Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Research Article

Talazoparib Loaded Solid Lipid Nanoparticles: Preparation, Characterization and Evaluation of the Therapeutic Efficacy In vitro

Author(s): Gamze Guney Eskiler*, Gulsah Cecener, Gokhan Dikmen, Unal Egeli and Berrin Tunca

Volume 16, Issue 6, 2019

Page: [511 - 529] Pages: 19

DOI: 10.2174/1567201816666190515105532

Abstract

Objective: In the present work, we report for the first time the therapeutic potential of talazoparib (BMN 673)-SLNs for the treatment of BRCA1 deficient Triple Negative Breast Cancer (TNBC). BMN 673-SLNs were produced by hot-homogenization technique and then characterized.

Methods: The cytotoxic and apoptotic effects of BMN 673-SLNs compared with BMN 673 were determined on HCC1937BRCA1-/-, HCC1937-R resistant TNBC and MCF-10A control cell lines. BMN 673- SLNs were found to have reduced particle size (219.5 ± 1.45 nm) and thus more stable (-28.4 ± 2.52 mV) than BMN 673 (1652 ± 2.46 nm and -18.6 ± 0.45 mV) at 4°C.

Results: In vitro cell line studies demonstrated that BMN 673-SLNs showed significant cytotoxic effects on HCC1937 (29.8%) and HCC1937-R cells (35.7%) at 10 nM for 12 days compared with BMN 673 (HCC1937 cells: 34.0% and HCC1937-R cells: 93.8% at 10 nM for 12 days) (p<0.05). Additionally, BMN 673-SLNs (40.1%) reduced the toxicity of BMN 673 (53.1%) on MCF-10A control cells thanks to unique physical properties.

Conclusion: The apoptotic rates in the 10 nM BMN 673-SLNs treatment (88.78% and 85.56%) for 12 days were significantly higher than those in 10 nM BMN 673 (82.6% and 25.86%) for 12 days in HCC1937 and HCC1937-R cells, respectively (p<0.01). Furthermore, these effects were consistent with the findings of colony formation, wound healing and calcein accumulation analysis. In conclusion, the therapeutic potential of BMN 673-SLNs provides a promising chemotherapeutic strategy for the treatment of drugresistant TNBC.

Keywords: Triple Negative Breast Cancer (TNBC), PARP inhibitors, Talazoparib (BMN 673), Solid Lipid Nanoparticles (SLNs), Apoptosis, cytotoxic effects.

Graphical Abstract

[1]
Irvin, W.J., Jr; Carey, L.A. What is triple-negative breast cancer? Eur. J. Cancer, 2008, 44(18), 2799-2805.
[http://dx.doi.org/10.1016/j.ejca.2008.09.034] [PMID: 19008097]
[2]
Cleere, D.W. Triple-negative breast cancer: A clinical update. Community Oncol., 2010, 7, 203-211.
[http://dx.doi.org/10.1016/S1548-5315(11)70394-1]
[3]
Guarneri, V.; Dieci, M.V.; Conte, P. Relapsed triple-negative breast cancer: Challenges and treatment strategies. Drugs, 2013, 73(12), 1257-1265.
[http://dx.doi.org/10.1007/s40265-013-0091-6] [PMID: 23842749]
[4]
Schmadeka, R.; Harmon, B.E.; Singh, M. Triple-negative breast carcinoma: Current and emerging concepts. Am. J. Clin. Pathol., 2014, 141(4), 462-477.
[http://dx.doi.org/10.1309/AJCPQN8GZ8SILKGN] [PMID: 24619745]
[5]
Lehmann, B.D.B.; Bauer, J.A.J.; Chen, X.; Sanders, M.E.; Chakravarthy, A.B.; Shyr, Y.; Pietenpol, J.A. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J. Clin. Invest., 2011, 121(7), 2750-2767.
[http://dx.doi.org/10.1172/JCI45014] [PMID: 21633166]
[6]
Mayer, I.A.; Abramson, V.G.; Lehmann, B.D.; Pietenpol, J.A. New strategies for triple-negative breast cancer--deciphering the heterogeneity. Clin. Cancer Res., 2014, 20(4), 782-790.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-0583] [PMID: 24536073]
[7]
O’Reilly, E.A.; Gubbins, L.; Sharma, S.; Tully, R.; Guang, M.H.Z.; Weiner-Gorzel, K.; McCaffrey, J.; Harrison, M.; Furlong, F.; Kell, M.; McCann, A. The fate of chemoresistance in triple negative breast cancer (TNBC). BBA Clin., 2015, 3, 257-275.
[http://dx.doi.org/10.1016/j.bbacli.2015.03.003] [PMID: 26676166]
[8]
Santana-Davila, R.; Perez, E.A. Treatment options for patients with triple-negative breast cancer. J. Hematol. Oncol., 2010, 3, 42.
[http://dx.doi.org/10.1186/1756-8722-3-42] [PMID: 20979652]
[9]
Podo, F.; Buydens, L.M.C.; Degani, H.; Hilhorst, R.; Klipp, E.; Gribbestad, I.S.; Van Huffel, S.; van Laarhoven, H.W.; Luts, J.; Monleon, D.; Postma, G.J.; Schneiderhan-Marra, N.; Santoro, F.; Wouters, H.; Russnes, H.G.; Sørlie, T.; Tagliabue, E.; Børresen-Dale, A.L. Triple-negative breast cancer: Present challenges and new perspectives. Mol. Oncol., 2010, 4(3), 209-229.
[http://dx.doi.org/10.1016/j.molonc.2010.04.006] [PMID: 20537966]
[10]
Audeh, MW Novel treatment strategies in triple-negative breast cancer. specific role of poly (adenosine diphosphate-ribose) polymerase inhibition, 2014, 307, 16
[11]
Burgess, M.; Puhalla, S. BRCA 1/2-Mutation related and sporadic breast and ovarian cancers: More alike than different. Front. Oncol., 2014, 4, 19.
[http://dx.doi.org/10.3389/fonc.2014.00019] [PMID: 24579064]
[12]
Crown, J.; O’Shaughnessy, J.; Gullo, G. Emerging targeted therapies in triple-negative breast cancer. Ann. Oncol., 2012, 23(Suppl. 6), vi56-vi65.
[http://dx.doi.org/10.1093/annonc/mds196] [PMID: 23012305]
[13]
Lord, C.J.; Tutt, A.N.J.; Ashworth, A. Synthetic lethality and cancer therapy: Lessons learned from the development of PARP inhibitors. Annu. Rev. Med., 2015, 66, 455-470.
[http://dx.doi.org/10.1146/annurev-med-050913-022545] [PMID: 25341009]
[14]
Lord, C.J.; Ashworth, A. Targeted therapy for cancer using PARP inhibitors. Curr. Opin. Pharmacol., 2008, 8(4), 363-369.
[http://dx.doi.org/10.1016/j.coph.2008.06.016] [PMID: 18644251]
[15]
Dedes, K.J.; Wilkerson, P.M.; Wetterskog, D.; Weigelt, B.; Ashworth, A.; Reis-Filho, J.S. Synthetic lethality of PARP inhibition in cancers lacking BRCA1 and BRCA2 mutations. Cell Cycle, 2011, 10(8), 1192-1199.
[http://dx.doi.org/10.4161/cc.10.8.15273] [PMID: 21487248]
[16]
Farmer, H.; McCabe, N.; Lord, C.J.; Tutt, A.N.J.; Johnson, D.A.; Richardson, T.B.; Santarosa, M.; Dillon, K.J.; Hickson, I.; Knights, C.; Martin, N.M.; Jackson, S.P.; Smith, G.C.; Ashworth, A. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature, 2005, 434(7035), 917-921.
[http://dx.doi.org/10.1038/nature03445] [PMID: 15829967]
[17]
De Vos, M.; Schreiber, V.; Dantzer, F. The diverse roles and clinical relevance of PARPs in DNA damage repair: Current state of the art. Biochem. Pharmacol., 2012, 84(2), 137-146.
[http://dx.doi.org/10.1016/j.bcp.2012.03.018] [PMID: 22469522]
[18]
Sonnenblick, A.; de Azambuja, E.; Azim, H.A., Jr; Piccart, M. An update on PARP inhibitors-moving to the adjuvant setting. Nat. Rev. Clin. Oncol., 2015, 12(1), 27-41.
[http://dx.doi.org/10.1038/nrclinonc.2014.163] [PMID: 25286972]
[19]
Guney Eskiler, G.; Cecener, G.; Egeli, U.; Tunca, B. Triple negative breast cancer: New therapeutic approaches and BRCA status. APMIS, 2018, 126(5), 371-379.
[http://dx.doi.org/10.1111/apm.12836] [PMID: 29696717]
[20]
Shen, Y.; Rehman, F.L.; Feng, Y.; Boshuizen, J.; Bajrami, I.; Elliott, R.; Wang, B.; Lord, C.J.; Post, L.E.; Ashworth, A. BMN 673, a novel and highly potent PARP1/2 inhibitor for the treatment of human cancers with DNA repair deficiency. Clin. Cancer Res., 2013, 19(18), 5003-5015.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-1391] [PMID: 23881923]
[21]
Wainberg, Z.A.; de Bono, J.S.; Mina, L.; Sachdev, J.; Byers, L.A.; Chugh, R. Update on first-in-man trial of novel oral PARP inhibitor BMN 673 in patients with solid tumors. Mol. Cancer Ther., 2013, 12, C295-C295.
[http://dx.doi.org/10.1200/jco.2013.31.15_suppl.2580]
[22]
de Bono, J.S.; Mina, L.A.; Gonzalez, M.; Curtin, N.J.; Wang, E.; Chadha, J.W.H.M.; Sachdev, J.C.; Matei, D.; Jameson, G.S.; Ong, M.; Basu, B.; Wainberg, Z.A.; Byers, L.A.; Chugh, R.; Dorr, A.; Kaye, S.B.; Ramanathan, R.K. First-in-human trial of novel oral PARP inhibitor BMN 673 in patients with solid tumors. J. Clin. Oncol., 2013, 31(15 suppl), 2580-2580.
[http://dx.doi.org/10.1200/jco.2013.31.15_suppl.2580]
[23]
Postel-Vinay, S.; Bajrami, I.; Friboulet, L.; Elliott, R.; Fontebasso, Y.; Dorvault, N.; Olaussen, K.A.; André, F.; Soria, J.C.; Lord, C.J.; Ashworth, A. A high-throughput screen identifies PARP1/2 inhibitors as a potential therapy for ERCC1-deficient non-small cell lung cancer. Oncogene, 2013, 32(47), 5377-5387.
[http://dx.doi.org/10.1038/onc.2013.311] [PMID: 23934192]
[24]
Murai, J.; Huang, S-Y.N.; Renaud, A.; Zhang, Y.; Ji, J.; Takeda, S.; Morris, J.; Teicher, B.; Doroshow, J.H.; Pommier, Y. Stereospecific PARP trapping by BMN 673 and comparison with olaparib and rucaparib. Mol. Cancer Ther., 2014, 13(2), 433-443.
[http://dx.doi.org/10.1158/1535-7163.MCT-13-0803] [PMID: 24356813]
[25]
Murai, J.; Huang, S.Y.N.S-y.; Das, B.B.; Renaud, A.; Zhang, Y.; Doroshow, J.H.; Ji, J.; Takeda, S.; Pommier, Y. Trapping of PARP1 and PARP2 by Clinical PARP Inhibitors. Cancer Res., 2012, 72(21), 5588-5599.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-2753] [PMID: 23118055]
[26]
Herriott, A.; Tudhope, S.J.; Junge, G.; Rodrigues, N.; Patterson, M.J.; Woodhouse, L.; Lunec, J.; Hunter, J.E.; Mulligan, E.A.; Cole, M.; Allinson, L.M.; Wallis, J.P.; Marshall, S.; Wang, E.; Curtin, N.J.; Willmore, E. PARP1 expression, activity and ex vivo sensitivity to the PARP inhibitor, talazoparib (BMN 673), in chronic lymphocytic leukaemia. Oncotarget, 2015, 6(41), 43978-43991.
[http://dx.doi.org/10.18632/oncotarget.6287] [PMID: 26539646]
[27]
Huang, J.; Wang, L.; Cong, Z.; Amoozgar, Z.; Kiner, E.; Xing, D.; Orsulic, S.; Matulonis, U.; Goldberg, M.S. The PARP1 inhibitor BMN 673 exhibits immunoregulatory effects in a Brca1(-/-) murine model of ovarian cancer. Biochem. Biophys. Res. Commun., 2015, 463(4), 551-556.
[http://dx.doi.org/10.1016/j.bbrc.2015.05.083] [PMID: 26047697]
[28]
Koppensteiner, R.; Samartzis, E.P.; Noske, A.; von Teichman, A.; Dedes, I.; Gwerder, M.; Imesch, P.; Ikenberg, K.; Moch, H.; Fink, D.; Stucki, M.; Dedes, K.J. Effect of MRE11 loss on PARP-inhibitor sensitivity in endometrial cancer in vitro. PLoS One, 2014, 9(6), e100041.
[http://dx.doi.org/10.1371/journal.pone.0100041] [PMID: 24927325]
[29]
Wang, B.; Chu, D.; Feng, Y.; Shen, Y.; Aoyagi-Scharber, M.; Post, L.E. Discovery and Characterization of (8 S, 9 R) -5-Fluoro-8-(4-fluorophenyl)-9-(1-methyl-1 H -1,2,4-triazol-5-yl)-2,7,8,9-tetrahydro-3 H -pyrido[4,3,2-de]phthalazin-3-one (BMN 673, Talazoparib), a novel, highly potent, and orally efficacious Poly(ADP-ribose). J. Med. Chem., 2016, 59(1), 335-357.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01498] [PMID: 26652717]
[30]
de Bono, J.; Ramanathan, R.K.; Mina, L.; Chugh, R.; Glaspy, J.; Rafii, S.; Kaye, S.; Sachdev, J.; Heymach, J.; Smith, D.C.; Henshaw, J.W.; Herriott, A.; Patterson, M.; Curtin, N.J.; Byers, L.A.; Wainberg, Z.A. Phase I, dose-escalation, two-part trial of the PARP inhibitor talazoparib in patients with advanced germline BRCA1/2 mutations and selected sporadic cancers. Cancer Discov., 2017, 7(6), 620-629.
[http://dx.doi.org/10.1158/2159-8290.CD-16-1250] [PMID: 28242752]
[31]
Cardnell, R.J.; Feng, Y.; Diao, L.; Fan, Y-H.; Masrorpour, F.; Wang, J.; Shen, Y.; Mills, G.B.; Minna, J.D.; Heymach, J.V.; Byers, L.A. Proteomic markers of DNA repair and PI3K pathway activation predict response to the PARP inhibitor BMN 673 in small cell lung cancer. Clin. Cancer Res., 2013, 19(22), 6322-6328.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-1975] [PMID: 24077350]
[32]
Cardnell, R.J.; Feng, Y.; Mukherjee, S.; Diao, L.; Tong, P.; Stewart, C.A.; Masrorpour, F.; Fan, Y.; Nilsson, M.; Shen, Y.; Heymach, J.V.; Wang, J.; Byers, L.A. Activation of the PI3K/mTOR pathway following PARP inhibition in small cell lung cancer. PLoS One, 2016, 11(4), e0152584.
[http://dx.doi.org/10.1371/journal.pone.0152584] [PMID: 27055253]
[33]
Engert, F.; Kovac, M.; Baumhoer, D.; Nathrath, M.; Fulda, S. Osteosarcoma cells with genetic signatures of BRCAness are susceptible to the PARP inhibitor talazoparib alone or in combination with chemotherapeutics. Oncotarget, 2014, 8(30), 48794-48806.
[http://dx.doi.org/10.18632/oncotarget.10720] [PMID: 27447864]
[34]
Murai, J.; Feng, Y.; Yu, G.K.; Ru, Y.; Tang, S.W.; Shen, Y.; Pommier, Y. Resistance to PARP inhibitors by SLFN11 inactivation can be overcome by ATR inhibition. Oncotarget, 2016, 7(47), 76534-76550.
[http://dx.doi.org/10.18632/oncotarget.12266] [PMID: 27708213]
[35]
Müller, R.H.; Mehnert, W.; Lucks, J.S.; Ruhl, D. Solid Lipid Nanoparticles (SLN) - an alternative colloidal carrier system for controlled drug delivery. Eur. J. Pharm. Biopharm., 1995, 41, 62-69.
[36]
Müller, R.H.; Mäder, K.; Gohla, S. Solid Lipid Nanoparticles (SLN) for controlled drug delivery - a review of the state of the art. Eur. J. Pharm. Biopharm., 2000, 50(1), 161-177.
[http://dx.doi.org/10.1016/S0939-6411(00)00087-4] [PMID: 10840199]
[37]
Souto, E.B.; Müller, R.H. Lipid Nanoparticles(solid lipid nanoparticles and nano structured lipid carriers) for cosmetic, dermal and transdermal applications. Nanoparticulate Drug Deliv. Syst; Thassu, D; Pathak, Y; Deleers, M., Ed.; Informa Healthcare USA, Inc.: New York, 2007, pp. 213-234.
[http://dx.doi.org/10.1201/9781420008449.ch14]
[38]
Naseri, N.; Valizadeh, H.; Zakeri-Milani, P. Solid lipid nanoparticles and nanostructured lipid carriers: Structure, preparation and application. Adv. Pharm. Bull., 2015, 5(3), 305-313.
[http://dx.doi.org/10.15171/apb.2015.043] [PMID: 26504751]
[39]
Geszke-Moritz, M.; Moritz, M. Solid lipid nanoparticles as attractive drug vehicles: Composition, properties and therapeutic strategies. Mater. Sci. Eng. C, 2016, 68, 982-994.
[http://dx.doi.org/10.1016/j.msec.2016.05.119] [PMID: 27524099]
[40]
Guney Eskiler, G.; Dikmen, G.; Genc, L. Nano-based drug delivery system. In: Naik, J., editor. Nano Based Drug Deliv., Zagreb, Croia: IAPC Publishing; 2015, p. 89-133.
[41]
Eskiler, G.G.; Cecener, G.; Egeli, U.; Tunca, B. Synthetically Lethal BMN 673 (Talazoparib) loaded solid lipid nanoparticles for BRCA1 mutant triple negative. Breast Cancer, 2018, 35(11), 218.
[http://dx.doi.org/dc.doi.org/10.1007/s11095-018-2502-6] [PMID: 30255456]
[42]
Gottipati, P.; Vischioni, B.; Schultz, N.; Solomons, J.; Bryant, H.E.; Djureinovic, T.; Issaeva, N.; Sleeth, K.; Sharma, R.A.; Helleday, T. Poly(ADP-ribose) polymerase is hyperactivated in homologous recombination-defective cells. Cancer Res., 2010, 70(13), 5389-5398.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-4716] [PMID: 20551068]
[43]
Johnson, N.; Johnson, S.F.; Yao, W.; Li, Y.C.; Choi, Y-E.; Bernhardy, A.J.; Wang, Y.; Capelletti, M.; Sarosiek, K.A.; Moreau, L.A.; Chowdhury, D.; Wickramanayake, A.; Harrell, M.I.; Liu, J.F.; D’Andrea, A.D.; Miron, A.; Swisher, E.M.; Shapiro, G.I. Stabilization of mutant BRCA1 protein confers PARP inhibitor and platinum resistance. Proc. Natl. Acad. Sci. USA, 2013, 110(42), 17041-17046.
[http://dx.doi.org/10.1073/pnas.1305170110] [PMID: 24085845]
[44]
Guney Eskiler, G.; Cecener, G.; Egeli, U.; Tunca, B. BMN 673 (talazoparib): A potent PARP inhibitor for triple negative breast cancer with different genetic profile. J. Biochem. Mol. Toxicol., 2019, 33(5), e22286.
[http://dx.doi.org/10.1002/jbt.22286] [PMID: 30672063]
[45]
Al-Ahmary, K.M.; Habeeb, M.M.; Al-Obidan, A.H. Charge transfer complex between 2,3-diaminopyridine with chloranilic acid. Synthesis, characterization and DFT, TD-DFT computational studies. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2018, 196, 247-255.
[http://dx.doi.org/10.1016/j.saa.2018.02.025] [PMID: 29454253]
[46]
Reddy, P.R.; Prashanth, J.; Prasanna, B.; Reddy, B.V. Synthesis, spectroscopic, and DFT quantum chemical studies of 3- and 4-pyridylacetonitriles. J. Mol. Struct., 2019, 1176, 447-460.
[http://dx.doi.org/10.1016/j.molstruc.2018.08.061]
[47]
Moreno, M. Zacarias, A.; Porzel, A.; Velasquez, L.; Gonzalez, G.; Alegría-Arcos, M.; Gonzalez-Nilo, F.; Gross, E.K.U. IR and NMR spectroscopic correlation of enterobactin by DFT. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2018, 198, 264-277.
[http://dx.doi.org/10.1016/j.saa.2018.02.060] [PMID: 29550657]
[48]
Rajeh, A.; Morsi, M.A.; Elashmawi, I.S. Enhancement of spectroscopic, thermal, electrical and morphological properties of polyethylene oxide/carboxymethyl cellulose blends: Combined FT-IR/DFT. Vacuum, 2019, 159, 430-440.
[http://dx.doi.org/10.1016/j.vacuum.2018.10.066]
[49]
Holló, Z.; Homolya, L.; Davis, C.W.; Sarkadi, B. Calcein accumulation as a fluorometric functional assay of the multidrug transporter. Biochim. Biophys. Acta, 1994, 1191(2), 384-388.
[http://dx.doi.org/10.1016/0005-2736(94)90190-2] [PMID: 7909692]
[50]
Szabó, E.; Türk, D.; Telbisz, Á.; Kucsma, N.; Horváth, T.; Szakács, G.; Homolya, L.; Sarkadi, B.; Várady, G. A new fluorescent dye accumulation assay for parallel measurements of the ABCG2, ABCB1 and ABCC1 multidrug transporter functions. PLoS One, 2018, 13(1), e0190629.
[http://dx.doi.org/10.1371/journal.pone.0190629] [PMID: 29342177]
[51]
Huang, Y.; Cole, S.P.; Cai, T.; Cai, Y.U. Applications of nanoparticle drug delivery systems for the reversal of multidrug resistance in cancer. Oncol. Lett., 2016, 12(1), 11-15.
[http://dx.doi.org/10.3892/ol.2016.4596] [PMID: 27347092]
[52]
Xin, Y.; Huang, Q.; Tang, J.Q.; Hou, X.Y.; Zhang, P.; Zhang, L.Z.; Jiang, G. Nanoscale drug delivery for targeted chemotherapy. Cancer Lett., 2016, 379(1), 24-31.
[http://dx.doi.org/10.1016/j.canlet.2016.05.023] [PMID: 27235607]
[53]
Koushik, O.S.; Rao, Y.V.; Kumar, P.; Karthikeyan, R. Nano drug delivery systems to overcome cancer drug resistance - A review. J. Nanomed. Nanotechnol., 2016, 7(378), 1-9.
[http://dx.doi.org/10.4172/2157-7439.1000378]
[54]
Mitragotri, S.; Burke, P.A.; Langer, R. Overcoming the challenges in administering biopharmaceuticals: Formulation and delivery strategies. Nat. Rev. Drug Discov., 2014, 13(9), 655-672.
[http://dx.doi.org/10.1038/nrd4363] [PMID: 25103255]
[55]
Blanco, E.; Shen, H.; Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol., 2015, 33(9), 941-951.
[http://dx.doi.org/10.1038/nbt.3330] [PMID: 26348965]
[56]
Rashidipour, M.; Heydari, R. Biosynthesis of silver nanoparticles using extract of olive leaf: Synthesis and in vitro cytotoxic effect on MCF-7 cells. J. Nanostructure Chem., 2014, 4, 112.
[http://dx.doi.org/10.1007/s40097-014-0112-3]
[57]
Heydari, R.; Rashidipour, M. Green synthesis of silver nanoparticles using extract of oak fruit hull (jaft): Synthesis and in vitro cytotoxic effect on mcf-7 cells. Int. J. Breast Cancer, 2015, 2015, 846743.
[http://dx.doi.org/10.1155/2015/846743] [PMID: 25685560]
[58]
Caster, J.M.; Sethi, M.; Kowalczyk, S.; Wang, E.; Tian, X.; Nabeel Hyder, S.; Wagner, K.T.; Zhang, Y.A.; Kapadia, C.; Man Au, K.; Wang, A.Z. Nanoparticle delivery of chemosensitizers improve chemotherapy efficacy without incurring additional toxicity. Nanoscale, 2015, 7(6), 2805-2811.
[http://dx.doi.org/10.1039/C4NR07102F] [PMID: 25584654]
[59]
van de Ven, A.L.; Tangutoori, S.; Baldwin, P.; Qiao, J.; Gharagouzloo, C.; Seitzer, N. Nanoformulation of olaparib amplifies PARP inhibition and sensitizes PTEN/TP53- deficient prostate cancer to radiation. Mol. Cancer Ther., 2017, 16(7), 1279-1289.
[http://dx.doi.org/10.1158/1535-7163.MCT-16-0740] [PMID: 28500233]
[60]
Muñoz-Gámez, J.A.; López Viota, J.; Barrientos, A.; Carazo, Á.; Sanjuán-Nuñez, L.; Quiles-Perez, R.; Muñoz-de-Rueda, P.; Delgado, Á.; Ruiz-Extremera, Á.; Salmerón, J. Synergistic cytotoxicity of the poly (ADP-ribose) polymerase inhibitor ABT-888 and temozolomide in dual-drug targeted magnetic nanoparticles. Liver Int., 2015, 35(4), 1430-1441.
[http://dx.doi.org/10.1111/liv.12586] [PMID: 24821649]
[61]
Honary, S.; Zahir, F. Effect of zeta potential on the properties of nano-drug delivery systems - A review (Part 2). Trop. J. Pharm. Res., 2013, 12, 265-273.
[http://dx.doi.org/10.4314/tjpr.v12i2.19]
[62]
Vitorino, C.; Carvalho, F.A.; Almeida, A.J.; Sousa, J.J.; Pais, A.A.C.C. The size of solid lipid nanoparticles: An interpretation from experimental design. Colloids Surf. B Biointerfaces, 2011, 84(1), 117-130.
[http://dx.doi.org/10.1016/j.colsurfb.2010.12.024] [PMID: 21242064]
[63]
Khadka, P.; Ro, J.; Kim, H.; Kim, I.; Kim, J.T.; Kim, H. Pharmaceutical particle technologies: An approach to improve drug solubility, dissolution and bioavailability. Asian J. Pharm. Sci., 2014, 9, 304-316.
[http://dx.doi.org/10.1016/j.ajps.2014.05.005]
[64]
Azhar Shekoufeh Bahari, L.; Hamishehkar, H. The impact of variables on particle size of solid lipid nanoparticles and nanostructured lipid carriers; A comparative literature review. Adv. Pharm. Bull., 2016, 6(2), 143-151.
[http://dx.doi.org/10.15171/apb.2016.021] [PMID: 27478775]
[65]
Mazzucchelli, S.; Truffi, M.; Baccarini, F.; Beretta, M.; Sorrentino, L.; Bellini, M.; Rizzuto, M.A.; Ottria, R.; Ravelli, A.; Ciuffreda, P.; Prosperi, D.; Corsi, F. H-Ferritin-nanocaged olaparib: A promising choice for both BRCA-mutated and sporadic triple negative breast cancer. Sci. Rep., 2017, 7(1), 7505.
[http://dx.doi.org/10.1038/s41598-017-07617-7] [PMID: 28790402]
[66]
Harivardhan Reddy, L.; Sharma, R.K.; Chuttani, K.; Mishra, A.K.; Murthy, R.S.R. Influence of administration route on tumor uptake and biodistribution of etoposide loaded solid lipid nanoparticles in Dalton’s lymphoma tumor bearing mice. J. Control. Release, 2005, 105(3), 185-198.
[http://dx.doi.org/10.1016/j.jconrel.2005.02.028] [PMID: 15921775]
[67]
Lee, M-K.; Lim, S-J.; Kim, C-K. Preparation, characterization and in vitro cytotoxicity of paclitaxel-loaded sterically stabilized solid lipid nanoparticles. Biomaterials, 2007, 28(12), 2137-2146.
[http://dx.doi.org/10.1016/j.biomaterials.2007.01.014] [PMID: 17257668]
[68]
Subedi, R.K.; Kang, K.W.; Choi, H-K. Preparation and characterization of solid lipid nanoparticles loaded with doxorubicin. Eur. J. Pharm. Sci., 2009, 37(3-4), 508-513.
[http://dx.doi.org/10.1016/j.ejps.2009.04.008] [PMID: 19406231]
[69]
Xu, Z.; Chen, L.; Gu, W.; Gao, Y.; Lin, L.; Zhang, Z.; Xi, Y.; Li, Y. The performance of docetaxel-loaded solid lipid nanoparticles targeted to hepatocellular carcinoma. Biomaterials, 2009, 30(2), 226-232.
[http://dx.doi.org/10.1016/j.biomaterials.2008.09.014] [PMID: 18851881]
[70]
Kang, K.W.; Chun, M-K.; Kim, O.; Subedi, R.K.; Ahn, S-G.; Yoon, J-H.; Choi, H.K. Doxorubicin-loaded solid lipid nanoparticles to overcome multidrug resistance in cancer therapy. Nanomedicine (Lond.), 2010, 6(2), 210-213.
[http://dx.doi.org/10.1016/j.nano.2009.12.006] [PMID: 20060074]
[71]
Athawale, R.B.; Jain, D.S.; Singh, K.K.; Gude, R.P. Etoposide loaded solid lipid nanoparticles for curtailing B16F10 melanoma colonization in lung. Biomed. Pharmacother., 2014, 68(2), 231-240.
[http://dx.doi.org/10.1016/j.biopha.2014.01.004] [PMID: 24560352]
[72]
Ngwuluka, N.C.; Kotak, D.J.; Devarajan, P.V. Design and characterization of metformin-loaded solid lipid nanoparticles for colon cancer. AAPS PharmSciTech, 2017, 18(2), 358-368.
[http://dx.doi.org/10.1208/s12249-016-0505-3] [PMID: 26975870]
[73]
Peira, E.; Chirio, D.; Battaglia, L.; Barge, A.; Chegaev, K.; Gigliotti, C.L.; Ferrara, B.; Dianzani, C.; Gallarate, M. Solid lipid nanoparticles carrying lipophilic derivatives of doxorubicin: preparation, characterization, and in vitro cytotoxicity studies. J. Microencapsul., 2016, 33(4), 381-390.
[http://dx.doi.org/10.1080/02652048.2016.1202342] [PMID: 27358106]
[74]
Chen, Z.J.; Zhang, Z.; Xie, B.B.; Zhang, H.Y. Development and evaluation of topotecan loaded solid lipid nanoparticles: A study in cervical cancer cell lines. J. Photochem. Photobiol. B, 2016, 165, 182-188.
[http://dx.doi.org/10.1016/j.jphotobiol.2016.10.019] [PMID: 27816641]
[75]
Eskiler, G.G.; Cecener, G.; Dikmen, G.; Genc, L.; Egeli, U. The effect of solid lipid nanoparticles on tamoxifen - Resistant breast cancer. Int. J. Pharm. Pharm. Sci., 2016, 8(2), 43-46.
[http://dx.doi.org/10.22159/ijpps.2016v8s2.15220]
[76]
Wang, P.; Zhang, L.; Peng, H.; Li, Y.; Xiong, J.; Xu, Z. The formulation and delivery of curcumin with solid lipid nanoparticles for the treatment of on non-small cell lung cancer both in vitro and in vivo. Mater. Sci. Eng. C, 2013, 33(8), 4802-4808.
[http://dx.doi.org/10.1016/j.msec.2013.07.047] [PMID: 24094190]
[77]
Guney Eskiler, G.; Cecener, G.; Dikmen, G.; Egeli, U.; Tunca, B. Solid lipid nanoparticles: Reversal of tamoxifen resistance in breast cancer. Eur. J. Pharm. Sci., 2018, 120, 73-88.
[http://dx.doi.org/10.1016/j.ejps.2018.04.040] [PMID: 29719240]
[78]
Abbasalipourkabir, R.; Salehzadeh, A.; Abdullah, R. Tamoxifen-loaded solid lipid nanoparticles-induced apoptosis in breast cancer cell lines. J. Exp. Nanosci., 2015, 8080, 1-14.
[http://dx.doi.org/10.1080/17458080.2015.1038660]
[79]
Yuan, H.; Miao, J.; Du, Y.Z.; You, J.; Hu, F.Q.; Zeng, S. Cellular uptake of solid lipid nanoparticles and cytotoxicity of encapsulated paclitaxel in A549 cancer cells. Int. J. Pharm., 2008, 348(1-2), 137-145.
[http://dx.doi.org/10.1016/j.ijpharm.2007.07.012] [PMID: 17714896]
[80]
Mulik, R.S.; Mönkkönen, J.; Juvonen, R.O.; Mahadik, K.R.; Paradkar, A.R. Transferrin mediated solid lipid nanoparticles containing curcumin: Enhanced in vitro anticancer activity by induction of apoptosis. Int. J. Pharm., 2010, 398(1-2), 190-203.
[http://dx.doi.org/10.1016/j.ijpharm.2010.07.021] [PMID: 20655375]
[81]
Teskač, K.; Kristl, J. The evidence for solid lipid nanoparticles mediated cell uptake of resveratrol. Int. J. Pharm., 2010, 390(1), 61-69.
[http://dx.doi.org/10.1016/j.ijpharm.2009.10.011] [PMID: 19833178]
[82]
Li, R.; Xu, W.; Eun, J.S.; Lee, M.K. Combination of curcumin and paclitaxel-loaded solid lipid nanoparticles to overcome multidrug resistance. J. Pharm. Investig., 2011, 41, 381-386.
[http://dx.doi.org/10.4333/KPS.2011.41.6.381]
[83]
Souza, L.G.; Silva, E.J.; Martins, A.L.; Mota, M.F.; Braga, R.C.; Lima, E.M.; Valadares, M.C.; Taveira, S.F.; Marreto, R.N. Development of topotecan loaded lipid nanoparticles for chemical stabilization and prolonged release. Eur. J. Pharm. Biopharm., 2011, 79(1), 189-196.
[http://dx.doi.org/10.1016/j.ejpb.2011.02.012] [PMID: 21352915]
[84]
Eskiler Guney, G.; Cecener, G.; Egeli, U.; Tunca, B. Solid lipid nanoparticles in reversing the acquired Tamoxifen – Resistance. In: 6th IEEE Int. Conf. E-Health Bioeng. – EHB 2017, 2017, pp. 177-180.
[http://dx.doi.org/10.1109/EHB.2017.7995390]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy