavailable c-Met inhibitor: 1-(2-hydroxy-2-methylpropyl)-N-(5-(7-methoxyquinolin-4-yloxy)pyridin-2-yl)-5-methyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazole-4-carboxamide (AMG 458). J. Med. Chem., 2008, 51(13), 3688-3691.
[http://dx.doi.org/10.1021/jm800401t] [PMID: 18553959]
[32]
Peach, M.L.; Tan, N.; Choyke, S.J.; Giubellino, A.; Athauda, G.; Burke, T.R., Jr; Nicklaus, M.C.; Bottaro, D.P.; Bottaro, D.P. Directed discovery of agents targeting the Met tyrosine kinase domain by virtual screening. J. Med. Chem., 2009, 52(4), 943-951.
[http://dx.doi.org/10.1021/jm800791f] [PMID: 19199650]
[33]
Nagaraju, B.; Kovvuri, J.; Kumar, C.G.; Routhu, S.R.; Shareef, M.A.; Kadagathur, M.; Adiyala, P.R.; Alavala, S.; Nagesh, N.; Kamal, A. Synthesis and biological evaluation of pyrazole linked benzothiazole-β-naphthol derivatives as topoisomerase I inhibitors with DNA binding ability. Bioorg. Med. Chem., 2019, 27(5), 708-720.
[http://dx.doi.org/10.1016/j.bmc.2019.01.011] [PMID: 30679134]
[34]
Zou, M.; Jin, B.; Liu, Y.; Chen, H.; Zhang, Z.; Zhang, C.; Zhao, Z.; Zheng, L. Synthesis and biological evaluation of some novel thiophene-bearing quinazoline derivatives as EGFR inhibitors. Lett. Drug Des. Discov., 2019, 16, 102-110.
[http://dx.doi.org/10.2174/1570180815666180803125935]
[35]
Castanedo, G.M.; Georgette, M.; Sutherlin, D.P. Synthesis of tetrasubstituted thiophenes on solid-support using the Gewald reaction. Tetrahedron Lett., 2001, 42, 7181-7718.
[36]
Javadi, F.; Tayebee, R. Preparation and characterization of ZnO/nanoclinoptilolite as a new nanocomposite and studying its catalytic performance in the synthesis of 2-aminothiophenes via Gewald reaction. Microporous and Mesoporous Mater., 2016, 231, 100-109.
[37]
Quan, Y.H.W.; Yan, T.C.G. Gewald-type reaction of double activated 2,3- diarylcyclo-propanes with elemental sulfur for synthesis of polysubstituted 2-aminothiophenes. Tetrahedron Lett., 2014, 55, 1441-1443.
[38]
Xu, X.; Shi, W.; Zhou, Y.; Wang, Y.; Zhang, M.; Song, L.; Deng, H. Convenient one-pot synthesis of monofluorinated functionalized 4-H-pyran derivatives via multi-component reactions. J. Fluor. Chem., 2015, 176, 127-133.
[39]
Penta, S.; Gadidasu, K.K.; Basavoju, S.; Rao, V.R. An efficient one-pot synthesis of pyrazolyl-[1,2,4]triazolo[3,4-b][1,3,4] thiadiazin-6-yl)-2H-pyran-2-one derivatives via multicomponent approach and their potential antimicrobial and nematicidal activities. Tetrahedron Lett., 2013, 54, 5663-5666.
[40]
Vereshchagin, A.N.; Michail, N.E.; Ryzhkov, F.V.; Nasybullin, R.F.; Bobrovsky, S.I.; Goloveshkin, M.P. A.S.; Egorov, M.P. Multicomponent assembling of salicylaldehydes, malononitrile, and 4-hydroxy-6-methyl-2H-pyran-2-one: A fast and efficient approach to medicinally relevant 2-amino-4H-chromene scaffold. C. R. Chimie., 2015, 18, 1344-1349.
[41]
Hazeri, N.; Maghsoodlou, M.T.; Mir, F.; Kangani, M.; Saravani, H.; Molashahi, E. An efficient one-pot three-component synthesis of tetrahydrobenzo[b]pyran and 3,4-dihydropyrano[c]chromene derivatives using starch solution as catalyst. Chin. J. Catal., 2014, 35, 391-395.
[42]
Wagh, Y.B.; Tayade, Y.A.; Padvi, S.A.; Patil, B.S.; Patil, N.B.; Dalal, D.S. A cesium fluoride promoted efficient and rapid multicomponent synthesis of functionalized 2-amino-3-cyano-4H-pyran and spirooxindole derivatives. Chin. Chem. Lett., 2015, 26, 1273-1277.
[43]
Jolodar, O.G.; Shirini, F.; Seddighi, M. Introduction of a novel basic ionic liquid containing dual basic functional groups for the efficient synthesis of spiro-4H-pyrans. J. Mol. Liq., 2016, 224, 1092-1111.
[44]
Abbas, N.S.; Ahmed, E.A. New Approaches for the synthesis and cytotoxicity of thiazoles derived from cyclohexanone. Acta Chim. Sov., 2014, 61, 835-843.
[45]
Mohareb, R.M. Phenyl isothiocyanate in heterocyclic synthesis: Novel synthesis of thiazoles, thieno[2,3-b]pyridine, thiophene and thieno[3,2-c]pyridazine derivatives. Monat. fur Chem., 1992, 123, 341-347.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy