[1]
Lenz, G.; Staudt, L. Aggressive lymphomas. N. Engl. J. Med., 2010, 362(15), 1417-1429.
[2]
Staudt, L.; Dave, S. The biology of human lymphoid malignancies revealed by gene expression profiling. Adv. Immunol., 2005, 87, 163-208.
[3]
Coiffier, B.; Thieblemont, C.; Van Den Neste, E.; Lepeu, G.; Plantier, I.; Castaigne, S. Long-term outcome of patients in the LNH-98.5 trial, the first randomized study comparing rituximab-CHOP to standard CHOP chemotherapy in DLBCL patients: A study by the Groupe d’Etudes des Lymphomes de l’Adulte. Blood, 2010, 116(12), 2040-2045.
[4]
Rappaport, H. Tumors of the Hematopoeitic System; Armed Forces Institute of Pathology: Washington, DC, 1996.
[5]
Li, S.; Young, K.H.; Medeiros, L.J. Diffuse large B-cell lymphoma. Pathology, 2018, 50(1), 74-87.
[6]
Korkolopoulou, P.; Vassilakopoulos, T.; Milionis, V.; Ioannou, M. Recent advances in aggressive large B-cell lymphomas: A comprehensive review. Adv. Anat. Pathol., 2016, 23, 202-243.
[7]
Swerdlow, S.H.; Campo, E.; Pileri, S.A.; Harris, N.L.; Stein, H.; Siebert, R.; Advani, R.; Ghielmini, M.; Salles, G.A.; Zelenetz, A.D.; Jaffe, E.S. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood, 2016, 127, 2375-2390.
[8]
Battistello, E.; Katanayeva, N.; Dheilly, E.; Tavernari, D.; Donaldson, M.C.; Bonsignore, L.; Thome, M.; Christie, A.L.; Murakami, M.A.; Michielin, O.; Ciriello, G.; Zoete, V.; Oricchio, E. Pan-SRC kinase inhibition blocks B-cell receptor oncogenic signaling in non-Hodgkin lymphoma. Blood, 2018, 131(21), 2345-2356.
[9]
Pasqualucci, L.; Trifonov, V.; Fabbri, G. Analysis of the coding genome of diffuse large B-cell lymphoma. Nat. Genet., 2011, 43(9), 830-837.
[10]
Reddy, A.; Zhang, J.; Davis, N.S.; Ma, J.; Rossi, D.; Chiarenza, A.; Wells, V.A.; Grunn, A.; Messina, M.; Elliot, O.; Chan, J.; Bhagat, G.; Chadburn, A.; Gaidano, G.; Mullighan, C.G.; Rabadan, R.; Dalla-Favera, R. Genetic and functional drivers of diffuse large B cell lymphoma. Cell, 2017, 171(2), 481-494.
[11]
Alizadeh, A.; Eisen, M.; Davis, R.; Ma, C. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature, 2000, 403(6769), 503-511.
[12]
Rosenwald, A.; Wright, G.; Chan, W. The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma. N. Engl. J. Med 346., 2002, 1937-1947.
[13]
Hans, C.P.; Weisenburger, D.D.; Greiner, T.C.; Gascoyne, R.D.; Delabie, J.; Ott, G.; Müller-Hermelink, H.K.; Campo, E.; Braziel, R.M.; Jaffe, E.S.; Pan, Z.; Farinha, P.; Smith, L.M.; Falini, B.; Banham, A.H.; Rosenwald, A.; Staudt, L.M.; Connors, J.M.; Armitage, J.O.; Chan, W.C. Confirmation of the molecular classification of diffuse large B-cell lymphoma by immunohistochemistry using a tissue microarray. Blood, 2004, 103(1), 275-282.
[14]
Compagno, M.; Lim, W.K.; Grunn, A.; Nandula, S.V.; Brahmachary, M.; Shen, Q.; Bertoni, F.; Ponzoni, M.; Scandurra, M.; Califano, A.; Bhagat, G.; Chadburn, A.; Dalla-Favera, R.; Pasqualucci, L. Mutations of multiple genes cause deregulation of NF-kB in diffuse large B-cell lymphoma. Nature, 2009, 459(7247), 717-721.
[15]
Davis, R.E.; Ngo, V.N.; Lenz, G.; Tolar, P.; Young, R.M.; Romesser, P.B.; Kohlhammer, H.; Lamy, L.; Zhao, H.; Yang, Y.; Xu, W.; Shaffer, A.L.; Wright, G.; Xiao, W.; Powell, J.; Jiang, J.K.; Thomas, C.J.; Rosenwald, A.; Ott, G.; Muller-Hermelink, H.K.; Gascoyne, R.D.; Connors, J.M.; Johnson, N.A.; Rimsza, L.M.; Campo, E.; Jaffe, E.S.; Wilson, W.H.; Delabie, J.; Smeland, E.B.; Fisher, R.I.; Braziel, R.M.; Tubbs, R.R.; Cook, J.R.; Weisenburger, D.D.; Chan, W.C.; Pierce, S.K.; Staudt, L.M. Chronic active B-cell-receptor signalling in diffuse large B-cell lymphoma. Nature, 2010, 463(7277), 88-92.
[16]
Lenz, G.; Davis, R.E.; Ngo, V.N.; Lam, L.; George, T.C.; Wright, G.W.; Dave, S.S.; Zhao, H.; Xu, W.; Rosenwald, A.; Ott, G.; Muller-Hermelink, H.K.; Gascoyne, R.D.; Connors, J.M.; Rimsza, L.M.; Campo, E.; Jaffe, E.S.; Delabie, J.; Smeland, E.B.; Fisher, R.I.; Chan, W.C.; Staudt, L.M. Oncogenic CARD11 mutations in human diffuse large B cell lymphoma. Science, 2008, 319(5870), 1676-1679.
[17]
Lunning, M.; Green, M. The GCB subtype of DLBCL shows several chromosomal modifications including mutations in epigenetic modifiers and also exhibits an enhanced ectopic expression of the BCL2 protein. Blood Cancer J., 2015, 5(10)e361
[18]
Basso, K.; Dalla-Favera, R. Germinal centres and B cell lymphomagenesis. Nat. Rev. Immunol., 2015, 15(3), 172-184.
[19]
Morin, R.; Mendez-Lago, M.; Mungall, A. Frequent mutation of histonemodifying genes in non-Hodgkin lymphoma. Nature, 2011, 476(7360), 298-303.
[20]
Ngo, V.; Young, R.; Schmitz, R. Oncogenically active MYD88 mutations in human lymphoma. Nature, 2011, 470(7332), 115-119.
[21]
Martelli, M.; Ferreri, A.J.; Agostinelli, C.; Di Rocco, A.; Pfreundschuh, M.; Pileri, S.A. Diffuse large B-cell lymphoma. Crit. Rev. Oncol. Hematol., 2013, 87(2), 146-171.
[22]
Giulino-Roth, L. How I treat primary mediastinal B-cell lymphoma. Blood, 2018, 132(8), 782-790.
[23]
Lenz, G.; Wright, G.; Dave, S.; Xiao, W.; Powell, J.; Zhao, H. Stromal gene signatures in large-B-cell lymphomas. N. Engl. J. Med., 2008, 359, 2313-2323.
[24]
Dunleavy, K.; Roschewski, M.; Wilson, W. Precision treatment of distinct molecular subtypes of diffuse large B-cell lymphoma: ascribing treatment based on the molecular phenotype. Clin. Cancer Res., 2014, 20(20), 5182-5193.
[25]
Herrera, A.; Mei, M.; Low, L. Relapsed or refractory double-expressor and double-hit lymphomas have inferior progression-free survival after autologous stem-cell transplantation. J. Clin. Oncol., 2017, 35(1), 24-31.
[26]
Pfreundschuh, M.; Trümper, L.; Osterborg, A. CHOP-like chemotherapy plus rituximab versus CHOP-like chemotherapy alone in young patients with good-prognosis diffuse large-B-cell lymphoma: A randomised controlled trial by the MabThera International Trial (MInT) Group. Lancet Oncol., 2006, 7(5), 379-391.
[27]
Devita, V.; Canellos, G.; Chabner, B.; Schein, P.; Hubbard, S.; Young, R. Advanced diffuse histiocytic lymphoma, a potentially curable disease. Lancet, 1975, 1(7901), 248-250.
[28]
Yi, P.; Coleman, M.; Saltz, L.; Norton, L.; Topilow, A.A.; Adler, K.; Bernhardt, B. Chemotherapy for large cell lymphoma: A status update. Semin. Oncol., 1990, 17, 60-73.
[29]
Roschewski, M.; Staudt, L.M.; Wilson, W.H. Diffuse large B-cell lymphoma-treatment approaches in the molecular era. Nat. Rev. Clin. Oncol., 2013, 11(1), 12-23.
[30]
Kwak, J. Treatment of diffuse large B cell lymphoma. Korean J. Intern. Med., 2012, 27(4), 369-377.
[31]
Crump, M.; Neelapu, S.; Farooq, U. Outcomes in refractory diffuse large B-cell lymphoma: Results from the international scholar-1 study. Blood, 2017, 130(16), 1800-1808.
[32]
Ng, A.; Yahalom, J.; Goda, J.; Constine, L. Role of radiation therapy in patients with relapsed/refractory diffuse large B-cell lymphoma: Guidelines from the International Lymphoma Radiation Oncology Group. Int. J. Radiat. Oncol. Biol. Phys., 2018, 100(3), 652-669.
[33]
Jain, M.; Bachmeier, C.; Phuoc, V.; Chavez, J. Axicabtagene ciloleucel (KTE-C19), an anti-CD19 CAR T therapy for the treatment of relapsed/refractory aggressive B-cell non-Hodgkin’s lymphoma. Ther. Clin. Risk Manag., 2018, 14, 1007-1017.
[34]
Sharma, P.; King, G.; Shinde, S.; Purev, E.; Jimeno, A. Axicabtagene ciloleucel for the treatment of relapsed/refractory B-cell non-Hodgkin’s lymphomas. Drugs Today (Barc), 2018, 54(3), 187-198.
[35]
Neelapu, S.; Locke, F.; Bartlett, N.; Lekakis, L.; Miklos, D.; Jacobson, C. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N. Engl. J. Med., 2017, 377(26), 2531-2544.
[36]
Schuster, S.; Svoboda, J.; Chong, E.; Nasta, S.; Mato, A.; Anak, O. Chimeric antigen receptor T cells in refractory B-cell lymphomas. N. Engl. J. Med., 2017, 377(26), 2545-2554.
[37]
Rhodes, J.; Landsburg, D. Small-molecule inhibitors for the treatment of diffuse large B cell lymphoma. Curr. Hematol. Malig. Rep., 2018, 13(15), 356-368.
[38]
Zahid, U.; Akbar, F.; Amaraneni, A.; Husnain, M.; Chan, O.; Riaz, I.B.; McBride, A.; Iftikhar, A.; Anwer, F. A review of autologous stem cell transplantation in Lymphoma. Curr. Hematol. Malig. Rep., 2017, 12(3), 217-226.
[39]
Roschewski, M.; Staudt, L.M.; Wilson, W.H. Diffuse large B-cell lymphoma[mdash]treatment approaches in the molecular era. Nat. Rev. Clin. Oncol., 2014, 11(1), 12-23.
[41]
Khedkar, S.A.; Malde, A.K.; Coutinho, E.C.; Srivastava, S. Pharmacophore modeling in drug discovery and development: An overview. Med. Chem., 2007, 3(2), 187-197.
[42]
Kumar, A.; Zhang, K.Y.J. Hierarchical virtual screening approaches in small molecule drug discovery. Methods, 2015, 71, 26-37.
[43]
Liu, K.; Kokubo, H. Exploring the stability of ligand binding modes to proteins by molecular dynamics simulations: A cross-docking study. J. Chem. Inf. Model., 2017, 57(10), 2514-2522.
[44]
Pagadala, N.S.; Syed, K.; Tuszynski, J. Software for molecular docking: A review. Biophys. Rev., 2017, 9(2), 91-102.
[45]
Childers, M.C.; Daggett, V. Insights from molecular dynamics simulations for computational protein design. Mol. Syst. Des. Eng., 2017, 2(1), 9-33.
[46]
De Vivo, M.; Masetti, M.; Bottegoni, G.; Cavalli, A. Role of molecular dynamics and related methods in drug discovery. J. Med. Chem., 2016, 59(9), 4035-4061.
[47]
Wang, T.; Yuan, X.; Song, W.; Bin, M.; Lin, J.P.; Yang, L.R. The advancement of multidimensional QSAR for novel drug discovery - where are we headed? Expert Opin. Drug Discov., 2017, 12(8), 769-784.
[48]
Abdolmaleki, A.; Ghasemi, J.; Ghasemi, F. Computer aided drug design for multi-target drug design: SAR /QSAR, molecular docking and pharmacophore methods. Curr. Drug Targets, 2017, 18(5), 556-575.
[49]
Rickert, R.C. New insights into pre-BCR and BCR signalling with relevance to B cell malignancies. Nat. Rev. Immunol., 2013, 13(8), 578-591.
[50]
Burger, J.A.; Wiestner, A. Targeting B cell receptor signalling. Nat. Rev. Cancer, 2018, 18(3), 148-167.
[51]
Burger, J.A.; Wiestner, A. Targeting B cell receptor signalling in cancer: preclinical and clinical advances. Nat. Rev. Cancer, 2018, 18(3), 148-167.
[52]
Young, R.M.; Staudt, L.M. Targeting pathological B cell receptor signalling in lymphoid malignancies. Nat. Rev. Drug Discov., 2013, 12, 229-243.
[53]
Young, R.; Shaffer, A.; Phelan, J.; Staudt, L. B cell receptor signaling in diffuse large B cell lymphoma. Semin. Hematol., 2015, 52(2), 77-85.
[54]
Monroe, J. ITAM-mediated tonic signaling through pre-BCR and BCR complexes. Nat. Rev. Immunol., 2006, 6(4), 283-294.
[55]
Iorio, F.; Knijnenburg, T.; Vis, D. A landscape of pharmacogenomic interactions in cancer. Cell, 2016, 166(3), 740-754.
[56]
Nakken, B.; Munthe, L.; Konttinen, Y.T.; Sandberg, A.K.; Szekanecz, Z.; Alex, P.; Szodoray, P. B-cells and their targeting in rheumatoid arthritis-current concepts and future perspectives. Autoimmun. Rev., 2011, 11, 28-34.
[57]
Küppers, R. Mechanisms of B-cell lymphoma pathogenesis. Nat. Rev. Cancer, 2005, 5, 251-262.
[58]
Pan, Z.; Scheerens, H.; Li, S.J.; Schultz, B.E.; Sprengeler, P.A.; Burrill, L.C.; Mendonca, R.V.; Sweeney, M.D.; Scott, K.C.; Grothaus, P.G.; Jeffery, D.A.; Spoerke, J.M.; Honigberg, L.A.; Young, P.R.; Dalrymple, S.A.; Palmer, J.T. Discovery of selective irreversible inhibitors for Bruton’s tyrosine kinase. ChemMedChem, 2007, 2, 58-61.
[59]
Byrd, J.; Furman, R.; Coutre, S.; Flinn, I.; Burger, J.; Blum, K. Targeting BTK with ibrutinib in relapsed chronic lymphocytic leukemia. N. Engl. J. Med., 2013, 369(1), 32-42.
[60]
Akinleye, A.; Chen, Y.; Mukhi, N.; Song, Y.; Liu, D. Ibrutinib and novel BTK inhibitors in clinical development. J. Hematol. Oncol., 2013, 6, 59.
[61]
Brown, J.R. Ibrutinib (PCI-32765), the first BTK (Bruton’s tyrosine kinase) inhibitor in clinical trials. Curr. Hematol. Malig. Rep., 2013, 8(1), 1-6.
[62]
Xiao, J.; Zhang, S.; Luo, M.; Zou, Y.; Zhang, Y.; Lai, Y. Effective virtual screening strategy focusing on the identification of novel Bruton’s tyrosine kinase. J. Mol. Graph. Model., 2015, 60, 142-154.
[63]
Ge, Y.; Jin, Y.; Wang, C.; Zhang, J.; Tang, Z.; Peng, J.; Liu, K.; Li, Y.; Zhou, Y.; Ma, X. Discovery of novel Bruton’s Tyrosine Kinase (BTK) ihibitors bearing a N,9-diphenyl-9H-purin-2-amine scaffold. ACS Med. Chem. Lett., 2016, 7(12), 1050-1055.
[64]
Bavi, R.; Kumar, R.; Choi, L.; Woo Lee, K. Exploration of novel inhibitor for Bruton’ Tyroine Kinase by 3D QSAR modelling and molecular dynamics simulation. PLoS One, 2016, 11(1)e0147190
[65]
Balasubramanian, P.; Balupuri, A.; Cho, S. Molecular modelling studies on series of Btk inhibitors using docking, structure-based 3D-QSAR and molecular dynamics simulation: A combined approach. Arch. Pharm. Res., 2016, 39(3), 328-339.
[66]
Xue, Y.; Song, P.; Wang, A.; Tong, L.; Geng, M.; Ding, J.; Liu, Q.; Sun, L.; Xie, H.; Zhang, A. Discovery of 4,7-Diamino-5-(4-phenoxyphenyl)-6-methylenepyrimido[5,4 b]pyrrolizines as novel Bruton’s Tyrosin Kinase Inhibitors. J. Med. Chem., 2018, 61(10), 4608-4627.
[67]
Sakthivel, S.; Habeeb, S. Combined pharmacophore, virtual screening and molecular dynamics studies ti identify Bruton’s tyrosine kinase inhibitor. J. Biomol. Struct. Dyn., 2018, 3, 1-18.
[68]
Gold, M.R.; Scheid, M.P.; Santos, L.; Dang-Lawson, M.; Roth, R.A.; Matsuuchi, L.; Duronio, V.; Krebs, D.L. The B cell antigen receptor activates the Akt (protein kinase B)/glycogen synthase kinase-3 signaling pathway via phosphatidylinositol 3-kinase. J. Immunol., 1999, 163(4), 1894-1905.
[69]
LoPiccolo, J.; Blumenthal, G.; Bernstein, W.; Dennis, P. Targeting the PI3K/Akt/mTOR pathway:effective combinations and considerations. Drug Resist. Updat., 2008, 11(1-2), 32-50.
[70]
West, K.; Catillo, S.; Dennis, P. Activation of the PI3K/Akt pathway and chemotherapeuticresitance. Drug Resist. Updat., 2002, 5(6), 234-248.
[71]
Foukas, L.; Berenjeno, I.; Gray, A.; Khwaja, A.; Vanhaesebroeck, B. Activity of any class IA PI3K isoform can sustain cell proliferation and survival. Proc. Natl. Acad. Sci., 2010, 107(25), 11381-11386.
[72]
Jabbour, E.; Ottmann, O.G.; Deininger, M.; Hochhaus, A. Targeting the phosphoinositide 3-kinase pathway in hematologic malignancies. Haematologica, 2014, 99(1), 7-18.
[73]
Younes, A.; Salles, G.; Martinelli, G.; Bociek, R.; Barrigon, D.; Barca, E. Pan-phosphatidylinositol 3-kinase inhibition with buparlisib in patients with relapsed or refractory non-Hodgkin lymphoma. Haematologica, 2017, 102(12), 2104-2112.
[74]
Batlevi, C.; Hamlin, P.; Matasar, M.; Younes, A. Phase I/IB dose escalation and expansion of ibrutinib and buparlisib in relapsed/ refractory diffuse large B-cell lymphoma, mantle cell lymphoma, and follicular lymphoma. Hematol. Oncol., 2017, 35(S2), 54.
[75]
Deng, C.; Lipstein, M.; Scotto, L.; Jirau Serrano, X.; Mangone, M.; Li, S. Silencing c-Myc translation as a therapeutic strategy through targeting PI3Kδ and CK1ε in hematological malignancies. Blood, 2018, 129(1), 88-99.
[76]
Burris, H., 3rd; Flinn, I.; Patel, M.; Fenske, T.; Deng, C.; Brander, D. Umbralisib, a novel PI3Kdelta and casein kinase- 1epsilon inhibitor, in relapsed or refractory chronic lymphocytic leukemia and lymphoma: An open-label, phase 1, dose-escalation, first-in-human study. Lancet Oncol., 2018, 19(4), 486-496.
[77]
Dreyling, M.; Morschhauser, F.; Bouabdallah, K.; Bron, D.; Cunningham, D.; Assouline, S. Phase II study of copanlisib, a PI3K inhibitor, in relapsed or refractory, indolent or aggressive lymphoma. Ann. Oncol., 2017, 28(9), 2169-2178.
[78]
Markham, A. Copanlisib: First global approval. Drugs, 2017, 77(18), 2057-2062.
[79]
Scott, W.J.; Hentemann, M.E.; Rowley, R.B.; Bull, C.O.; Jenkins, S.; Bullion, A.M.; Johnson, J.; Redman, A.; Robbins, A.H.; Esler, W.; Fracasso, R.P.; Garrison, T.; Hamilton, M.; Michels, M.; Wood, J.E.; Wilkie, D.P.; Xiao, H.; Levy, J.; Stasik, E.; Liu, N.; Schaefer, M.; Brands, M.; Lefranc, J. Discovery and SAR novel 2,3-dihydroimidazo[1,2-c]quinazoline PI3K inhibitors: Identification of copanlisib (BAY 80-6946). ChemMedChem, 2016, 11(14), 1517-1530.
[80]
Oluic, J.; Nikolic, K.; Vucicevic, J.; Gagic, Z.; Filipic, S.; Agbaba, D. 3D-QSAR, virtual screening, docking and design of dual PI3K/mtor inhibitors with enhanced antiproliferative activity. Comb. Chem. High Throughput Screen., 2017, 20(4), 292-303.
[81]
Takeda, T.; Wang, Y.; Bryant, S. Structural insights of PI3K/mTOR dual inhibitor with the morpholino-triazine scaffold. J. Comput. Aided Mol. Des., 2016, 30(4), 323-330.
[82]
Rehan, M. A structural insight into the inhibitory mechanism of an orally active PI3K/mTOR dual inhibitor, PKI-179 using computational approaches. J. Mol. Graph. Model., 2015, 62, 226-234.
[83]
Poulsen, A.; Kumar, H.; Lee, A.; Blanchard, S. Structure and ligand-based design of mTOR and PI3-kinase inhibitors leading to the clinical candidates VS-5584 (SB2343) and SB2602. J. Chem. Inf. Model., 2014, 54(11), 3238-3250.
[84]
Chen, L.; Monti, S.; Juszczynski, P.; Daley, J.; Chen, W.; Witzig, T. SYK-dependent tonic B-cell receptor signaling is a rational treatment target in diffuse large B-cell lymphoma. Blood, 2008, 111(4), 2230-2237.
[85]
Friedberg, J.W.; Sharman, J.; Sweetenham, J.; Johnston, P.B.; Vose, J.M.; Lacasce, A.; Schaefer-Cutillo, J.; De Vos, S.; Sinha, R.; Leonard, J.P.; Cripe, L.D.; Gregory, S.A.; Sterba, M.P.; Lowe, A.M.; Levy, R.; Shipp, M.A. Inhibition of Syk with fostamatinib disodium has significant clinical activity in non-Hodgkin lymphoma and chronic lymphocytic leukemia. Blood, 2010, 115(13), 2578-2585.
[86]
Flinn, I.W.; Bartlett, N.L.; Blum, K.A.; Ardeshna, K.M.; LaCasce, A.S.; Flowers, C.R.; Shustov, A.R.; Thress, K.S.; Mitchell, P.; Zheng, F.; Skolnik, J.M.; Friedberg, J.W. A phase II trial to evaluate the efficacy of fostamatinib in patients with relapsed or refractory diffuse large B-cell lymphoma (DLBCL). Eur. J. Cancer, 2016, 54, 11-17.
[87]
Kaplan, J.; Gordon, L.; Infante, J.; Popat, R.; Rambaldi, A.; Madan, S. TAK-659, An investigational reversible dual SYK/FLT-3 inhibitor, in patients with lymphoma: updated results from doseescalation and expansion cohorts of a phase 1 study. Hematol. Oncol., 2017, 35(S2), 72-74.
[88]
Huang, Y.; Zhang, Y.; Fan, K.; Dong, G.; Li, B.; Zhang, W.; Li, J.; Sheng, C. Discovery of new Syk inhibitors inhibitors through structure-based virtual screening. Bioorg. Med. Chem. Lett., 2017, 27(8), 1776-1779.
[89]
Kaur, M.; Silakari, O. Identification of new dual spleen tyrosine kinase (Syk) and phosphoionositide-3-kinase& (PI3K&) inhibitors using ligand and structure-based integrated ideal pharmacophore models. SAR QSAR Environ. Res., 2016, 27(6), 469-499.
[90]
Kaur, M.; Silakari, O. Ligand-based and e-pharmacophore modeling, SD-QSAR and hierarchical virtual screening to identify dual inhibitors of spleen tyrosinr kinase (Syk) and janus kinase 3 (JAK3). J. Biomol. Struct. Dyn., 2017, 35(14), 3043-3060.
[91]
Qian, C.; Lai, C.; Bao, R.; Wang, D.G.; Wang, J.; Xu, G.X.; Atoyan, R.; Qu, H.; Yin, L.; Samson, M.; Zifcak, B.; Ma, A.W.; DellaRocca, S.; Borek, M.; Zhai, H.X.; Cai, X.; Voi, M. Cancer network disruption by a single molecule inhibitor targeting both histone deacetylase activity and phosphatidylinositol 3-kinase signaling. Clin. Cancer Res., 2012, 18(15), 4104-4113.
[92]
Pasqualucci, L.; Dominguez-Sola, D.; Chiarenza, A.; Fabbri, G.; Grunn, A.; Trifonov, V. Inactivating mutations of acetyltransferase genes in B-cell lymphoma. Nature, 2011, 471(7337), 189-195.
[93]
Bereshchenko, O.; Gu, W.; Dalla-Favera, R. Acetylation inactivates the transcriptional repressor BCL6. Nat. Genet., 2002, 32(4), 606-613.
[94]
O’Connor, O.; Horwitz, S.; Masszi, T.; Van Hoof, A.; Brown, P.; Doorduijn, J. Belinostat in patients with relapsed or refractory peripheral T-cell lymphoma: Results of the pivotal phase II BELIEF (CLN-19) study. J. Clin. Oncol., 2015, 33(23), 2492-2499.
[95]
Coiffier, B.; Pro, B.; Prince, H.; Foss, F.; Sokol, L.; Greenwood, M. Results from a pivotal, open-label, phase II study of romidepsin in relapsed or refractory peripheral T-cell lymphoma after prior systemic therapy. J. Clin. Oncol., 2012, 30(6), 631-636.
[96]
Mann, B.; Johnson, J.; He, K.; Sridhara, R.; Abraham, S.; Booth, B. Vorinostat for treatment of cutaneousmanifestations of advanced primary cutaneous T-cell lymphoma. Clin. Cancer Res., 2007, 13(8), 2318-2322.
[97]
Batlevi, C.L.; Crump, M.; Andreadis, C.; Rizzieri, D.; Assouline, S.E.; Fox, S.; van der Jagt, R.H.C.; Copeland, A.; Potvin, D.; Chao, R.; Younes, A. A phase 2 study of mocetinostat, a histone deacetylase inhibitor, in relapsed or refractory lymphoma. Br. J. Haematol., 2017, 178(3), 434-441.
[98]
Haji Agha Bozorghi, A.; Zarghi, A. Search for the pharmacophore of histone deacetylase inhibitors using pharmacophore query and docking study. Iran. J. Pharm. Res., 2014, 13(4), 1165-1172.
[99]
Patel, P.; Singh, A.; Patel, V.; Jain, D.; Veerasamy, R.; Rajak, H. Pharmacophore based 3D-QSAR, virtual screening and docking studies on novel series of HDAC inhibitors with thiophen linker as anticancer agents. Comb. Chem. High Throughput Screen., 2016, 19(9), 735-751.
[100]
Huang, Y.X.; Zhao, J.; Song, Q.H.; Zheng, L.H.; Fan, C.; Liu, T.T.; Bao, Y.L.; Sun, L.G.; Zhang, L.B.; Li, Y.X. Virtual screening and experimental validation of novel histone deacetylase inhibitors. BMC Pharmacol. Toxicol., 2016, 17, 32.
[101]
Panwalkar, A.; Verstovsek, S.; Giles, F.J. Mammalian target of rapamycin inhibition as therapy for hematologic malignancies. Cancer, 2004, 100(4), 657-666.
[102]
Wanner, K.; Hipp, S.; Oelsner, M.; Bogner, C.; Ringshausen, I.; Peschel, C. Mammalian target of rapamycin inhibition induces cell cycle arrest in diffuse large B cell lymphoma (DLBCL) cells and sensitizes DLBCL cells to rituximab. Br. J. Haematol., 2006, 134(5), 475-484.
[103]
Argyriou, P.; Economopoulou, P.; Papageorgiou, S. The role of mTOR inhibitors for the treatment of B-cell lymphomas. Adv. Hematol., 2012, 2012Article ID 435342
[104]
Hudes, G.; Carducci, M.; Tomczak, P.; Dutcher, J.; Figlin, R.; Kapoor, A. Temsirolimus, interferon Alfa, or both for advanced renal cell carcinoma. N. Engl. J. Med., 2007, 356(22), 2271-2281.
[105]
Hess, G.; Herbrecht, R.; Romaguera, J.; Verhoef, G.; Gisselbrecht, C.; Crump, M. Phase III study to evaluate temsirolimus compared with investigator’s choice therapy for the treatment of relapsed or refractory mantle cell lymphoma. J. Clin. Oncol., 2009, 27(23), 3822-3829.
[106]
Witzens-Harig, M.; Viardot, A.; Keller, U.; Buske, C.; Honig, E.; Atta, J. Safety and clinical activity of temsirolimus in combination with rituximab and DHAP in patients with relapsed or refractory diffuse large B-cell lymphoma-report of the prospective, multicenter phase II storm trial. Hematol. Oncol., 2017, 35(S2), 191.
[107]
Barnes, J.; Jacobsen, E.; Feng, Y.; Freedman, A.; Hochberg, E.; LaCasce, A. Everolimus in combination with rituximab induces complete responses in heavily pretreated diffuse large B-cell lymphoma. Haematologica, 2013, 98(4), 615-619.
[108]
Johnston, P.; LaPlant, B.; McPhail, E.; Habermann, T.; Inwards, D.; Micallef, I. Everolimus combined with R-CHOP-21 for new, untreated, diffuse large B-cell lymphoma (NCCTG 1085 [Alliance]): Safety and efficacy results of a phase 1 and feasibility trial. Lancet Haematol., 2016, 3(7), e309-e316.
[109]
Kist, R.; Caceres, R. New potential inhibitors of mTOR: a computational investigation integrating molecular docking, virtual screening and molecular dynamics simulation. J. Biomol. Struct. Dyn., 2017, 35(16), 3555-3568.
[110]
Wang, L.; Chen, L.; Yu, M.; Xu, L.H.; Cheng, B.; Lin, Y.S.; Gu, Q.; He, X.H.; Xu, J. Discovering new mTOR inhibitors for cancer treatment through virtual screening methods and in vitro assays. Sci. Rep., 2016, 6, 18987.
[111]
Xie, H.; Lee, M-H.; Zhu, F.; Reddy, K.; Huang, Z.; Kim, D.J.; Li, Y.; Peng, C.; Lim, D.Y.; Kang, S.; Jung, S.K.; Li, X.; Li, H.; Ma, W.; Lubet, R.A.; Ding, J.; Bode, A.M.; Dong, Z. Discovery of the novel mTOR inhibitor and its antitumor activities in vitro and in vivo. Mol. Cancer Ther., 2013, 12(6), 950-958.
[112]
Proteomics, M.O.J. Molecular docking and pharmacokinetic of highly specific novel pan-mtor inhibitors against solid tumors. MOJ Proteom. Bioinform., 2017, 5(6), 13-16.
[113]
Huang, J.; Sanger, W.; Greiner, T.; Staudt, L.; Weisenburger, D.; Pickering, D. The t(14;18) defines a unique subset of diffuse large B-cell lymphoma with a germinal center B-cell gene expression profile. Blood, 2002, 99(7), 2285-2290.
[114]
Roberts, A.; Huang, D.C.S. Targeting BCL2 With BH3Mimetics: Basic science and clinical application of venetoclax in chronic lymphocytic leukemia and related B cell malignancies. Clin. Pharmacol. Ther., 2017, 101(1), 89-98.
[115]
Davids, M.; Roberts, A.; Seymour, J.; Pagel, J.; Kahl, B.; Wierda, W. Phase I first-in-human study of venetoclax in patients with relapsed or refractory non Hodgkin lymphoma. J. Clin. Oncol., 2017, 35(8), 826-833.
[116]
Zelenetz, A.; Salles, G.; Mason, K.; Casulo, C.; Le Gouill, S.; Sehn, L. Results of a phase Ib study of venetoclax plus R- or GCHOP in patients with B-cell non-Hodgkin lymphoma. Blood, 2016, 128(22), 3032.
[117]
Ahmed, M.; Jamil, K. BCL-2 as target for molecular docking of some neoplastic drugs. Sci. Rep., 2012, 1, 458.
[118]
Ziedan, N.; Hamdy, R.; Cvaliere, A.; Kourti, M.; Prencipe, F.; Brancale, A.; Jones, A.T.; Westwell, A.D. Virtual screening, SAR, and discovery of 5-(indole-3-yl)-2-[(2-nitrophenyl)amino] [1,3,4]-oxadiazole as a novel Bcl-2 inhibitor. Chem. Biol. Drug Des., 2017, 90(1), 147-155.
[119]
Jamei, M.; Khoshneviszadeh, M.; Edraki, N.; Firoozi, M.; Haghighijoo, Z.; Sakhtaman, A. Cross docking study directed toward virtual screening and molecular docking study of phenanthrene 1,2,4-triazine derivatives as novel Bcl-2 inhibitors. TRENDS Pharm. Sci., 2016, 2, 4.
[120]
Olotu, F.A.; Agoni, C.; Adeniji, E.; Abdullahi, M.; Soliman, M.E. Probing gallate-mediated selectivity and high-affinity binding of epigallocatechin gallate: A way-forward in the design of selective inhibitors for anti-apoptotic Bcl-2 proteins. Appl. Biochem. Biotechnol., 2019, 187(3), 1061-1080.
[121]
Dou, Q.; Li, B. Proteasome inhibitors as potential novel anticancer agents. Drug Resist. Updat., 1999, 2(4), 215-223.
[122]
Adams, J. The proteasome: A suitable antineoplastic target. Nat. Rev. Cancer, 2004, 4(5), 349-360.
[123]
Roff, M.; Thompson, J.; Rodriguez, M.; Jacque, J-M.; Baleux, F.; Arenzana-Seisdedos, F. Role of IB ubiquitination in signalinduced activation of NF-B in vivo. J. Biol. Chem., 1996, 271(13), 7844-7850.
[124]
Mato, A.; Feldman, T.; Goy, A. Proteasome inhibition and combination therapy for Non-Hodgkin’s Lymphoma: From bench to bedside. Oncologist, 2012, 7, 694-707.
[125]
Niesvizky, R.; Flinn, I.; Rifkin, R.; Gabrail, N.; Charu, V.; Clowney, B. Phase 3b upfront study: Safety and efficacy of weekly bortezomib maintenance therapy after bortezomib-based induction regimens in elderly, Newly diagnosed multiple myeloma patients. Blood, 2010, 116(21), 619.
[126]
Richardson, P.; Barlogie, B.; Berenson, J.; Singhal, S.; Jagannath, S.; Irwin, D. A phase 2 study of bortezomib in relapsed, refractory myeloma. N. Engl. J. Med., 2003, 348(26), 2609-2617.
[127]
Bose, P.; Batalo, M.; Holkova, B.; Grant, S. Bortezomib for the treatment of non-Hodgkin’s lymphoma. Expert Opin. Pharmacother., 2016, 15(16), 2443-2459.
[128]
Kupperman, E.; Lee, E.; Cao, Y.; Bannerman, B.; Fitzgerald, M.; Berger, A. Evaluation of the proteasome inhibitor MLN9708 in preclinical models of human cancer. Cancer Res., 2010, 70(5), 1970-1980.
[129]
Lee, E.; Fitzgerald, M.; Bannerman, B.; Donelan, J.; Bano, K.; Terkelsen, J. Antitumor activity of the investigational proteasome inhibitor MLN9708 in mouse models of B-cell and plasma cell malignancies. Clin. Cancer Res., 2011, 17(23), 7313-7323.
[130]
Liu, W.; Chen, Y.; Tamayo, A.; Ruan, C.; Li, L.; Zhou, S.; Shen, C.; Young, K.H.; Westin, J.; Davis, R.E.; Hu, S.; Medeiros, L.J.; Ford, R.J.; Pham, L.V. Preclinical efficacy and biological effects of the oral proteasome inhibitor ixazomib in diffuse large B-cell lymphoma. Oncotarget, 2018, 9(1), 346-360.
[131]
Khan, M.; Stewart, A. Carfilzomib: A novel second-generation proteasome inhibito. Future Oncol., 2011, 7(5), 607-612.
[132]
Kubiczkova, L.; Pour, L.; Sedlarikova, L.; Hajek, R.; Sevcikova, S. Proteasome inhibitors - molecular basis and current perspectives in multiple myeloma. J. Cell. Mol. Med., 2014, 18(6), 947-961.
[133]
Miller, Z.; Kim, K.S.; Lee, D.M.; Kasam, V.; Baek, S.E.; Lee, K.H.; Zhang, Y.Y.; Ao, L.; Carmony, K.; Lee, N.R.; Zhou, S.; Zhao, Q.; Jang, Y.; Jeong, H.Y.; Zhan, C.G.; Lee, W.; Kim, D.E.; Kim, K.B. Proteasome Inhibitors with pyrazole scaffolds from structure-based virtual screening. J. Med. Chem., 2015, 58(4), 2036-2041.
[134]
Di Giovanni, C.; Ettari, R.; Sarno, S.; Rotondo, A.; Bitto, A.; Squadrito, F.; Altavilla, D.; Schirmeister, T.; Novellino, E.; Grasso, S.; Zappalà, M.; Lavecchia, A. Identification of noncovalent proteasome inhibitors with high selectivity for chymotrypsin-like activity by a multistep structure-based virtual screening. Eur. J. Med. Chem., 2016, 121, 578-591.
[135]
Arba, M.; Nur-Hidayat, A.; Surantaadmaja, S.; Tjahjono, D. Pharmacophore-based virtual screening for identifying β5 subunit inhibitor of 20S proteasome. Comput. Biol. Chem., 2018, 77, 64-71.
[136]
Guedes, R.; Serra, P.; Salvador, J.; Guedes, R. Computational approaches for the discovery of human proteasome inhibitors: An overview. Molecules, 2016, 21(7)pii E927
[137]
Bender, A.; Gardberg, A.; Pareira, A.; Johnson, T.; Wu, Y.; Grenningloh, R.; Head, J.; Morandi, F.; Haselmayer, P.; Liu-Bujalski, L. Ability of Bruton’s tyrosine kinase inhibitors to sequester Y551 and prevent phosphorylation determines potency for inhibition of Fc receptor but not B-cell receptor signaling. Mol. Pharmacol., 2017, 91, 208-219.
[138]
Lee, S.; Choi, J.S.; Han, B.G.; Kim, H.S.; Song, H.J.; Lee, J.; Nam, S.; Goh, S.H.; Kim, J.H.; Koh, J.S.; Lee, B.I. Crystal structures of spleen tyrosine kinase in complex with novel inhibitors: Structural insights for design of anticancer drugs. FEBS J., 2016, 283, 3613-3625.
[140]
Whitehead, L.; Dobler, M.; Radetich, B.; Zhu, Y.; Atadja, P.W.; Claiborne, T.; Grob, J.E.; McRiner, A.; Pancost, M.R.; Patnaik, A.; Shao, W.; Shultz, M.; Tichkule, R.; Tommasi, R.A.; Vash, B.; Wang, P.; Stams, T. Human HDAC isoform selectivity achieved via exploitation of the acetate release channel with structurally unique small molecule inhibitors. Bioorg. Med. Chem., 2011, 19, 4626-4634.
[141]
Perez, H.L.; Banfi, P.; Bertrand, J.; Cai, Z.W.; Grebinski, J.W.; Kim, K.; Lippy, J.; Modugno, M.; Naglich, J.; Schmidt, R.J.; Tebben, A.; Vianello, P.; Wei, D.D.; Zhang, L.; Galvani, A.; Lombardo, L.J.; Borzilleri, R.M. Identification of a phenylacylsulfonamide series of dual Bcl-2/Bcl-Xl antagonists. Bioorg. Med. Chem. Lett., 2012, 22, 3946.
[142]
Lau, W.; Li, Y.; Liu, Z.; Gao, Y.; Zhang, Q.; Huen, M. Crystal structure of mTOR docked into EM map of dimeric ATM kinase. Cell Cycle, 2016, 15, 1117-1124.
[143]
Harshbarger, W.; Miller, C.; Diedrich, C.; Sacchettini, J. Crystal Structure of the human 20S proteasome in complex with carfilzomib. Structure, 2015, 23, 418-424.