[1]
Wang, J.C. DNA topoisomerases. Annu. Rev. Biochem., 1996, 65, 635-692. [http://dx.doi.org/10.1146/annurev.bi.65.070196.003223]. [PMID: 8811192].
[2]
Wang, J.C. Cellular roles of DNA topoisomerases: a molecular perspective. Nat. Rev. Mol. Cell Biol., 2002, 3(6), 430-440. [http://dx.doi.org/10.1038/nrm831]. [PMID: 12042765].
[3]
Pommier, Y. DNA topoisomerase I inhibitors: chemistry, biology, and interfacial inhibition. Chem. Rev., 2009, 109(7), 2894-2902. [http://dx.doi.org/10.1021/cr900097c]. [PMID: 19476377].
[4]
Pommier, Y. Drugging topoisomerases: lessons and challenges. ACS Chem. Biol., 2013, 8(1), 82-95. [http://dx.doi.org/10.1021/cb300648v]. [PMID: 23259582].
[5]
Viard, T.; de la Tour, C.B. Type IA topoisomerases: A simple puzzle? Biochimie, 2007, 89(4), 456-467. [http://dx.doi.org/10.1016/j.biochi.2006.10.013]. [PMID: 17141394].
[6]
Koster, D.A.; Croquette, V.; Dekker, C.; Shuman, S.; Dekker, N.H. Friction and torque govern the relaxation of DNA supercoils by eukaryotic topoisomerase IB. Nature, 2005, 434(7033), 671-674. [http://dx.doi.org/10.1038/nature03395]. [PMID: 15800630].
[7]
a)D’Arpa, P.; Machlin, P.S.; Ratrie, H., III; Rothfield, N.F.; Cleveland, D.W.; Earnshaw, W.C. cDNA cloning of human DNA topoisomerase I: catalytic activity of a 67.7-kDa carboxyl-terminal fragment. Proc. Natl. Acad. Sci. USA, 1988, 85(8), 2543-2547. [http://dx.doi.org/10.1073/pnas.85.8.2543]. [PMID: 2833744]
b)Stewart, L.; Ireton, G.C.; Champoux, J.J. Reconstitution of human topoisomerase I by fragment complementation. J. Mol. Biol., 1997, 269(3), 355-372. [http://dx.doi.org/10.1006/jmbi.1997.1056]. [PMID: 9199405].
[8]
Redinbo, M.R.; Stewart, L.; Champoux, J.J.; Hol, W.G. Structural flexibility in human topoisomerase I revealed in multiple non-isomorphous crystal structures. J. Mol. Biol., 1999, 292(3), 685-696. [http://dx.doi.org/10.1006/jmbi.1999.3065]. [PMID: 10497031].
[9]
Redinbo, M.R.; Stewart, L.; Kuhn, P.; Champoux, J.J.; Hol, W.G. Crystal structures of human topoisomerase I in covalent and noncovalent complexes with DNA. Science, 1998, 279(5356), 1504-1513. [http://dx.doi.org/10.1126/science.279.5356.1504]. [PMID: 9488644].
[10]
a)Hsiang, Y.H.; Hertzberg, R.; Hecht, S.; Liu, L.F. Camptothecin induces protein-linked DNA breaks via mammalian DNA topoisomerase I. J. Biol. Chem., 1985, 260(27), 14873-14878. [PMID: 2997227]
b)Hsiang, Y-H.; Liu, L.F. Identification of mammalian DNA topoisomerase I as an intracellular target of the anticancer drug camptothecin. Cancer Res., 1988, 48(7), 1722-1726. [PMID: 2832051].
[11]
Wall, M.E.; Wani, M.C.; Cook, C.E.; Palmer, K.H.; McPhail, A.I.; Sim, G.A. Plant antitumor agents. I. The isolation and structure of camptothecin, a novel alkaloidal leukemia and tumor inhibitor from camptotheca acuminate. J. Am. Chem. Soc., 1966, 88, 3888-3890. [http://dx.doi.org/10.1021/ja00968a057].
[12]
Koster, D.A.; Palle, K.; Bot, E.S.; Bjornsti, M.A.; Dekker, N.H. Antitumour drugs impede DNA uncoiling by topoisomerase I. Nature, 2007, 448(7150), 213-217. [http://dx.doi.org/10.1038/nature05938]. [PMID: 17589503].
[13]
Seol, Y.; Zhang, H.; Pommier, Y.; Neuman, K.C. A kinetic clutch governs religation by type IB topoisomerases and determines camptothecin sensitivity. Proc. Natl. Acad. Sci. USA, 2012, 109(40), 16125-16130. [http://dx.doi.org/10.1073/pnas.1206480109]. [PMID: 22991469].
[14]
a)Staker, B.L.; Hjerrild, K.; Feese, M.D.; Behnke, C.A.; Burgin, A.B., Jr; Stewart, L. The mechanism of topoisomerase I poisoning by a camptothecin analog. Proc. Natl. Acad. Sci. USA, 2002, 99(24), 15387-15392. [http://dx.doi.org/10.1073/pnas.242259599]. [PMID: 12426403]
b)Staker, B.L.; Feese, M.D.; Cushman, M.; Pommier, Y.; Zembower, D.; Stewart, L.; Burgin, A.B. Structures of three classes of anticancer agents bound to the human topoisomerase I-DNA covalent complex. J. Med. Chem., 2005, 48(7), 2336-2345. [http://dx.doi.org/10.1021/jm049146p]. [PMID: 15801827].
[15]
a)Wall, M.E.; Wani, M.C. Antineoplastic agents from plants. Annu. Rev. Pharmacol. Toxicol., 1977, 17, 117-132. [http://dx.doi.org/10.1146/annurev.pa.17.040177.001001].[PMID: 326159]
b)Fassberg, J.; Stella, V.J. A kinetic and mechanistic study of the hydrolysis of camptothecin and some analogues. J. Pharm. Sci., 1992, 81(7), 676-684. [http://dx.doi.org/10.1002/jps.2600810718]. [PMID: 1403703]
c)Ziomkowska, B.; Kruszewski, S.; Siuda, R.; Cyrankiewicz, M. Deactivation rate of camptothecin determined by factor analysis of steady-state fluorescence and adsorption spectra. Opt. Appl., 2006, 36, 137-146.
[16]
a)Burke, T.G.; Mi, Z. Preferential binding of the carboxylate form of camptothecin by human serum albumin. Anal. Biochem., 1993, 212(1), 285-287. [http://dx.doi.org/10.1006/abio.1993.1325].[PMID: 8368506]
b)Burke, T.G.; Mi, Z. The structural basis of camptothecin interactions with human serum albumin: impact on drug stability. J. Med. Chem., 1994, 37(1), 40-46. [http://dx.doi.org/10.1021/jm00027a005]. [PMID: 8289200].
[17]
Nabiev, I.; Fleury, F.; Kudelina, I.; Pommier, Y.; Charton, F.; Riou, J-F.; Alix, A.J.P.; Manfait, M. Spectroscopic and biochemical characterisation of self-aggregates formed by antitumor drugs of the camptothecin family: their possible role in the unique mode of drug action. Biochem. Pharmacol., 1998, 55(8), 1163-1174. [http://dx.doi.org/10.1016/S0006-2952(97)00508-X]. [PMID: 9719470].
[18]
a)Gottlieb, J.A.; Guarino, A.M.; Call, J.B.; Oliverio, V.T.; Block, J.B. Preliminary pharmacologic and clinical evaluation of camptothecin sodium (NSC-100880). Cancer Chemother. Rep., 1970, 54(6), 461-470. [PMID: 4946015]
b)Muggia, F.M.; Creaven, P.J.; Hansen, H.H.; Cohen, M.H.; Selawry, O.S. Phase I clinical trial of weekly and daily treatment with camptothecin (NSC-100880): correlation with preclinical studies. Cancer Chemother. Rep., 1972, 56(4), 515-521. [PMID: 5081595]
c) Moertel, C.G.; Schutt, A.J.; Reitemeier, R.J.; Hahn, R.G. Phase II study of camptothecin (NSC-100880) in the treatment of advanced gastrointestinal cancer. Cancer Chemother. Rep., 1972, 56(1), 95-101. [PMID: 5030811]
[19]
Ioanoviciu, A.; Antony, S.; Pommier, Y.; Staker, B.L.; Stewart, L.; Cushman, M. Synthesis and mechanism of action studies of a series of norindenoisoquinoline topoisomerase I poisons reveal an inhibitor with a flipped orientation in the ternary DNA-enzyme-inhibitor complex as determined by X-ray crystallographic analysis. J. Med. Chem., 2005, 48(15), 4803-4814. [http://dx.doi.org/10.1021/jm050076b]. [PMID: 16033260].
[20]
Marchand, C.; Antony, S.; Kohn, K.W.; Cushman, M.; Ioanoviciu, A.; Staker, B.L.; Burgin, A.B.; Stewart, L.; Pommier, Y. A novel norindenoisoquinoline structure reveals a common interfacial inhibitor paradigm for ternary trapping of the topoisomerase I-DNA covalent complex. Mol. Cancer Ther., 2006, 5(2), 287-295. [http://dx.doi.org/10.1158/1535-7163.MCT-05-0456]. [PMID: 16505102].
[21]
Hsiang, Y.H.; Lihou, M.G.; Liu, L.F. Arrest of replication forks by drug-stabilized topoisomerase I-DNA cleavable complexes as a mechanism of cell killing by camptothecin. Cancer Res., 1989, 49(18), 5077-5082. [PMID: 2548710].
[22]
Potmesil, M.; Kohn, K.W., Eds.; DNA Topoisomerases in Cancer; Oxford University: New York, 1991.
[23]
Potmesil, M.; Pinedo, H., Eds.; Camptothecins: New Anticancer Agents; CRC: Boca Raton, 1995.
[24]
Houghton, P.J.; Cheshire, P.J.; Myers, L.; Stewart, C.F.; Synold, T.W.; Houghton, J.A. Evaluation of 9-dimethylaminomethyl-10-hydroxycamptothecin against xenografts derived from adult and childhood solid tumors. Cancer Chemother. Pharmacol., 1992, 31(3), 229-239. [http://dx.doi.org/10.1007/BF00685553]. [PMID: 1464161].
[25]
a)Kunimoto, T.; Nitta, K.; Tanaka, T.; Uehara, N.; Baba, H.; Takeuchi, M.; Yokokura, T.; Sawada, S.; Miyasaka, T.; Mutai, M. Antitumor activity of 7-ethyl-10-[4-(1-piperidino)-1-piperidino]carbonyloxy-camptothec in, a novel water-soluble derivative of camptothecin, against murine tumors. Cancer Res., 1987, 47(22), 5944-5947. [PMID: 3664496]
b)Catimel, G.; Chabot, G.G.; Guastalla, J.P.; Dumortier, A.; Cote, C.; Engel, C.; Gouyette, A.; Mathieu-Boué, A.; Mahjoubi, M.; Clavel, M. Phase I and pharmacokinetic study of irinotecan (CPT-11) administered daily for three consecutive days every three weeks in patients with advanced solid tumors. Ann. Oncol., 1995, 6(2), 133-140. [http://dx.doi.org/10.1093/oxfordjournals.annonc.a059108] [PMID: 7786821]
c)Chabot, G.G.; Abigerges, D.; Catimel, G.; Culine, S.; de Forni, M.; Extra, J-M.; Mahjoubi, M.; Hérait, P.; Armand, J-P.; Bugat, R.; Clavel, M.; Marty, M.E. Population pharmacokinetics and pharmacodynamics of irinotecan (CPT-11) and active metabolite SN-38 during phase I trials.. Ann. Oncol.., 1995, 6(2), 141-151. [http://dx.doi.org/10.1093/oxfordjournals.annonc.a059109] [PMID: 7786822]
[26]
Ahn, S.K.; Choi, N.S.; Jeong, B.S.; Kim, K.K.; Journ, D.J.; Kim, J.K. Practical synthesis of (S)-7-(2-isopropylamino) ethylcamptothecin hydrochloride, potent topoisomerase I inhibitor. J. Heterocycl. Chem., 2000, 37, 1141-1144. [http://dx.doi.org/10.1002/jhet.5570370519].
[27]
van Hattum, A.H.; Pinedo, H.M.; Schlüper, H.M.M.; Erkelens, C.A.M.; Tohgo, A.; Boven, E. The activity profile of the hexacyclic camptothecin derivative DX-8951f in experimental human colon cancer and ovarian cancer. Biochem. Pharmacol., 2002, 64(8), 1267-1277. [http://dx.doi.org/10.1016/S0006-2952(02)01297-2]. [PMID: 12234607].
[28]
Royce, M.E.; Rowinsky, E.K.; Hoff, P.M.; Coyle, J.; DeJager, R.; Pazdur, R.; Saltz, L.B. A phase II study of intravenous exatecan mesylate (DX-8951f) administered daily for five days every three weeks to patients with metastatic adenocarcinoma of the colon or rectum. Invest. New Drugs, 2004, 22(1), 53-61. [http://dx.doi.org/10.1023/B:DRUG.0000006174.87869.6b]. [PMID: 14707494].
[29]
Abou-Alfa, G.K.; Letourneau, R.; Harker, G.; Modiano, M.; Hurwitz, H.; Tchekmedyian, N.S.; Feit, K.; Ackerman, J.; De Jager, R.L.; Eckhardt, S.G.; O’Reilly, E.M. Randomized phase III study of exatecan and gemcitabine compared with gemcitabine alone in untreated advanced pancreatic cancer. J. Clin. Oncol., 2006, 24(27), 4441-4447. [http://dx.doi.org/10.1200/JCO.2006.07.0201]. [PMID: 16983112].
[30]
Stevenson, J.P.; DeMaria, D.; Sludden, J.; Kaye, S.B.; Paz-Ares, L.; Grochow, L.B.; McDonald, A.; Selinger, K.; Wissel, P.; O’Dwyer, P.J.; Twelves, C. Phase I/pharmacokinetic study of the topoisomerase I inhibitor GG211 administered as a 21-day continuous infusion. Ann. Oncol., 1999, 10(3), 339-344. [http://dx.doi.org/10.1023/A:1008313011289]. [PMID: 10355580].
[31]
Giles, F.J.; Tallman, M.S.; Garcia-Manero, G.; Cortes, J.E.; Thomas, D.A.; Wierda, W.G.; Verstovsek, S.; Hamilton, M.; Barrett, E.; Albitar, M.; Kantarjian, H.M. Phase I and pharmacokinetic study of a low-clearance, unilamellar liposomal formulation of lurtotecan, a topoisomerase 1 inhibitor, in patients with advanced leukemia. Cancer, 2004, 100(7), 1449-1458. [http://dx.doi.org/10.1002/cncr.20132]. [PMID: 15042679].
[32]
Dong, P.; Zuo, C.; Chen, Z.L.; Gao, Y. Pharmaceutical composition of camptothecin derivative and preparation method thereof. China Patent CN 102764260.A., 2012, (11.7), 76.
[33]
Yu, Y.; Zhan, Y.; Chen, X.; Zhang, Y.; Zhong, D. Development and validation of a sensitive LC-MS/MS method for simultaneous quantification of sinotecan and its active metabolite in human blood. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2014, 951-952, 62-68. [http://dx.doi.org/10.1016/j.jchromb.2014.01.017]. [PMID: 24534567].
[34]
Editorial, A. Rubitecan: 9-NC, 9-Nitro-20(S)-camptothecin, 9-nitro-camptothecin, 9-nitrocamptothecin, RFS 2000, RFS2000. Drugs R D., 2004, 5(5), 305-311. [http://dx.doi.org/10.2165/00126839-200405050-00007]. [PMID: 15357630].
[35]
Takimoto, C.H.; Thomas, R. The clinical development of 9-aminocamptothecin. Ann. N. Y. Acad. Sci., 2000, 922, 224-236. [http://dx.doi.org/10.1111/j.1749-6632.2000.tb07041.x]. [PMID: 11193898].
[36]
Zou, J.; Li, S.; Chen, Z.; Lu, Z.; Gao, J.; Zou, J.; Lin, X.; Li, Y.; Zhang, C.; Shen, L. A novel oral camptothecin analog, gimatecan, exhibits superior antitumor efficacy than irinotecan toward esophageal squamous cell carcinoma in vitro and in vivo. Cell Death Dis., 2018, 9(6), 661. [http://dx.doi.org/10.1038/s41419-018-0700-0]. [PMID: 29855512].
[37]
Miller, A.A.; Herndon, J.E., II; Gu, L.; Green, M.R. Phase II trial of karenitecin in patients with relapsed or refractory non-small cell lung cancer (CALGB 30004). Lung Cancer, 2005, 48(3), 399-407. [http://dx.doi.org/10.1016/j.lungcan.2004.11.019]. [PMID: 15893009].
[38]
Chen, A.Y.; Shih, S.J.; Garriques, L.N.; Rothenberg, M.L.; Hsiao, M.; Curran, D.P. Silatecan DB-67 is a novel DNA topoisomerase I-targeted radiation sensitizer. Mol. Cancer Ther., 2005, 4(2), 317-324. [PMID: 15713902].
[39]
Scott, L.; Soepenberg, O.; Verweij, J.; de Jonge, M.J.; Th Planting, A.S.; McGovern, D.; Principe, P.; Obach, R.; Twelves, C. A multicentre phase I and pharmacokinetic study of BN80915 (diflomotecan) administered daily as a 20-min intravenous infusion for 5 days every 3 weeks to patients with advanced solid tumours. Ann. Oncol., 2007, 18(3), 569-575. [http://dx.doi.org/10.1093/annonc/mdl439]. [PMID: 17322542].
[40]
Lavergne, O.; Harnett, J.; Rolland, A.; Lanco, C.; Lesueur-Ginot, L.; Demarquay, D.; Huchet, M.; Coulomb, H.; Bigg, D.C.H. BN 80927: a novel homocamptothecin with inhibitory activities on both topoisomerase I and topoisomerase II. Bioorg. Med. Chem. Lett., 1999, 9(17), 2599-2602. [http://dx.doi.org/10.1016/S0960-894X(99)00428-X]. [PMID: 10498216].
[41]
a)Wani, M.C.; Ronman, P.E.; Lindley, J.T.; Wall, M.E. Plant antitumor agents. 18. Synthesis and biological activity of camptothecin analogues. J. Med. Chem., 1980, 23(5), 554-560. [http://dx.doi.org/10.1021/jm00179a016].[PMID: 7381856]
b)Wani, M.C.; Nicholas, A.W.; Wall, M.E. Plant antitumor agents. 23. Synthesis and antileukemic activity of camptothecin analogues. J. Med. Chem., 1986, 29(11), 2358-2363. [http://dx.doi.org/10.1021/jm00161a035].[PMID: 3783593]
c)Wani, M.C.; Nicholas, A.W.; Manikumar, G.; Wall, M.E. Plant antitumor agents. 25. Total synthesis and antileukemic activity of ring A substituted camptothecin analogues. Structure-activity correlations. J. Med. Chem., 1987, 30(10), 1774-1779. [http://dx.doi.org/10.1021/jm00393a016].[PMID: 3656353]
d)Wall, M.E.; Wani, M.C.; Nicholas, A.W.; Manikumar, G.; Tele, C.; Moore, L.; Truesdale, A.; Leitner, P.; Besterman, J.M. Plant antitumor agents. 30. Synthesis and structure activity of novel camptothecin analogs. J. Med. Chem., 1993, 36(18), 2689-2700. [http://dx.doi.org/10.1021/jm00070a013]. [PMID: 8410981].
[42]
Yaegashi, T.; Sawada, S.; Nagata, H.; Furuta, T.; Yokokura, T.; Miyasaka, T. Synthesis and antitumor activity of 20(S)-camptothecin derivatives. A-ring-substituted 7-ethylcamptothecins and their E-ring-modified water-soluble derivatives. Chem. Pharm. Bull. (Tokyo), 1994, 42(12), 2518-2525. [http://dx.doi.org/10.1248/cpb.42.2518]. [PMID: 7697767].
[43]
a)Kingsbury, W.D.; Boehm, J.C.; Jakas, D.R.; Holden, K.G.; Hecht, S.M.; Gallagher, G.; Caranfa, M.J.; McCabe, F.L.; Faucette, L.F.; Johnson, R.K.; Hertzberg, R.P. Synthesis of water-soluble (aminoalkyl)camptothecin analogues: inhibition of topoisomerase I and antitumor activity. J. Med. Chem., 1991, 34(1), 98-107. [http://dx.doi.org/10.1021/jm00105a017].[PMID: 1846923]
b)Lu, A.J.; Zhang, Z.S.; Zheng, M.Y.; Zou, H.J.; Luo, X.M.; Jiang, H.L. 3D-QSAR study of 20 (S)-camptothecin analogs. Acta Pharmacol. Sin., 2007, 28(2), 307-314. [http://dx.doi.org/10.1111/j.1745-7254.2007.00477.x]. [PMID: 17241535].
[44]
a)Cheverton, P.; Friess, H.; Andras, C.; Salek, T.; Geddes, C.; Bodoky, G.; Valle, J.; Humblet, Y. Phase III results of exatecan (DX-8951f) versus gemcitabine (Gem) in chemotherapy-naïve patients with advanced pancreatic cancer (APC). J. Clin. Oncol., 2004, 22(14)(Suppl.), 4005. [http://dx.doi.org/10.1200/jco.2004.22.14_suppl.4005]
b)O’ Reilly, E.M.; Abou-Alfa, G.; Letourneau, K.R.; Harker, W.G.; Modiano, M.; Hurwitz, H.; Tchekmedyian, N.S.; Ackerman, J.; De Jager, R.L.; Eckhardt, S.G. A randomized phase III trial of DX-8951f (Exatecan Mesylate; DX) and Gemcitabine (GEM) vs. Gemcitabine alone in advanced pancreatic cancer (APC). J. Clin. Oncol., 2004, 22(14)(Suppl.), 4006. [http://dx.doi.org/10.1200/jco.2004.22.14_suppl.4006]
[45]
Gao, H.; Zhang, X.; Chen, Y.; Shen, H.; Pang, T.; Sun, J.; Xu, C.; Ding, J.; Li, C.; Lu, W. Synthesis and antitumor activity of the hexacyclic camptothecin derivatives. Bioorg. Med. Chem. Lett., 2005, 15(13), 3233-3236. [http://dx.doi.org/10.1016/j.bmcl.2005.04.063]. [PMID: 15913996].
[46]
Fan, Y.; Shi, L.M.; Kohn, K.W.; Pommier, Y.; Weinstein, J.N. Quantitative structure-antitumor activity relationships of camptothecin analogues: cluster analysis and genetic algorithm-based studies. J. Med. Chem., 2001, 44(20), 3254-3263. [http://dx.doi.org/10.1021/jm0005151]. [PMID: 11563924].
[47]
a)Josien, H.; Bom, D.; Curran, D.P.; Zheng, Y-H.; Chou, T-C. 7-Silylcamptothecins (silatecans): A new family of camptothecin antitumor agents. Bioorg. Med. Chem. Lett., 1997, 7, 3189. http://dx.doi.org/10.1016/S0960-894X(97)10181-0
b)Bom, D.; Curran, D.P.; Chavan, A.J.; Kruszewski, S.; Zimmer, S.G.; Fraley, K.A.; Burke, T.G.; Novel, A.; Novel, A.B. E-ring-modified camptothecins displaying high lipophilicity and markedly improved human blood stabilities. J. Med. Chem., 1999, 42(16), 3018-3022. [http://dx.doi.org/10.1021/jm9902279].[PMID: 10447944]
c)Bom, D.; Curran, D.P.; Kruszewski, S.; Zimmer, S.G.; Thompson Strode, J.; Kohlhagen, G.; Du, W.; Chavan, A.J.; Fraley, K.A.; Bingcang, A.L.; Latus, L.J.; Pommier, Y.; Burke, T.G. The novel silatecan 7-tert-butyldimethylsilyl-10-hydroxycamptothecin displays high lipophilicity, improved human blood stability, and potent anticancer activity. J. Med. Chem., 2000, 43(21), 3970-3980. [http://dx.doi.org/10.1021/jm000144o]. [PMID: 11052802].
[48]
a)Nicholas, A.W.; Wani, M.C.; Manikumar, G.; Wall, M.E.; Kohn, K.W.; Pommier, Y. Plant antitumor agents. 29. Synthesis and biological activity of ring D and ring E modified analogues of camptothecin. J. Med. Chem., 1990, 33(3), 972-978. [http://dx.doi.org/10.1021/jm00165a014]. [PMID: 2155323]
b)Kurihara, T.; Tanno, H.; Takemura, S.; Harusawa, S.; Yoneda, R. Synthesis of C‐nor‐4,6‐secocamptothecin and related compounds. J. Heterocycl. Chem., 1993, 30, 643. [http://dx.doi.org/10.1002/jhet.5570300311].
[49]
a)Subrahmanyam, D.; Venkateswarlu, A.; Venkateswara Rao, K.; Sastry, T.V.; Vandana, G.; Kumar, S.A. Novel C-ring analogues of 20(S)-camptothecin-part-2: synthesis and in vitro cytotoxicity of 5-C-substituted 20(S)-camptothecin analogues. Bioorg. Med. Chem. Lett., 1999, 9(12), 1633-1638. [http://dx.doi.org/10.1016/S0960-894X(99)00268-1].[PMID: 10397491]
b)Subrahmanyam, D.; Sarma, V.M.; Venkateswarlu, A.; Sastry, T.V.; Srinivas, A.S.; Krishna, C.V.; Deevi, D.S.; Kumar, S.A.; Babu, M.J.; Damodaran, N.K. Novel C-ring analogues of 20(S)-camptothecin. Part 3: synthesis and their in vitro cytotoxicity of A-, B- and C-ring analogues. Bioorg. Med. Chem. Lett., 2000, 10(4), 369-371. [http://dx.doi.org/10.1016/S0960-894X(00)00005-6].[PMID: 10714502]
c)Subrahmanyam, D.; Sarma, V.M.; Venkateswarlu, A.; Sastry, T.V.R.S.; Kulakarni, A.P.; Rao, D.S.; Reddy, K.V.S.R.K. In vitro cytotoxicity of 5-aminosubstituted 20(S)-camptothecins. Part 1. Bioorg. Med. Chem., 1999, 7(9), 2013-2020. [http://dx.doi.org/10.1016/S0968-0896(99)00130-3][PMID: 10530950].
d)Chatterjee, A.; Digumarti, R.; Mamidi, R.N.V.S.; Katneni, K.; Upreti, V.V.; Surath, A.; Srinivas, M.L.; Uppalapati, S.; Jiwatani, S.; Subramaniam, S.; Srinivas, N.R. Safety, tolerability, pharmacokinetics, and pharmacodynamics of an orally active novel camptothecin analog, DRF-1042, in refractory cancer patients in a phase I dose escalation study. J. Clin. Pharmacol., 2004, 44(7), 723-736. [http://dx.doi.org/10.1177/0091270004265647].[PMID: 15199077]
e)Samorì, C.; Guerrini, A.; Varchi, G.; Fontana, G.; Bombardelli, E.; Tinelli, S.; Beretta, G.L.; Basili, S.; Moro, S.; Zunino, F.; Battaglia, A. Semisynthesis, biological activity, and molecular modeling studies of C-ring-modified camptothecins. J. Med. Chem., 2009, 52(4), 1029-1039. [http://dx.doi.org/10.1021/jm801153y] [PMID: 19530720]
[50]
a)Cheng, K.; Rahier, N.J.; Eisenhauer, B.M.; Gao, R.; Thomas, S.J.; Hecht, S.M. 14-azacamptothecin: a potent water-soluble topoisomerase I poison. J. Am. Chem. Soc., 2005, 127(3), 838-839. [http://dx.doi.org/10.1021/ja0442769].[PMID: 15656613]
b)Duan, J.X.; Cai, X.; Meng, F.; Sun, J.D.; Liu, Q.; Jung, D.; Jiao, H.; Matteucci, J.; Jung, B.; Bhupathi, D.; Ahluwalia, D.; Huang, H.; Hart, C.P.; Matteucci, M. 14-Aminocamptothecins: their synthesis, preclinical activity, and potential use for cancer treatment. J. Med. Chem., 2011, 54(6), 1715-1723. [http://dx.doi.org/10.1021/jm101354u]. [PMID: 21341674].
[51]
a)Samorì, C.; Guerrini, A.; Varchi, G.; Zunino, F.; Beretta, G.L.; Femoni, C.; Bombardelli, E.; Fontana, G.; Battaglia, A. Thiocamptothecin. J. Med. Chem., 2008, 51(10), 3040-3044. [http://dx.doi.org/10.1021/jm8001982]. [PMID: 18419110]
b)Samorì, C.; Beretta, G.L.; Varchi, G.; Guerrini, A.; Di Micco, S.; Basili, S.; Bifulco, G.; Riccio, R.; Moro, S.; Bombardelli, E.; Zunino, F.; Fontana, G. Structure-activity relationship study of 16 a-thiocamptothecins: an integrated in vitro and in silico approach. ChemMedChem, 2010, 5(12), 2006-2015. [http://dx.doi.org/10.1002/cmdc.201000369]. [PMID: 21069656].
[52]
a)Rahier, N.J.; Eisenhauer, B.M.; Gao, R.; Thomas, S.J.; Hecht, S.M. On the role of E-ring oxygen atoms in the binding of camptothecin to the topoisomerase I-DNA covalent binary complex. Bioorg. Med. Chem., 2005, 13(4), 1381-1386. [http://dx.doi.org/10.1016/j.bmc.2004.11.011].[PMID: 15670945]
b)Bailly, C. Homocamptothecins: potent topoisomerase I inhibitors and promising anticancer drugs. Crit. Rev. Oncol. Hematol., 2003, 45(1), 91-108. [http://dx.doi.org/10.1016/S1040-8428(02)00090-2]. [PMID: 12482574].
[53]
a)Omura, S.; Iwai, Y.; Hirano, A.; Nakagawa, A.; Awaya, J.; Tsuchya, H.; Takahashi, Y.; Masuma, R. A new alkaloid AM-2282 OF Streptomyces origin. Taxonomy, fermentation, isolation and preliminary characterization. J. Antibiot. (Tokyo), 1977, 30(4), 275-282. [http://dx.doi.org/10.7164/antibiotics.30.275].[PMID: 863788]
b)Rüegg, U.T.; Burgess, G.M. Staurosporine, K-252 and UCN-01: potent but nonspecific inhibitors of protein kinases. Trends Pharmacol. Sci., 1989, 10(6), 218-220. [http://dx.doi.org/10.1016/0165-6147(89)90263-0].[PMID: 2672462]
c)Funato, N.; Takayanagi, H.; Konda, Y.; Toda, Y.; Harigaya, Y.; Omura, S. Absolute configuration of staurosporine by X-ray analysis. Tetrahedron Lett., 1994, 35(8), 1251-1254. [http://dx.doi.org/10.1016/0040-4039(94)88036-0].
[54]
a)Xiao, X-H.; Qou, G-L.; Wang, H-L.; Lui, L-S.; Zheng, Y-L.; Jia, Z-J.; Deng, Z-B. Zhongguo Yaolixue Yu Dulixue Zazhi, 1988, 1(1), 232.
b)Ma, Z.Z.; Hano, Y.; Nomura, T.; Chen, Y-J. Heterocycles., 1997, 46, 541.. [http://dx.doi.org/10.3987/COM-97-S65].
c)Cagir, A.; Jones, S.H.;
Gao, R.; Eisenhauer, B.M.; Hecht, S.M.; Luotonin, A.A. Luotonin
A. A naturally occurring human DNA topoisomerase I poison J.
Am. Chem. Soc., 2003, 125(45), 13628.-13629.. [http://dx.doi.org/10.1021/ja0368857].[PMID: 14599178]
d)Marchand,
C.; Antony, S.; Kohn, K.W.; Cushman, M.; Ioanoviciu, A.;
Staker, B.L.; Burgin, A.B.; Stewart, L.; Pommier, Y. A novel
norindenoisoquinoline structure reveals a common interfacial inhibitor
paradigm for ternary trapping of the topoisomerase I-DNA
covalent complex Mol. Cancer Ther., 2006, 5(2), 287-295. [http://dx.doi.org/10.1158/1535-7163.MCT-05-0456] [PMID:
16505102]
e)Lin, L.Z.; Cordell, G.A. Phytochemistry, 1989, 28, 1295-1297.. [http://dx.doi.org/10.1016/0031-9422(89)80242-0]
[56]
a)Prijovich, Z.M.; Burnouf, P-A.; Chou, H-C.; Huang, P-T.; Chen, K-C.; Cheng, T-L.; Leu, Y-L.; Roffler, S.R. Synthesis and antitumor properties of BQC-glucuronide, a camptothecin prodrug for selective tumor activation. Mol. Pharm., 2016, 13(4), 1242-1250. [http://dx.doi.org/10.1021/acs.molpharmaceut.5b00771].[PMID: 26824303]
b)Prijovich, Z.M.; Chen, B-M.; Leu, Y-L.; Chern, J-W.; Roffler, S.R. Anti-tumour activity and toxicity of the new prodrug 9-aminocamptothecin glucuronide (9ACG) in mice. Br. J. Cancer, 2002, 86(10), 1634-1638. [http://dx.doi.org/10.1038/sj.bjc.6600317]. [PMID: 12085215].
[57]
Pantazis, P.; Early, J.A.; Mendoza, J.T.; DeJesus, A.R.; Giovanella, B.C. Cytotoxic efficacy of 9-nitrocamptothecin in the treatment of human malignant melanoma cells in vitro. Cancer Res., 1994, 54(3), 771-776. [PMID: 8306340].
[58]
a)Bissett, D.; Cassidy, J.; de Bono, J.S.; Muirhead, F.; Main, M.; Robson, L.; Fraier, D.; Magne, M.L.; Pellizzoni, C.; Porro, M.G.; Spinelli, R.; Speed, W.; Twelves, C. Phase I and pharmacokinetic (PK) study of MAG-CPT (PNU 166148): a polymeric derivative of camptothecin (CPT). Br. J. Cancer, 2004, 91, 50-55.
b)Schoemaker, N.E.; van Kesteren, C.; Rosing, H.; Jansen, S.; Swart, M.; Lieverst, J.; Fraier, D.; Breda, M.; Pellizzoni, C.; Spinelli, R.; Grazia Porro, M.; Beijnen, J.H.; Schellens, J.H.; ten Bokkel Huinink, W.W. A phase I and pharmacokinetic study of MAG-CPT, a water-soluble polymer conjugate of camptothecin. Br. J. Cancer, 2002, 87, 608-614.
c)reenwald R. B.; Pendri A.; Conover C.; Gilbert C.; Yang R.; Xia J. Drug delivery systems. 2. Camptothecin 20-O-poly(ethylene glycol) ester transport forms. J. Med. Chem., 1996, 39, 1938-1940.
d)Posey, J.A. III, Saif M.W.; Carlisle R.; Goetz A.; Rizzo J.; Stevenson S.; Rudoltz M.S.; Kwiatek J.; Simmons P.; Rowinsky E.K.; Takimoto C.H.; Tolcher A.W. Phase 1 study of weekly olyethylene glycol-camptothecin in patients with advanced solid tumors and lymphomas. Clin. Cancer Res., 2005, 11, 7866-7871.
e)Sapra, P.; Mehlig, M.; Malaby, J.; Kraft, P.; Zhang, Z.; Longley, C.; Zhao, H.; Rubio, B.; Wu, D.; Greenberger, L.M.; Horak, I.D. EZN-2208, a novel polyethyleneglycol-SN38 conjugate, has potent antitumor activity in a panel of human tumor xenografts, American Association of Cancer Research Annual Meeting Poster No. 1494; 2007.
f)Schluep, T.; Cheng, J.; Khin, K.; Davis, M. Pharmacokinetics and biodistribution of the camptothecin–polymer conjugate IT-101 in rats and tumor-bearing mice. Cancer Chemother. and Pharmacol., 2006, 57, 654-662.
(g)Schluep, T.; Hwang, J.; Cheng, J.; Heidel, J.D.; Bartlett, D.W.; Hollister, B.; Davis, M.E. Preclinical efficacy of the camptothecin-polymer conjugate IT-101 in multiple cancer models. Clin. Cancer Res., 2006, 12, 1606-1614.
[59]
a)Inoue, K.; Kumazawa, E.; Kuga, H.; Susaki, H.; Masubuchi, N.; Kajimura, T. CM-dextran-polyalcohol-camptothecin conjugate: DE-310 with a novel carrier system and its preclinical data. Adv. Exp. Med. Biol., 2003, 519, 145-153. [http://dx.doi.org/10.1007/0-306-47932-X_9].[PMID: 12675213]
b)Soepenberg, O.; de Jonge, M.J.A.; Sparreboom, A.; de Bruin, P.; Eskens, F.A.L.M.; de Heus, G.; Wanders, J.; Cheverton, P.; Ducharme, M.P.; Verweij, J. Phase I and pharmacokinetic study of DE-310 in patients with advanced solid tumors. Clin. Cancer Res., 2005, 11(2 Pt 1), 703-711. [PMID: 15701859].
[60]
Voss, M.H.; Hussain, A.; Vogelzang, N.; Lee, J.L.; Keam, B.; Rha, S.Y.; Vaishampayan, U.; Harris, W.B.; Richey, S.; Randall, J.M.; Shaffer, D.; Cohn, A.; Crowell, T.; Li, J.; Senderowicz, A.; Stone, E.; Figlin, R.; Motzer, R.J.; Haas, N.B.; Hutson, T. A randomized phase II trial of CRLX101 in combination with bevacizumab versus standard of care in patients with advanced renal cell carcinoma. Ann. Oncol., 2017, 28(11), 2754-2760. [http://dx.doi.org/10.1093/annonc/mdx493]. [PMID: 28950297].
[62]
a)Aggarwal, C.; Cohen, R.B.; Yu, E.; Hwang, W-T.; Bauml, J.M.; Alley, E.; Evans, T.L.; Langer, C.J. Etirinotecan pegol (NKTR-102) in third-line treatment of patients with metastatic or recurrent non–small-cell lung cancer: Results of a phase II study. Clin. Lung Cancer, 2018, 19(2), 157-162.
b)Perez, E.A.; Awada, A.; O’Shaughnessy, J.; Rugo, H.S.; Twelves, C. Im S.-A.; Gómez-Pardo P.; Schwartzberg L. S.; Diéras V.; Yardley D. A.; Potter D. A.; Mailliez A.; Moreno-Aspitia A.; Ahn J.-S.; Zhao C.; Hoch U.; Tagliaferri M.; Hannah A. L.; Cortes J. Etirinotecan pegol (NKTR-102) versus treatment of physician’s choice in women with advanced breast cancer previously treated with an anthracycline, a taxane, and capecitabine (BEACON): A randomised, open-label, multicentre, phase 3 trial. Lancet Oncol., 2015, 16(15), 1556-1568. [PMID: 26482278].
[63]
a)Ocean, A.J.; Starodub, A.N.; Bardia, A.; Vahdat, L.T.; Isakoff, S.J.; Guarino, M.; Messersmith, W.A.; Picozzi, V.J.; Mayer, I.A.; Wegener, W.A.; Maliakal, P.; Govindan, S.V.; Sharkey, R.M.; Goldenberg, D.M. Sacituzumab govitecan (IMMU‐132), an anti‐Trop‐2‐SN‐38 antibody‐drug conjugate for the treatment of diverse epithelial cancers: Safety and pharmacokinetics. Cancer, 2017, 123, 3843-3854.
b)Cardillo, T.M.; Govindan, S.V.; Sharkey, R.M.; Trisal, P.; Arrojo, R.; Liu, D.; Rossi, E.A.; Chang, C-H., and ; Goldenberg, D.M. Sacituzumab govitecan (IMMU-132), an Anti-Trop-2/SN-38 antibody–drug conjugate: Characterization and efficacy in pancreatic, gastric, and other cancers. Bioconjug. Chem., 2015, 26(5), 919-931. [PMID: 25915780].
[64]
Takegawa, N.; Nonagase, Y.; Yonesaka, K.; Sakai, K.; Maenishi, O.; Ogitani, Y.; Tamura, T.; Nishio, K.; Nakagawa, K.; Tsurutani, J. DS-8201a, a new HER2-targeting antibody-drug conjugate incorporating a novel DNA topoisomerase I inhibitor, overcomes HER2-positive gastric cancer T-DM1 resistance. Int. J. Cancer, 2017, 141(8), 1682-1689. [http://dx.doi.org/10.1002/ijc.30870] [PMID: 28677116]
b)Doi, T.; Shitara, K.; Naito, Y.; Shimomura, A.; Fujiwara, Y.; Yonemori, K.; Shimizu, C.; Shimoi, T.; Kuboki, Y.; Matsubara, N.; Kitano, A.; Jikoh, T.; Lee, C.; Fujisaki, Y.; Ogitani, Y.; Yver, A.; Tamura, K. Safety, pharmacokinetics, and antitumour activity of trastuzumab deruxtecan (DS-8201), a HER2-targeting antibody-drug conjugate, in patients with advanced breast and gastric or gastrooesophageal tumours: a phase 1 dose-escalation study. Lancet Oncol., 2017, 18(11), 1512-1522. [http://dx.doi.org/10.1016/S1470-2045(17)30604-6] [PMID: 29037983]
c)Iwata, T.N.; Ishii, C.; Ishida, S.; Ogitani, Y.; Wada, T.; Agatsuma, T. A HER2-targeting antibody-drug conjugate, trastuzumab deruxtecan (DS-8201a), enhances antitumor immunity in a mouse model. Mol. Cancer Ther., 2018, 17(7), 1494-1503. [http://dx.doi.org/10.1158/1535-7163.MCT-17-0749] [PMID: 29703841]