Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Therapeutic Potential of microRNA Against Th2-associated Immune Disorders

Author(s): Sunil Kumar, Muhammad Umer Ashraf, Anil Kumar and Yong-Soo Bae*

Volume 21, Issue 8, 2021

Published on: 03 March, 2021

Page: [753 - 766] Pages: 14

DOI: 10.2174/1568026621666210303150235

Price: $65

Abstract

MicroRNAs (miRNAs) are short ~18-22 nucleotide, single-stranded, non-coding RNA molecules playing a crucial role in regulating diverse biological processes and are frequently dysregulated during disease pathogenesis. Thus, targeting miRNA could be a potential candidate for therapeutic invention. This systemic review aims to summarize our current understanding regarding the role of miRNAs associated with Th2-mediated immune disorders and strategies for therapeutic drug development and current clinical trials.

Keywords: microRNA therapeutics, Th2-disorder, Dendritic cells, Asthma, Atopic dermatitis, Rhinitis.

« Previous
Graphical Abstract

[1]
Czech, M.P. MicroRNAs as therapeutic targets. N. Engl. J. Med., 2006, 354(11), 1194-1195.
[http://dx.doi.org/10.1056/NEJMcibr060065] [PMID: 16540623]
[2]
Hydbring, P.; Badalian-Very, G. Clinical applications of microRNAs. F1000 Res., 2013, 2, 136.
[http://dx.doi.org/10.12688/f1000research.2-136.v1] [PMID: 24627783]
[3]
Lee, R.C.; Feinbaum, R.L.; Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 1993, 75(5), 843-854.
[http://dx.doi.org/10.1016/0092-8674(93)90529-Y] [PMID: 8252621]
[4]
Reinhart, B.J.; Slack, F.J.; Basson, M.; Pasquinelli, A.E.; Bettinger, J.C.; Rougvie, A.E.; Horvitz, H.R.; Ruvkun, G. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature, 2000, 403(6772), 901-906.
[http://dx.doi.org/10.1038/35002607] [PMID: 10706289]
[5]
Meunier, J.; Lemoine, F.; Soumillon, M.; Liechti, A.; Weier, M.; Guschanski, K.; Hu, H.; Khaitovich, P.; Kaessmann, H. Birth and expression evolution of mammalian microRNA genes. Genome Res., 2013, 23(1), 34-45.
[http://dx.doi.org/10.1101/gr.140269.112] [PMID: 23034410]
[6]
Chiang, H.R.; Schoenfeld, L.W.; Ruby, J.G.; Auyeung, V.C.; Spies, N.; Baek, D.; Johnston, W.K.; Russ, C.; Luo, S.; Babiarz, J.E.; Blelloch, R.; Schroth, G.P.; Nusbaum, C.; Bartel, D.P. Mammalian microRNAs: experimental evaluation of novel and previously annotated genes. Genes Dev., 2010, 24(10), 992-1009.
[http://dx.doi.org/10.1101/gad.1884710] [PMID: 20413612]
[7]
Krek, A.; Grün, D.; Poy, M.N.; Wolf, R.; Rosenberg, L.; Epstein, E.J.; MacMenamin, P.; da Piedade, I.; Gunsalus, K.C.; Stoffel, M.; Rajewsky, N. Combinatorial microRNA target predictions. Nat. Genet., 2005, 37(5), 495-500.
[http://dx.doi.org/10.1038/ng1536] [PMID: 15806104]
[8]
Lewis, B.P.; Burge, C.B.; Bartel, D.P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell, 2005, 120(1), 15-20.
[http://dx.doi.org/10.1016/j.cell.2004.12.035] [PMID: 15652477]
[9]
Lindow, M.; Kauppinen, S. Discovering the first microRNA-targeted drug. J. Cell Biol., 2012, 199(3), 407-412.
[http://dx.doi.org/10.1083/jcb.201208082] [PMID: 23109665]
[10]
Scalavino, V.; Liso, M.; Serino, G. Role of microRNAs in the Regulation of Dendritic Cell Generation and Function. Int. J. Mol. Sci., 2020, 21(4), E1319.
[http://dx.doi.org/10.3390/ijms21041319] [PMID: 32075292]
[11]
Saliminejad, K.; Khorram Khorshid, H.R.; Soleymani Fard, S.; Ghaffari, S.H. An overview of microRNAs: Biology, functions, therapeutics, and analysis methods. J. Cell. Physiol., 2019, 234(5), 5451-5465.
[http://dx.doi.org/10.1002/jcp.27486] [PMID: 30471116]
[12]
Pols, D.H.; Wartna, J.B.; Moed, H.; van Alphen, E.I.; Bohnen, A.M.; Bindels, P.J. Atopic dermatitis, asthma and allergic rhinitis in general practice and the open population: a systematic review. Scand. J. Prim. Health Care, 2016, 34(2), 143-150.
[http://dx.doi.org/10.3109/02813432.2016.1160629] [PMID: 27010253]
[13]
Specjalski, K.; Jassem, E. MicroRNAs: potential biomarkers and targets of therapy in allergic diseases? Arch. Immunol. Ther. Exp. (Warsz.), 2019, 67(4), 213-223.
[http://dx.doi.org/10.1007/s00005-019-00547-4] [PMID: 31139837]
[14]
Yu, X.; Wang, M.; Li, L.; Zhang, L.; Chan, M.T.V.; Wu, W.K.K. MicroRNAs in atopic dermatitis: A systematic review. J. Cell. Mol. Med., 2020, 24(11), 5966-5972.
[http://dx.doi.org/10.1111/jcmm.15208] [PMID: 32351034]
[15]
Weidinger, S.; Novak, N. Atopic dermatitis. Lancet, 2016, 387(10023), 1109-1122.
[http://dx.doi.org/10.1016/S0140-6736(15)00149-X] [PMID: 26377142]
[16]
Rożalski, M.; Rudnicka, L.; Samochocki, Z. MiRNA in atopic dermatitis. Postepy Dermatol. Alergol., 2016, 33(3), 157-162.
[http://dx.doi.org/10.5114/ada.2016.60606] [PMID: 27512348]
[17]
Vennegaard, M.T.; Bonefeld, C.M.; Hagedorn, P.H.; Bangsgaard, N.; Løvendorf, M.B.; Odum, N.; Woetmann, A.; Geisler, C.; Skov, L. Allergic contact dermatitis induces upregulation of identical microRNAs in humans and mice. Contact Dermat., 2012, 67(5), 298-305.
[http://dx.doi.org/10.1111/j.1600-0536.2012.02083.x] [PMID: 22594804]
[18]
Lv, Y.; Qi, R.; Xu, J.; Di, Z.; Zheng, H.; Huo, W.; Zhang, L.; Chen, H.; Gao, X. Profiling of serum and urinary microRNAs in children with atopic dermatitis. PLoS One, 2014, 9(12), e115448.
[http://dx.doi.org/10.1371/journal.pone.0115448] [PMID: 25531302]
[19]
Dharmage, S.C.; Perret, J.L.; Custovic, A. Epidemiology of asthma in children and adults. Front Pediatr., 2019, 7, 246.
[http://dx.doi.org/10.3389/fped.2019.00246] [PMID: 31275909]
[20]
Mims, J.W. Asthma: definitions and pathophysiology. Int. Forum Allergy Rhinol., 2015, 5(Suppl. 1), S2-S6.
[http://dx.doi.org/10.1002/alr.21609] [PMID: 26335832]
[21]
Dissanayake, E.; Inoue, Y. MicroRNAs in Allergic Disease. Curr. Allergy Asthma Rep., 2016, 16(9), 67.
[http://dx.doi.org/10.1007/s11882-016-0648-z] [PMID: 27585977]
[22]
Sharma, A.; Kumar, M.; Ahmad, T.; Mabalirajan, U.; Aich, J.; Agrawal, A.; Ghosh, B. Antagonism of mmu-mir-106a attenuates asthma features in allergic murine model J Appl Physiol (1985), 2012, (3), 459-464.
[23]
Hong, J.; Reed, C.; Novick, D.; Haro, J.M.; Aguado, J. Clinical and economic consequences of medication non-adherence in the treatment of patients with a manic/mixed episode of bipolar disorder: results from the European Mania in Bipolar Longitudinal Evaluation of Medication (EMBLEM) study. Psychiatry Res., 2011, 190(1), 110-114.
[http://dx.doi.org/10.1016/j.psychres.2011.04.016] [PMID: 21571375]
[24]
Feng, M.J.; Shi, F.; Qiu, C.; Peng, W.K. MicroRNA-181a, -146a and -146b in spleen CD4+ T lymphocytes play proinflammatory roles in a murine model of asthma. Int. Immunopharmacol., 2012, 13(3), 347-353.
[http://dx.doi.org/10.1016/j.intimp.2012.05.001] [PMID: 22580216]
[25]
Collison, A.; Mattes, J.; Plank, M.; Foster, P.S. Inhibition of house dust mite-induced allergic airways disease by antagonism of microRNA-145 is comparable to glucocorticoid treatment. J Allergy Clin Immunol, 2011, 128(1), 160-167. e164
[http://dx.doi.org/10.1016/j.jaci.2011.04.005]
[26]
Dykewicz, M.S.; Fineman, S.; Skoner, D.P.; Nicklas, R.; Lee, R.; Blessing-Moore, J.; Li, J.T.; Bernstein, I.L.; Berger, W.; Spector, S.; Schuller, D. Diagnosis and management of rhinitis: complete guidelines of the joint task force on practice parameters in allergy, asthma and immunology. American academy of allergy, asthma, and immunology. Ann. Allergy Asthma Immunol., 1998, 81(5 Pt 2), 478-518.
[http://dx.doi.org/10.1016/S1081-1206(10)63155-9] [PMID: 9860027]
[27]
Skoner, D.P. Allergic rhinitis: definition, epidemiology, pathophysiology, detection, and diagnosis. J. Allergy Clin. Immunol., 2001, 108(1)(Suppl.), S2-S8.
[http://dx.doi.org/10.1067/mai.2001.115569] [PMID: 11449200]
[28]
Mygind, N. Allergic rhinitis. Chem. Immunol. Allergy, 2014, 100, 62-68.
[http://dx.doi.org/10.1159/000358505] [PMID: 24925385]
[29]
Moyle, M.; Cevikbas, F.; Harden, J.L.; Guttman-Yassky, E. Understanding the immune landscape in atopic dermatitis: The era of biologics and emerging therapeutic approaches. Exp. Dermatol., 2019, 28(7), 756-768.
[http://dx.doi.org/10.1111/exd.13911] [PMID: 30825336]
[30]
Paller, A.S.; Kabashima, K.; Bieber, T. Therapeutic pipeline for atopic dermatitis: End of the drought? J. Allergy Clin. Immunol., 2017, 140(3), 633-643.
[http://dx.doi.org/10.1016/j.jaci.2017.07.006] [PMID: 28887947]
[31]
Carr, W.W. Topical calcineurin inhibitors for atopic dermatitis: review and treatment recommendations. Paediatr. Drugs, 2013, 15(4), 303-310.
[http://dx.doi.org/10.1007/s40272-013-0013-9] [PMID: 23549982]
[32]
Alomar, A.; Berth-Jones, J.; Bos, J.D.; Giannetti, A.; Reitamo, S.; Ruzicka, T.; Stalder, J.F.; Thestrup-Pedersen, K. The role of topical calcineurin inhibitors in atopic dermatitis. Br. J. Dermatol., 2004, 151(151)(Suppl 70 Dec 2004), 3-27.
[http://dx.doi.org/10.1111/j.1365-2133.2004.06269.x] [PMID: 15548171]
[33]
Buddenkotte, J.; Maurer, M.; Steinhoff, M. Histamine and antihistamines in atopic dermatitis. Adv. Exp. Med. Biol., 2010, 709, 73-80.
[http://dx.doi.org/10.1007/978-1-4419-8056-4_8] [PMID: 21618889]
[34]
Kamińska, E. The role of emollients in atopic dermatitis in children. Dev Period Med, 2018, 22(4), 396-403.
[PMID: 30636240]
[35]
Perrett, K.P.; Peters, R.L. Emollients for prevention of atopic dermatitis in infancy. Lancet, 2020, 395(10228), 923-924.
[http://dx.doi.org/10.1016/S0140-6736(19)33174-5] [PMID: 32087123]
[36]
Rodenbeck, D.L.; Silverberg, J.I.; Silverberg, N.B. Phototherapy for atopic dermatitis. Clin. Dermatol., 2016, 34(5), 607-613.
[http://dx.doi.org/10.1016/j.clindermatol.2016.05.011] [PMID: 27638440]
[37]
Pérez-Ferriols, A.; Aranegui, B.; Pujol-Montcusí, J.A.; Martín-Gorgojo, A.; Campos-Domínguez, M.; Feltes, R.A.; Gilaberte, Y.; Echeverría-García, B.; Alvarez-Pérez, A.; García-Doval, I. Phototherapy in atopic dermatitis: a systematic review of the literature. Actas Dermosifiliogr., 2015, 106(5), 387-401.
[http://dx.doi.org/10.1016/j.adengl.2015.04.003] [PMID: 25728564]
[38]
Hussain, Z.; Thu, H.E.; Shuid, A.N.; Kesharwani, P.; Khan, S.; Hussain, F. Phytotherapeutic potential of natural herbal medicines for the treatment of mild-to-severe atopic dermatitis: A review of human clinical studies. Biomed. Pharmacother., 2017, 93, 596-608.
[http://dx.doi.org/10.1016/j.biopha.2017.06.087] [PMID: 28686974]
[39]
But, P.; Chang, C. Chinese herbal medicine in the treatment of asthma and allergies. Clin. Rev. Allergy Immunol., 1996, 14(3), 253-269.
[PMID: 8932956]
[40]
Rusu, E.; Enache, G.; Cursaru, R.; Alexescu, A.; Radu, R.; Onila, O.; Cavallioti, T.; Rusu, F.; Posea, M.; Jinga, M.; Radulian, G. Prebiotics and probiotics in atopic dermatitis. Exp. Ther. Med., 2019, 18(2), 926-931.
[PMID: 31384325]
[41]
Rather, I.A.; Bajpai, V.K.; Kumar, S.; Lim, J.; Paek, W.K.; Park, Y.H. Probiotics and Atopic Dermatitis: An Overview. Front. Microbiol., 2016, 7, 507.
[http://dx.doi.org/10.3389/fmicb.2016.00507] [PMID: 27148196]
[42]
Liu, Y.; Cui, H.; Du, R.; Zhang, L.; Yuan, H.; Zhang, X.; Zheng, S. Acupuncture for patients with atopic dermatitis: A systematic review protocol. Medicine (Baltimore), 2019, 98(52), e18559.
[http://dx.doi.org/10.1097/MD.0000000000018559] [PMID: 31876756]
[43]
Ziment, I.; Tashkin, D.P. Alternative medicine for allergy and asthma. J. Allergy Clin. Immunol., 2000, 106(4), 603-614.
[http://dx.doi.org/10.1067/mai.2000.109432] [PMID: 11031328]
[44]
Souto, E.B.; Dias-Ferreira, J.; Oliveira, J.; Sanchez-Lopez, E.; Lopez-Machado, A.; Espina, M.; Garcia, M.L.; Souto, S.B.; Martins-Gomes, C.; Silva, A.M. Trends in Atopic Dermatitis-From Standard Pharmacotherapy to Novel Drug Delivery Systems. Int. J. Mol. Sci., 2019, 20(22), E5659.
[http://dx.doi.org/10.3390/ijms20225659] [PMID: 31726723]
[45]
Igawa, K. Future trends in the treatment of atopic dermatitis. Immunol Med, 2019, 42(1), 10-15.
[http://dx.doi.org/10.1080/25785826.2019.1628467] [PMID: 31204894]
[46]
Akhavan, A.; Rudikoff, D. Atopic dermatitis: systemic immunosuppressive therapy. Semin. Cutan. Med. Surg., 2008, 27(2), 151-155.
[http://dx.doi.org/10.1016/j.sder.2008.04.004] [PMID: 18620137]
[47]
Giavina-Bianchi, M.; Giavina-Bianchi, P. Systemic Treatment for Severe Atopic Dermatitis. Arch. Immunol. Ther. Exp. (Warsz.), 2019, 67(2), 69-78.
[http://dx.doi.org/10.1007/s00005-018-0521-y] [PMID: 30159581]
[48]
Alexander, H.; Patton, T.; Jabbar-Lopez, Z.K.; Manca, A.; Flohr, C. Novel systemic therapies in atopic dermatitis: what do we need to fulfil the promise of a treatment revolution? F1000 Res., 2019, 8, 8.
[http://dx.doi.org/10.12688/f1000research.17039.1] [PMID: 30774935]
[49]
Del Rosso, J.Q. Monoclonal antibody therapies for atopic dermatitis: Where are we now in the spectrum of disease management? J. Clin. Aesthet. Dermatol., 2019, 12(2), 39-41.
[PMID: 30881583]
[50]
Baghoomian, W.; Na, C.; Simpson, E.L. New and emerging biologics for atopic dermatitis. Am. J. Clin. Dermatol., 2020, 21(4), 457-465.
[http://dx.doi.org/10.1007/s40257-020-00515-1] [PMID: 32323259]
[51]
Kumar, S.; Jeong, Y.; Ashraf, M.U.; Bae, Y.S. Dendritic cell-mediated th2 immunity and immune disorders. Int. J. Mol. Sci., 2019, 20(9), E2159.
[http://dx.doi.org/10.3390/ijms20092159] [PMID: 31052382]
[52]
Bin, L.; Leung, D.Y. Genetic and epigenetic studies of atopic dermatitis. Allergy Asthma Clin. Immunol., 2016, 12, 52.
[http://dx.doi.org/10.1186/s13223-016-0158-5] [PMID: 27777593]
[53]
Kabesch, M.; Tost, J. Recent findings in the genetics and epigenetics of asthma and allergy. Semin. Immunopathol., 2020, 42(1), 43-60.
[http://dx.doi.org/10.1007/s00281-019-00777-w] [PMID: 32060620]
[54]
Shi, Y.L.; Gu, J.; Park, J.J.; Xu, Y.P.; Yu, F.S.; Zhou, L.; Mi, Q.S. Histone deacetylases inhibitor Trichostatin A ameliorates DNFB-induced allergic contact dermatitis and reduces epidermal Langerhans cells in mice. J. Dermatol. Sci., 2012, 68(2), 99-107.
[http://dx.doi.org/10.1016/j.jdermsci.2012.09.001] [PMID: 22999682]
[55]
Kim, T.H.; Jung, J.A.; Kim, G.D.; Jang, A.H.; Cho, J.J.; Park, Y.S.; Park, C.S. The histone deacetylase inhibitor, trichostatin A, inhibits the development of 2,4-dinitrofluorobenzene-induced dermatitis in NC/Nga mice. Int. Immunopharmacol., 2010, 10(10), 1310-1315.
[http://dx.doi.org/10.1016/j.intimp.2010.08.004] [PMID: 20728595]
[56]
Tay, H.L.; Plank, M.; Collison, A.; Mattes, J.; Kumar, R.K.; Foster, P.S.; Micro, R.N.A. MicroRNA: potential biomarkers and therapeutic targets for allergic asthma? Ann. Med., 2014, 46(8), 633-639.
[http://dx.doi.org/10.3109/07853890.2014.958196] [PMID: 25307360]
[57]
Malmhall, C.; Alawieh, S.; Lu, Y.; Sjostrand, M.; Bossios, A.; Eldh, M.; Radinger, M. MicroRNA-155 is essential for T(H)2-mediated allergen-induced eosinophilic inflammation in the lung J Allergy Clin Immunol, 2014, 133(5), 1429-1438. e1421-1427
[58]
Kanwal, N.; John, P.; Bhatti, A. MicroRNA-155 as a therapeutic target for inflammatory diseases. Rheumatol. Int., 2013, 33(3), 557-560.
[http://dx.doi.org/10.1007/s00296-012-2559-1] [PMID: 23239035]
[59]
Mattes, J.; Collison, A.; Plank, M.; Phipps, S.; Foster, P.S. Antagonism of microRNA-126 suppresses the effector function of TH2 cells and the development of allergic airways disease. Proc. Natl. Acad. Sci. USA, 2009, 106(44), 18704-18709.
[http://dx.doi.org/10.1073/pnas.0905063106] [PMID: 19843690]
[60]
Collison, A.; Herbert, C.; Siegle, J.S.; Mattes, J.; Foster, P.S.; Kumar, R.K. Altered expression of microRNA in the airway wall in chronic asthma: miR-126 as a potential therapeutic target. BMC Pulm. Med., 2011, 11, 29.
[http://dx.doi.org/10.1186/1471-2466-11-29] [PMID: 21605405]
[61]
Qin, H.B.; Xu, B.; Mei, J.J.; Li, D.; Liu, J.J.; Zhao, D.Y.; Liu, F. Inhibition of miRNA-221 suppresses the airway inflammation in asthma. Inflammation, 2012, 35(4), 1595-1599.
[http://dx.doi.org/10.1007/s10753-012-9474-1] [PMID: 22572970]
[62]
Mayoral, R.J.; Pipkin, M.E.; Pachkov, M.; van Nimwegen, E.; Rao, A.; Monticelli, S. MicroRNA-221-222 regulate the cell cycle in mast cells. J. Immunol., 2009, 182(1), 433-445.
[http://dx.doi.org/10.4049/jimmunol.182.1.433] [PMID: 19109175]
[63]
Polikepahad, S.; Knight, J.M.; Naghavi, A.O.; Oplt, T.; Creighton, C.J.; Shaw, C.; Benham, A.L.; Kim, J.; Soibam, B.; Harris, R.A.; Coarfa, C.; Zariff, A.; Milosavljevic, A.; Batts, L.M.; Kheradmand, F.; Gunaratne, P.H.; Corry, D.B. Proinflammatory role for let-7 microRNAS in experimental asthma. J. Biol. Chem., 2010, 285(39), 30139-30149.
[http://dx.doi.org/10.1074/jbc.M110.145698] [PMID: 20630862]
[64]
Kumar, M.; Mabalirajan, U.; Agrawal, A.; Ghosh, B. Proinflammatory role of let-7 miRNAs in experimental asthma? J. Biol. Chem., 2010, 285(48), le19.
[http://dx.doi.org/10.1074/jbc.L110.145698] [PMID: 21097512]
[65]
Kumar, M.; Ahmad, T.; Sharma, A.; Mabalirajan, U.; Kulshreshtha, A.; Agrawal, A.; Ghosh, B. Let-7 microRNA-mediated regulation of IL-13 and allergic airway inflammation J Allergy Clin Immunol, 2011, 128(5), 1077-1085. e1071-1010
[66]
Chiba, Y.; Misawa, M. MicroRNAs and their therapeutic potential for human diseases: MiR-133a and bronchial smooth muscle hyperresponsiveness in asthma. J. Pharmacol. Sci., 2010, 114(3), 264-268.
[http://dx.doi.org/10.1254/jphs.10R10FM] [PMID: 20953121]
[67]
Lu, T.X.; Munitz, A.; Rothenberg, M.E. MicroRNA-21 is up-regulated in allergic airway inflammation and regulates IL-12p35 expression. J. Immunol., 2009, 182(8), 4994-5002.
[http://dx.doi.org/10.4049/jimmunol.0803560] [PMID: 19342679]
[68]
Lee, H.Y.; Lee, H.Y.; Choi, J.Y.; Hur, J.; Kim, I.K.; Kim, Y.K.; Kang, J.Y.; Lee, S.Y. Inhibition of MicroRNA-21 by an antagomir ameliorates allergic inflammation in a mouse model of asthma. Exp. Lung Res., 2017, 43(3), 109-119.
[http://dx.doi.org/10.1080/01902148.2017.1304465] [PMID: 28379062]
[69]
Lu, T.X.; Hartner, J.; Lim, E.J.; Fabry, V.; Mingler, M.K.; Cole, E.T.; Orkin, S.H.; Aronow, B.J.; Rothenberg, M.E. MicroRNA-21 limits in vivo immune response-mediated activation of the IL-12/IFN-gamma pathway, Th1 polarization, and the severity of delayed-type hypersensitivity. J. Immunol., 2011, 187(6), 3362-3373.
[http://dx.doi.org/10.4049/jimmunol.1101235] [PMID: 21849676]
[70]
Panganiban, R.P.; Pinkerton, M.H.; Maru, S.Y.; Jefferson, S.J.; Roff, A.N.; Ishmael, F.T. Differential microRNA epression in asthma and the role of miR-1248 in regulation of IL-5. Am. J. Clin. Exp. Immunol., 2012, 1(2), 154-165.
[PMID: 23885321]
[71]
Lively, T.N.; Kossen, K.; Balhorn, A.; Koya, T.; Zinnen, S.; Takeda, K.; Lucas, J.J.; Polisky, B.; Richards, I.M.; Gelfand, E.W. Effect of chemically modified IL-13 short interfering RNA on development of airway hyperresponsiveness in mice. J. Allergy Clin. Immunol., 2008, 121(1), 88-94.
[http://dx.doi.org/10.1016/j.jaci.2007.08.029] [PMID: 17936889]
[72]
Sonkoly, E.; Janson, P.; Majuri, M.L.; Savinko, T.; Fyhrquist, N.; Eidsmo, L.; Xu, N.; Meisgen, F.; Wei, T.; Bradley, M.; Stenvang, J.; Kauppinen, S.; Alenius, H.; Lauerma, A.; Homey, B.; Winqvist, O.; Stahle, M.; Pivarcsi, A. MiR-155 is overexpressed in patients with atopic dermatitis and modulates T-cell proliferative responses by targeting cytotoxic T lymphocyte-associated antigen 4 J Allergy Clin Immunol, 2010, 126(3), 581-589. e581-520
[73]
Hellings, P.W.; Vandenberghe, P.; Kasran, A.; Coorevits, L.; Overbergh, L.; Mathieu, C.; Ceuppens, J.L. Blockade of CTLA-4 enhances allergic sensitization and eosinophilic airway inflammation in genetically predisposed mice. Eur. J. Immunol., 2002, 32(2), 585-594.
[http://dx.doi.org/10.1002/1521-4141(200202)32:2<585::AID-IMMU585>3.0.CO;2-U] [PMID: 11828376]
[74]
Jen, K.Y.; Campo, M.; He, H.; Makani, S.S.; Velasco, G.; Rothstein, D.M.; Perkins, D.L.; Finn, P.W. CD45RB ligation inhibits allergic pulmonary inflammation by inducing CTLA4 transcription. J. Immunol., 2007, 179(6), 4212-4218.
[http://dx.doi.org/10.4049/jimmunol.179.6.4212] [PMID: 17785861]
[75]
Chikh, A.; Matin, R.N.; Senatore, V.; Hufbauer, M.; Lavery, D.; Raimondi, C.; Ostano, P.; Mello-Grand, M.; Ghimenti, C.; Bahta, A.; Khalaf, S.; Akgül, B.; Braun, K.M.; Chiorino, G.; Philpott, M.P.; Harwood, C.A.; Bergamaschi, D. iASPP/p63 autoregulatory feedback loop is required for the homeostasis of stratified epithelia. EMBO J., 2011, 30(20), 4261-4273.
[http://dx.doi.org/10.1038/emboj.2011.302] [PMID: 21897369]
[76]
Rebane, A.; Runnel, T.; Aab, A.; Maslovskaja, J.; Ruckert, B.; Zimmermann, M.; Plaas, M.; Karner, J.; Treis, A.; Pihlap, M.; Haljasorg, U.; Hermann, H.; Nagy, N.; Kemeny, L.; Erm, T.; Kingo, K.; Li, M.; Boldin, M.P.; Akdis, C.A. MicroRNA-146a alleviates chronic skin inflammation in atopic dermatitis through suppression of innate immune responses in keratinocytes. J Allergy Clin Immunol, 2014, 134(4), 836-847. e811
[http://dx.doi.org/10.1016/j.jaci.2014.05.022]
[77]
Chen, X.F.; Zhang, L.J.; Zhang, J.; Dou, X.; Shao, Y.; Jia, X.J.; Zhang, W.; Yu, B. MiR-151a is involved in the pathogenesis of atopic dermatitis by regulating interleukin-12 receptor β2. Exp. Dermatol., 2018, 27(4), 427-432.
[http://dx.doi.org/10.1111/exd.13276] [PMID: 27992076]
[78]
Yang, Z.; Zeng, B.; Wang, C.; Wang, H.; Huang, P.; Pan, Y. MicroRNA-124 alleviates chronic skin inflammation in atopic eczema via suppressing innate immune responses in keratinocytes. Cell. Immunol., 2017, 319, 53-60.
[http://dx.doi.org/10.1016/j.cellimm.2017.08.003] [PMID: 28847568]
[79]
Vaher, H.; Runnel, T.; Urgard, E.; Aab, A.; Carreras Badosa, G.; Maslovskaja, J.; Abram, K.; Raam, L.; Kaldvee, B.; Annilo, T.; Tkaczyk, E.R.; Maimets, T.; Akdis, C.A.; Kingo, K.; Rebane, A. miR-10a-5p is increased in atopic dermatitis and has capacity to inhibit keratinocyte proliferation. Allergy, 2019, 74(11), 2146-2156.
[http://dx.doi.org/10.1111/all.13849] [PMID: 31049964]
[80]
Gu, C.; Li, Y.; Wu, J.; Xu, J. IFN-γ-induced microRNA-29b up-regulation contributes tokeratinocyte apoptosis in atopic dermatitis through inhibiting Bcl2L2. Int. J. Clin. Exp. Pathol., 2017, 10(9), 10117-10126.
[PMID: 31966903]
[81]
Liew, W.C.; Sundaram, G.M.; Quah, S.; Lum, G.G.; Tan, J.S.L.; Ramalingam, R.; Common, J.E.A.; Tang, M.B.Y.; Lane, E.B.; Thng, S.T.G.; Sampath, P. Belinostat resolves skin barrier defects in atopic dermatitis by targeting the dysregulated miR-335:SOX6 axis. J. Allergy Clin. Immunol., 2020, 146(3), 606-620.e12.
[http://dx.doi.org/10.1016/j.jaci.2020.02.007] [PMID: 32088305]
[82]
Zhou, L.Y.; Qin, Z.; Zhu, Y.H.; He, Z.Y.; Xu, T. Current rna-based therapeutics in clinical trials. Curr. Gene Ther., 2019, 19(3), 172-196.
[http://dx.doi.org/10.2174/1566523219666190719100526] [PMID: 31566126]
[83]
Kaboli, P.J.; Rahmat, A.; Ismail, P.; Ling, K.H. MicroRNA-based therapy and breast cancer: A comprehensive review of novel therapeutic strategies from diagnosis to treatment. Pharmacol. Res., 2015, 97, 104-121.
[http://dx.doi.org/10.1016/j.phrs.2015.04.015] [PMID: 25958353]
[84]
Christopher, A.F.; Kaur, R.P.; Kaur, G.; Kaur, A.; Gupta, V.; Bansal, P. MicroRNA therapeutics: Discovering novel targets and developing specific therapy. Perspect. Clin. Res., 2016, 7(2), 68-74.
[http://dx.doi.org/10.4103/2229-3485.179431] [PMID: 27141472]
[85]
Shah, M.Y.; Ferrajoli, A.; Sood, A.K.; Lopez-Berestein, G.; Calin, G.A. MicroRNA therapeutics in cancer - an emerging concept. EBioMedicine, 2016, 12, 34-42.
[http://dx.doi.org/10.1016/j.ebiom.2016.09.017] [PMID: 27720213]
[86]
Ebert, M.S.; Sharp, P.A. MicroRNA sponges: progress and possibilities. RNA, 2010, 16(11), 2043-2050.
[http://dx.doi.org/10.1261/rna.2414110] [PMID: 20855538]
[87]
Bouchie, A. First microRNA mimic enters clinic. Nat. Biotechnol., 2013, 31(7), 577.
[http://dx.doi.org/10.1038/nbt0713-577] [PMID: 23839128]
[88]
Okada, N.; Lin, C.P.; Ribeiro, M.C.; Biton, A.; Lai, G.; He, X.; Bu, P.; Vogel, H.; Jablons, D.M.; Keller, A.C.; Wilkinson, J.E.; He, B.; Speed, T.P.; He, L. A positive feedback between p53 and miR-34 miRNAs mediates tumor suppression. Genes Dev., 2014, 28(5), 438-450.
[http://dx.doi.org/10.1101/gad.233585.113] [PMID: 24532687]
[89]
Rupani, H.; Sanchez-Elsner, T.; Howarth, P. MicroRNAs and respiratory diseases. Eur. Respir. J., 2013, 41(3), 695-705.
[http://dx.doi.org/10.1183/09031936.00212011] [PMID: 22790917]
[90]
Lam, J.K.; Chow, M.Y.; Zhang, Y.; Leung, S.W. siRNA versus mirna as therapeutics for gene silencing. Mol. Ther. Nucleic Acids, 2015, 4, e252.
[http://dx.doi.org/10.1038/mtna.2015.23] [PMID: 26372022]
[91]
van de Veen, W.; Akdis, M. The use of biologics for immune modulation in allergic disease. J. Clin. Invest., 2019, 129(4), 1452-1462.
[http://dx.doi.org/10.1172/JCI124607] [PMID: 30882368]
[92]
Bosnjak, B.; Stelzmueller, B.; Erb, K.J.; Epstein, M.M. Treatment of allergic asthma: modulation of Th2 cells and their responses. Respir. Res., 2011, 12, 114.
[http://dx.doi.org/10.1186/1465-9921-12-114] [PMID: 21867534]
[93]
Sastre, B.; Cañas, J.A.; Rodrigo-Muñoz, J.M.; Del Pozo, V. Novel modulators of asthma and allergy: Exosomes and MicroRNAs. Front. Immunol., 2017, 8, 826.
[http://dx.doi.org/10.3389/fimmu.2017.00826] [PMID: 28785260]
[94]
Baumann, V.; Winkler, J. miRNA-based therapies: strategies and delivery platforms for oligonucleotide and non-oligonucleotide agents. Future Med. Chem., 2014, 6(17), 1967-1984.
[http://dx.doi.org/10.4155/fmc.14.116] [PMID: 25495987]
[95]
Mehrotra, N.; Tripathi, R.M. Short interfering RNA therapeutics: nanocarriers, prospects and limitations. IET Nanobiotechnol., 2015, 9(6), 386-395.
[http://dx.doi.org/10.1049/iet-nbt.2015.0018] [PMID: 26647816]
[96]
van Rooij, E.; Kauppinen, S. Development of microRNA therapeutics is coming of age. EMBO Mol. Med., 2014, 6(7), 851-864.
[http://dx.doi.org/10.15252/emmm.201100899] [PMID: 24935956]
[97]
Sepp-Lorenzino, L.; Ruddy, M. Challenges and opportunities for local and systemic delivery of siRNA and antisense oligonucleotides. Clin. Pharmacol. Ther., 2008, 84(5), 628-632.
[http://dx.doi.org/10.1038/clpt.2008.174] [PMID: 18800034]
[98]
Rupaimoole, R.; Slack, F.J. MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat. Rev. Drug Discov., 2017, 16(3), 203-222.
[http://dx.doi.org/10.1038/nrd.2016.246] [PMID: 28209991]
[99]
Broderick, J.A.; Zamore, P.D. MicroRNA therapeutics. Gene Ther., 2011, 18(12), 1104-1110.
[http://dx.doi.org/10.1038/gt.2011.50] [PMID: 21525952]
[100]
Hsieh, T.H.; Hsu, C.Y.; Tsai, C.F.; Long, C.Y.; Chai, C.Y.; Hou, M.F.; Lee, J.N.; Wu, D.C.; Wang, S.C.; Tsai, E.M. miR-125a-5p is a prognostic biomarker that targets HDAC4 to suppress breast tumorigenesis. Oncotarget, 2015, 6(1), 494-509.
[http://dx.doi.org/10.18632/oncotarget.2674] [PMID: 25504437]
[101]
Hodge, J.; Wang, F.; Wang, J.; Liu, Q.; Saaoud, F.; Wang, Y.; Singh, U.P.; Chen, H.; Luo, M.; Ai, W.; Fan, D. Overexpression of microRNA-155 enhances the efficacy of dendritic cell vaccine against breast cancer. OncoImmunology, 2020, 9(1), 1724761.
[http://dx.doi.org/10.1080/2162402X.2020.1724761] [PMID: 32117588]
[102]
Lawrence, P.; Ceccoli, J. Advances in the application and impact of micrornas as therapies for skin disease. BioDrugs, 2017, 31(5), 423-438.
[http://dx.doi.org/10.1007/s40259-017-0243-4] [PMID: 28875300]
[103]
Montecalvo, A.; Larregina, A.T.; Shufesky, W.J.; Stolz, D.B.; Sullivan, M.L.; Karlsson, J.M.; Baty, C.J.; Gibson, G.A.; Erdos, G.; Wang, Z.; Milosevic, J.; Tkacheva, O.A.; Divito, S.J.; Jordan, R.; Lyons-Weiler, J.; Watkins, S.C.; Morelli, A.E. Mechanism of transfer of functional microRNAs between mouse dendritic cells via exosomes. Blood, 2012, 119(3), 756-766.
[http://dx.doi.org/10.1182/blood-2011-02-338004] [PMID: 22031862]
[104]
Sun, X.; Guo, Q.; Wei, W.; Robertson, S.; Yuan, Y.; Luo, X. Current progress on microrna-based gene delivery in the treatment of osteoporosis and osteoporotic fracture. Int. J. Endocrinol., 2019, 2019, 6782653.
[http://dx.doi.org/10.1155/2019/6782653] [PMID: 30962808]
[105]
Wang, H.; Jiang, Y.; Peng, H.; Chen, Y.; Zhu, P.; Huang, Y. Recent progress in microRNA delivery for cancer therapy by non-viral synthetic vectors. Adv. Drug Deliv. Rev., 2015, 81, 142-160.
[http://dx.doi.org/10.1016/j.addr.2014.10.031] [PMID: 25450259]
[106]
Kwok, G.T.; Zhao, J.T.; Weiss, J.; Mugridge, N.; Brahmbhatt, H.; MacDiarmid, J.A.; Robinson, B.G.; Sidhu, S.B. Translational applications of microRNAs in cancer, and therapeutic implications. Noncoding RNA Res., 2017, 2(3-4), 143-150.
[http://dx.doi.org/10.1016/j.ncrna.2017.12.002] [PMID: 30159433]
[107]
Tagliaferri, P.; Rossi, M.; Di Martino, M.T.; Amodio, N.; Leone, E.; Gulla, A.; Neri, A.; Tassone, P. Promises and challenges of MicroRNA-based treatment of multiple myeloma. Curr. Cancer Drug Targets, 2012, 12(7), 838-846.
[http://dx.doi.org/10.2174/156800912802429355] [PMID: 22671926]
[108]
Ashraf, M.U.; Jeong, Y.; Roh, S.E.; Bae, Y.S. Transendothelial migration (TEM) of in vitro generated dendritic cell vaccine in cancer immunotherapy. Arch. Pharm. Res., 2019, 42(7), 582-590.
[http://dx.doi.org/10.1007/s12272-019-01145-w] [PMID: 30937843]
[109]
Hilligan, K.L.; Ronchese, F. Antigen presentation by dendritic cells and their instruction of CD4+ T helper cell responses. Cell. Mol. Immunol., 2020, 17(6), 587-599.
[http://dx.doi.org/10.1038/s41423-020-0465-0] [PMID: 32433540]
[110]
Ma, Z.X.; Tan, X.; Shen, Y.; Ke, X.; Yang, Y.C.; He, X.B.; Wang, Z.H.; Dai, Y.B.; Hong, S.L.; Hu, G.H. MicroRNA expression profile of mature dendritic cell in chronic rhinosinusitis. Inflamm. Res., 2015, 64(11), 885-893.
[http://dx.doi.org/10.1007/s00011-015-0870-5] [PMID: 26337346]
[111]
Huang, L.; Wang, M.; Chen, Z.; Yan, Y.; Gu, W.; Zhang, X.; Tan, J.; Sun, H.; Ji, W. MiR-138 regulates dendritic cells mediated Th2-type immune response by regulating the OX40L expression in asthma. Int. J. Clin. Exp. Pathol., 2017, 10(11), 10979-10988.
[PMID: 31966442]
[112]
Tang, H.; Jiang, H.; Zheng, J.; Li, J.; Wei, Y.; Xu, G.; Li, H. MicroRNA-106b regulates pro-allergic properties of dendritic cells and Th2 polarisation by targeting early growth response-2 in vitro. Int. Immunopharmacol., 2015, 28(2), 866-874.
[http://dx.doi.org/10.1016/j.intimp.2015.03.043] [PMID: 25864617]
[113]
Faraoni, I.; Antonetti, F.R.; Cardone, J.; Bonmassar, E. miR-155 gene: a typical multifunctional microRNA. Biochim. Biophys. Acta, 2009, 1792(6), 497-505.
[http://dx.doi.org/10.1016/j.bbadis.2009.02.013] [PMID: 19268705]
[114]
Zech, A.; Ayata, C.K.; Pankratz, F.; Meyer, A.; Baudiß, K.; Cicko, S.; Yegutkin, G.G.; Grundmann, S.; Idzko, M. MicroRNA-155 modulates P2R signaling and Th2 priming of dendritic cells during allergic airway inflammation in mice. Allergy, 2015, 70(9), 1121-1129.
[http://dx.doi.org/10.1111/all.12643] [PMID: 25944053]
[115]
Ma, Z.; Shen, Y.; Zeng, Q.; Liu, J.; Yang, L.; Fu, R.; Hu, G. MiR-150-5p regulates EGR2 to promote the development of chronic rhinosinusitis via the DC-Th axis. Int. Immunopharmacol., 2018, 54, 188-197.
[http://dx.doi.org/10.1016/j.intimp.2017.11.011] [PMID: 29153954]
[116]
Wang, J.; Iwanowycz, S.; Yu, F.; Jia, X.; Leng, S.; Wang, Y.; Li, W.; Huang, S.; Ai, W.; Fan, D. microRNA-155 deficiency impairs dendritic cell function in breast cancer. OncoImmunology, 2016, 5(11), e1232223.
[http://dx.doi.org/10.1080/2162402X.2016.1232223] [PMID: 27999745]
[117]
Gebert, L.F.; Rebhan, M.A.; Crivelli, S.E.; Denzler, R.; Stoffel, M.; Hall, J. Miravirsen (SPC3649) can inhibit the biogenesis of miR-122. Nucleic Acids Res., 2014, 42(1), 609-621.
[http://dx.doi.org/10.1093/nar/gkt852] [PMID: 24068553]
[118]
Janssen, H.L.; Reesink, H.W.; Lawitz, E.J.; Zeuzem, S.; Rodriguez-Torres, M.; Patel, K.; van der Meer, A.J.; Patick, A.K.; Chen, A.; Zhou, Y.; Persson, R.; King, B.D.; Kauppinen, S.; Levin, A.A.; Hodges, M.R. Treatment of HCV infection by targeting microRNA. N. Engl. J. Med., 2013, 368(18), 1685-1694.
[http://dx.doi.org/10.1056/NEJMoa1209026] [PMID: 23534542]
[119]
Baek, J.; Kang, S.; Min, H. MicroRNA-targeting therapeutics for hepatitis C. Arch. Pharm. Res., 2014, 37(3), 299-305.
[http://dx.doi.org/10.1007/s12272-013-0318-9] [PMID: 24385319]
[120]
Gomez, I.G.; MacKenna, D.A.; Johnson, B.G.; Kaimal, V.; Roach, A.M.; Ren, S.; Nakagawa, N.; Xin, C.; Newitt, R.; Pandya, S.; Xia, T.H.; Liu, X.; Borza, D.B.; Grafals, M.; Shankland, S.J.; Himmelfarb, J.; Portilla, D.; Liu, S.; Chau, B.N.; Duffield, J.S. Anti-microRNA-21 oligonucleotides prevent Alport nephropathy progression by stimulating metabolic pathways. J. Clin. Invest., 2015, 125(1), 141-156.
[http://dx.doi.org/10.1172/JCI75852] [PMID: 25415439]
[121]
Chau, B.N.; Xin, C.; Hartner, J.; Ren, S.; Castano, A.P.; Linn, G.; Li, J.; Tran, P.T.; Kaimal, V.; Huang, X.; Chang, A.N.; Li, S.; Kalra, A.; Grafals, M.; Portilla, D.; MacKenna, D.A.; Orkin, S.H.; Duffield, J.S. MicroRNA-21 promotes fibrosis of the kidney by silencing metabolic pathways. Sci. Transl. Med., 2012, 4(121), ra18.
[http://dx.doi.org/10.1126/scitranslmed.3003205] [PMID: 22344686]
[122]
Dubin, P.H.; Yuan, H.; Devine, R.K.; Hynan, L.S.; Jain, M.K.; Lee, W.M. Micro-RNA-122 levels in acute liver failure and chronic hepatitis C. J. Med. Virol., 2014, 86(9), 1507-1514.
[http://dx.doi.org/10.1002/jmv.23987] [PMID: 24895202]
[123]
Motavaf, M.; Safari, S.; Alavian, S.M. Targeting microRNA-122: walking on cutting edge of hepatitis C virus infection therapy. Acta Virol., 2014, 58(4), 301-308.
[http://dx.doi.org/10.4149/av_2014_04_301] [PMID: 25518710]
[124]
Kim, J.S.; Kim, E.J.; Lee, S.; Tan, X.; Liu, X.; Park, S.; Kang, K.; Yoon, J.S.; Ko, Y.H.; Kurie, J.M.; Ahn, Y.H. MiR-34a and miR-34b/c have distinct effects on the suppression of lung adenocarcinomas. Exp. Mol. Med., 2019, 51(1), 1-10.
[http://dx.doi.org/10.1038/s12276-018-0203-1] [PMID: 30700696]
[125]
Wiggins, J.F.; Ruffino, L.; Kelnar, K.; Omotola, M.; Patrawala, L.; Brown, D.; Bader, A.G. Development of a lung cancer therapeutic based on the tumor suppressor microRNA-34. Cancer Res., 2010, 70(14), 5923-5930.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-0655] [PMID: 20570894]
[126]
Misso, G.; Di Martino, M.T.; De Rosa, G.; Farooqi, A.A.; Lombardi, A.; Campani, V.; Zarone, M.R.; Gullà, A.; Tagliaferri, P.; Tassone, P.; Caraglia, M. Mir-34: a new weapon against cancer? Mol. Ther. Nucleic Acids, 2014, 3, e194.
[http://dx.doi.org/10.1038/mtna.2014.47] [PMID: 25247240]
[127]
Xie, K.; Liu, J.; Chen, J.; Dong, J.; Ma, H.; Liu, Y.; Hu, Z. Methylation-associated silencing of microRNA-34b in hepatocellular carcinoma cancer. Gene, 2014, 543(1), 101-107.
[http://dx.doi.org/10.1016/j.gene.2014.03.059] [PMID: 24704024]
[128]
Liu, C.; Kelnar, K.; Liu, B.; Chen, X.; Calhoun-Davis, T.; Li, H.; Patrawala, L.; Yan, H.; Jeter, C.; Honorio, S.; Wiggins, J.F.; Bader, A.G.; Fagin, R.; Brown, D.; Tang, D.G. The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nat. Med., 2011, 17(2), 211-215.
[http://dx.doi.org/10.1038/nm.2284] [PMID: 21240262]
[129]
Pramanik, D.; Campbell, N.R.; Karikari, C.; Chivukula, R.; Kent, O.A.; Mendell, J.T.; Maitra, A. Restitution of tumor suppressor microRNAs using a systemic nanovector inhibits pancreatic cancer growth in mice. Mol. Cancer Ther., 2011, 10(8), 1470-1480.
[http://dx.doi.org/10.1158/1535-7163.MCT-11-0152] [PMID: 21622730]
[130]
Shi, S.; Han, L.; Deng, L.; Zhang, Y.; Shen, H.; Gong, T.; Zhang, Z.; Sun, X. Dual drugs (microRNA-34a and paclitaxel)-loaded functional solid lipid nanoparticles for synergistic cancer cell suppression. J. Control. Release, 2014, 194, 228-237.
[http://dx.doi.org/10.1016/j.jconrel.2014.09.005] [PMID: 25220161]
[131]
Trang, P.; Wiggins, J.F.; Daige, C.L.; Cho, C.; Omotola, M.; Brown, D.; Weidhaas, J.B.; Bader, A.G.; Slack, F.J. Systemic delivery of tumor suppressor microRNA mimics using a neutral lipid emulsion inhibits lung tumors in mice. Mol. Ther., 2011, 19(6), 1116-1122.
[http://dx.doi.org/10.1038/mt.2011.48] [PMID: 21427705]
[132]
Stahlhut, C.; Slack, F.J. Combinatorial action of microRNAs let-7 and miR-34 effectively synergizes with erlotinib to suppress non-small cell lung cancer cell proliferation. Cell Cycle, 2015, 14(13), 2171-2180.
[http://dx.doi.org/10.1080/15384101.2014.1003008] [PMID: 25714397]
[133]
Tivnan, A.; Orr, W.S.; Gubala, V.; Nooney, R.; Williams, D.E.; McDonagh, C.; Prenter, S.; Harvey, H.; Domingo-Fernández, R.; Bray, I.M.; Piskareva, O.; Ng, C.Y.; Lode, H.N.; Davidoff, A.M.; Stallings, R.L. Inhibition of neuroblastoma tumor growth by targeted delivery of microRNA-34a using anti-disialoganglioside GD2 coated nanoparticles. PLoS One, 2012, 7(5), e38129.
[http://dx.doi.org/10.1371/journal.pone.0038129] [PMID: 22662276]
[134]
Deng, X.; Cao, M.; Zhang, J.; Hu, K.; Yin, Z.; Zhou, Z.; Xiao, X.; Yang, Y.; Sheng, W.; Wu, Y.; Zeng, Y. Hyaluronic acid-chitosan nanoparticles for co-delivery of MiR-34a and doxorubicin in therapy against triple negative breast cancer. Biomaterials, 2014, 35(14), 4333-4344.
[http://dx.doi.org/10.1016/j.biomaterials.2014.02.006] [PMID: 24565525]
[135]
Kasinski, A.L.; Slack, F.J. miRNA-34 prevents cancer initiation and progression in a therapeutically resistant K-ras and p53-induced mouse model of lung adenocarcinoma. Cancer Res., 2012, 72(21), 5576-5587.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-2001] [PMID: 22964582]
[136]
Shi, S.; Han, L.; Gong, T.; Zhang, Z.; Sun, X. Systemic delivery of microRNA-34a for cancer stem cell therapy. Angew. Chem. Int. Ed. Engl., 2013, 52(14), 3901-3905.
[http://dx.doi.org/10.1002/anie.201208077] [PMID: 23450685]
[137]
Saleh, A.D.; Cheng, H.; Martin, S.E.; Si, H.; Ormanoglu, P.; Carlson, S.; Clavijo, P.E.; Yang, X.; Das, R.; Cornelius, S.; Couper, J.; Chepeha, D.; Danilova, L.; Harris, T.M.; Prystowsky, M.B.; Childs, G.J.; Smith, R.V.; Robertson, A.G.; Jones, S.J.M.; Cherniack, A.D.; Kim, S.S.; Rait, A.; Pirollo, K.F.; Chang, E.H.; Chen, Z.; Van Waes, C. Integrated genomic and functional microrna analysis identifies mir-30-5p as a tumor suppressor and potential therapeutic nanomedicine in head and neck cancer. Clin. Cancer Res., 2019, 25(9), 2860-2873.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-0716] [PMID: 30723145]
[138]
Pencheva, N.; Tran, H.; Buss, C.; Huh, D.; Drobnjak, M.; Busam, K.; Tavazoie, S.F. Convergent multi-miRNA targeting of ApoE drives LRP1/LRP8-dependent melanoma metastasis and angiogenesis. Cell, 2012, 151(5), 1068-1082.
[http://dx.doi.org/10.1016/j.cell.2012.10.028] [PMID: 23142051]
[139]
Pekarsky, Y.; Croce, C.M. Role of miR-15/16 in CLL. Cell Death Differ., 2015, 22(1), 6-11.
[http://dx.doi.org/10.1038/cdd.2014.87] [PMID: 24971479]
[140]
Sampath, D.; Liu, C.; Vasan, K.; Sulda, M.; Puduvalli, V.K.; Wierda, W.G.; Keating, M.J. Histone deacetylases mediate the silencing of miR-15a, miR-16, and miR-29b in chronic lymphocytic leukemia. Blood, 2012, 119(5), 1162-1172.
[http://dx.doi.org/10.1182/blood-2011-05-351510] [PMID: 22096249]
[141]
Underbayev, C.; Kasar, S.; Ruezinsky, W.; Degheidy, H.; Schneider, J.S.; Marti, G.; Bauer, S.R.; Fraidenraich, D.; Lightfoote, M.M.; Parashar, V.; Raveche, E.; Batish, M. Role of mir-15a/16-1 in early B cell development in a mouse model of chronic lymphocytic leukemia. Oncotarget, 2016, 7(38), 60986-60999.
[http://dx.doi.org/10.18632/oncotarget.11290] [PMID: 27533467]
[142]
Klein, U.; Lia, M.; Crespo, M.; Siegel, R.; Shen, Q.; Mo, T.; Ambesi-Impiombato, A.; Califano, A.; Migliazza, A.; Bhagat, G.; Dalla-Favera, R. The DLEU2/miR-15a/16-1 cluster controls B cell proliferation and its deletion leads to chronic lymphocytic leukemia. Cancer Cell, 2010, 17(1), 28-40.
[http://dx.doi.org/10.1016/j.ccr.2009.11.019] [PMID: 20060366]
[143]
Takeshita, F.; Patrawala, L.; Osaki, M.; Takahashi, R.U.; Yamamoto, Y.; Kosaka, N.; Kawamata, M.; Kelnar, K.; Bader, A.G.; Brown, D.; Ochiya, T. Systemic delivery of synthetic microRNA-16 inhibits the growth of metastatic prostate tumors via downregulation of multiple cell-cycle genes. Mol. Ther., 2010, 18(1), 181-187.
[http://dx.doi.org/10.1038/mt.2009.207] [PMID: 19738602]
[144]
Calin, G.A.; Cimmino, A.; Fabbri, M.; Ferracin, M.; Wojcik, S.E.; Shimizu, M.; Taccioli, C.; Zanesi, N.; Garzon, R.; Aqeilan, R.I.; Alder, H.; Volinia, S.; Rassenti, L.; Liu, X.; Liu, C.G.; Kipps, T.J.; Negrini, M.; Croce, C.M. MiR-15a and miR-16-1 cluster functions in human leukemia. Proc. Natl. Acad. Sci. USA, 2008, 105(13), 5166-5171.
[http://dx.doi.org/10.1073/pnas.0800121105] [PMID: 18362358]
[145]
Yang, X.; Tang, X.; Sun, P.; Shi, Y.; Liu, K.; Hassan, S.H.; Stetler, R.A.; Chen, J.; Yin, K.J. MicroRNA-15a/16-1 Antagomir Ameliorates Ischemic Brain Injury in Experimental Stroke. Stroke, 2017, 48(7), 1941-1947.
[http://dx.doi.org/10.1161/STROKEAHA.117.017284] [PMID: 28546328]
[146]
Bonneau, E.; Neveu, B.; Kostantin, E.; Tsongalis, G.J.; De Guire, V. How close are miRNAs from clinical practice? A perspective on the diagnostic and therapeutic market. EJIFCC, 2019, 30(2), 114-127.
[PMID: 31263388]
[147]
van Rooij, E.; Purcell, A.L.; Levin, A.A. Developing microRNA therapeutics. Circ. Res., 2012, 110(3), 496-507.
[http://dx.doi.org/10.1161/CIRCRESAHA.111.247916] [PMID: 22302756]
[148]
Chakraborty, C.; Sharma, A.R.; Sharma, G.; Doss, C.G.P.; Lee, S.S. Therapeutic miRNA and siRNA: moving from bench to clinic as next generation medicine. Mol. Ther. Nucleic Acids, 2017, 8, 132-143.
[http://dx.doi.org/10.1016/j.omtn.2017.06.005] [PMID: 28918016]
[149]
Nguyen, T.; Menocal, E.M.; Harborth, J.; Fruehauf, J.H. RNAi therapeutics: an update on delivery. Curr. Opin. Mol. Ther., 2008, 10(2), 158-167.
[PMID: 18386228]
[150]
Xiong, T.; Du, Y.; Fu, Z.; Geng, G. MicroRNA-145-5p promotes asthma pathogenesis by inhibiting kinesin family member 3A expression in mouse airway epithelial cells. J. Int. Med. Res., 2019, 47(7), 3307-3319.
[http://dx.doi.org/10.1177/0300060518789819] [PMID: 31264490]
[151]
Zhang, H.; Sun, Y.; Rong, W.; Fan, L.; Cai, Y.; Qu, Q.; Gao, Y.; Zhao, H. miR-221 participates in the airway epithelial cells injury in asthma via targeting SIRT1. Exp. Lung Res., 2018, 44(6), 272-279.
[http://dx.doi.org/10.1080/01902148.2018.1533051] [PMID: 30654657]
[152]
Stelma, F.; van der Ree, M.H.; Sinnige, M.J.; Brown, A.; Swadling, L.; de Vree, J.M.L.; Willemse, S.B.; van der Valk, M.; Grint, P.; Neben, S.; Klenerman, P.; Barnes, E.; Kootstra, N.A.; Reesink, H.W. Immune phenotype and function of natural killer and T cells in chronic hepatitis C patients who received a single dose of anti-MicroRNA-122, RG-101. Hepatology, 2017, 66(1), 57-68.
[http://dx.doi.org/10.1002/hep.29148] [PMID: 28295463]
[153]
Beg, M.S.; Brenner, A.J.; Sachdev, J.; Borad, M.; Kang, Y.K.; Stoudemire, J.; Smith, S.; Bader, A.G.; Kim, S.; Hong, D.S. Phase I study of MRX34, a liposomal miR-34a mimic, administered twice weekly in patients with advanced solid tumors. Invest. New Drugs, 2017, 35(2), 180-188.
[http://dx.doi.org/10.1007/s10637-016-0407-y] [PMID: 27917453]
[154]
Kreth, S.; Hübner, M.; Hinske, L.C. MicroRNAs as clinical biomarkers and therapeutic tools in perioperative medicine. Anesth. Analg., 2018, 126(2), 670-681.
[http://dx.doi.org/10.1213/ANE.0000000000002444] [PMID: 28922229]
[155]
Bajan, S.; Hutvagner, G. RNA-based therapeutics: from antisense oligonucleotides to mirnas. Cells, 2020, 9(1), E137.
[http://dx.doi.org/10.3390/cells9010137] [PMID: 31936122]
[156]
Hanna, J.; Hossain, G.S.; Kocerha, J. The potential for microrna therapeutics and clinical research. Front. Genet., 2019, 10, 478.
[http://dx.doi.org/10.3389/fgene.2019.00478] [PMID: 31156715]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy