[1]
Vos, S.M.; Tretter, E.M.; Schmidt, B.H.; Berger, J.M. All tangled up: how cells direct, manage and exploit topoisomerase function. Nat. Rev. Mol. Cell Biol., 2011, 12(12), 827-841. [http://dx.doi.org/10.1038/nrm3228]. [PMID: 22108601].
[2]
Pommier, Y.; Sun, Y.; Huang, S.N.; Nitiss, J.L. Roles of eukaryotic topoisomerases in transcription, replication and genomic stability. Nat. Rev. Mol. Cell Biol., 2016, 17(11), 703-721. [http://dx.doi.org/10.1038/nrm.2016.111]. [PMID: 27649880].
[3]
Calderwood, S.K. A critical role for topoisomerase IIb and DNA double strand breaks in transcription. Transcription, 2016, 7(3), 75-83. [http://dx.doi.org/10.1080/21541264.2016.1181142]. [PMID: 27100743].
[4]
Austin, C.A.; Lee, K.C.; Swan, R.L.; Khazeem, M.M.; Manville, C.M.; Cridland, P.; Treumann, A.; Porter, A.; Morris, N.J.; Cowell, I.G. TOP2B: The first thirty years. Int. J. Mol. Sci., 2018, 19(9)E2765 [http://dx.doi.org/10.3390/ijms19092765]. [PMID: 30223465].
[5]
Madabhushi, R. The roles of DNA topoisomerase IIβ in transcription. Int. J. Mol. Sci., 2018, 19(7)E1917 [http://dx.doi.org/10.3390/ijms19071917]. [PMID: 29966298].
[6]
Puc, J.; Kozbial, P.; Li, W.; Tan, Y.; Liu, Z.; Suter, T.; Ohgi, K.A.; Zhang, J.; Aggarwal, A.K.; Rosenfeld, M.G. Ligand-dependent enhancer activation regulated by topoisomerase-I activity. Cell, 2015, 160(3), 367-380. [http://dx.doi.org/10.1016/j.cell.2014.12.023]. [PMID: 25619691].
[7]
Marinello, J.; Bertoncini, S.; Aloisi, I.; Cristini, A.; Malagoli Tagliazucchi, G.; Forcato, M.; Sordet, O.; Capranico, G. Dynamic effects of topoisomerase I inhibition on R-loops and short transcripts at active promoters. PLoS One, 2016, 11(1)e0147053 [http://dx.doi.org/10.1371/journal.pone.0147053]. [PMID: 26784695].
[8]
Baranello, L.; Wojtowicz, D.; Cui, K.; Devaiah, B.N.; Chung, H.J.; Chan-Salis, K.Y.; Guha, R.; Wilson, K.; Zhang, X.; Zhang, H.; Piotrowski, J.; Thomas, C.J.; Singer, D.S.; Pugh, B.F.; Pommier, Y.; Przytycka, T.M.; Kouzine, F.; Lewis, B.A.; Zhao, K.; Levens, D. RNA polymerase II regulates topoisomerase 1 activity to favor efficient transcription. Cell, 2016, 165(2), 357-371. [http://dx.doi.org/10.1016/j.cell.2016.02.036]. [PMID: 27058666].
[9]
Feng, W.; Kawauchi, D.; Körkel-Qu, H.; Deng, H.; Serger, E.; Sieber, L.; Lieberman, J.A.; Jimeno-González, S.; Lambo, S.; Hanna, B.S.; Harim, Y.; Jansen, M.; Neuerburg, A.; Friesen, O.; Zuckermann, M.; Rajendran, V.; Gronych, J.; Ayrault, O.; Korshunov, A.; Jones, D.T.; Kool, M.; Northcott, P.A.; Lichter, P.; Cortés-Ledesma, F.; Pfister, S.M.; Liu, H.K. Chd7 is indispensable for mammalian brain development through activation of a neuronal differentiation programme. Nat. Commun., 2017, 8, 14758. [http://dx.doi.org/10.1038/ncomms14758]. [PMID: 28317875].
[10]
King, I.F.; Yandava, C.N.; Mabb, A.M.; Hsiao, J.S.; Huang, H.S.; Pearson, B.L.; Calabrese, J.M.; Starmer, J.; Parker, J.S.; Magnuson, T.; Chamberlain, S.J.; Philpot, B.D.; Zylka, M.J. Topoisomerases facilitate transcription of long genes linked to autism. Nature, 2013, 501(7465), 58-62. [http://dx.doi.org/10.1038/nature12504]. [PMID: 23995680].
[11]
Lee, H. M.; Clark, E. P.; Kuijer, M. B.; Cushman, M.; Pommier, Y.; Philpot, B. D. Characterization and structure-activity relationships of indenoisoquinoline-derived topoisomerase I inhibitors in unsilencing the dormant Ube3a gene associated with Angelman syndrome. Mol. Autism, 2018, 9 45-018-0228-2. [http://dx.doi.org/10.1186/s13229-018-0228-2]
[12]
Munschauer, M.; Nguyen, C.T.; Sirokman, K.; Hartigan, C.R.; Hogstrom, L.; Engreitz, J.M.; Ulirsch, J.C.; Fulco, C.P.; Subramanian, V.; Chen, J.; Schenone, M.; Guttman, M.; Carr, S.A.; Lander, E.S. The NORAD lncRNA assembles a topoisomerase complex critical for genome stability. Nature, 2018, 561(7721), 132-136. [http://dx.doi.org/10.1038/s41586-018-0453-z]. [PMID: 30150775].
[13]
Kinoshita, K.; Hirano, T. Dynamic organization of mitotic chromosomes. Curr. Opin. Cell Biol., 2017, 46, 46-53. [http://dx.doi.org/10.1016/j.ceb.2017.01.006]. [PMID: 28214612].
[14]
Delgado, J.L.; Hsieh, C.M.; Chan, N.L.; Hiasa, H. Topoisomerases as anticancer targets. Biochem. J., 2018, 475(2), 373-398. [http://dx.doi.org/10.1042/BCJ20160583]. [PMID: 29363591].
[15]
Pommier, Y. Drugging topoisomerases: lessons and challenges. ACS Chem. Biol., 2013, 8(1), 82-95. [http://dx.doi.org/10.1021/cb300648v]. [PMID: 23259582].
[16]
Cuya, S.M.; Bjornsti, M.A.; van Waardenburg, R.C.A.M. DNA topoisomerase-targeting chemjournalapeutics: What’s new? Cancer Chemjournal. Pharmacol., 2017, 80(1), 1-14. [http://dx.doi.org/10.1007/s00280-017-3334-5]. [PMID: 28528358].
[17]
Mordente, A.; Meucci, E.; Martorana, G.E.; Tavian, D.; Silvestrini, A. Topoisomerases and Anthracyclines: Recent advances and perspectives in anticancer therapy and prevention of cardiotoxicity. Curr. Med. Chem., 2017, 24(15), 1607-1626. [http://dx.doi.org/10.2174/0929867323666161214120355]. [PMID: 27978799].
[18]
Marinello, J.; Delcuratolo, M.; Capranico, G. Anthracyclines as topoisomerase II poisons: From early studies to new perspectives. Int. J. Mol. Sci., 2018, 19(11)E3480 [http://dx.doi.org/10.3390/ijms19113480]. [PMID: 30404148].
[19]
Henriksen, P.A. Anthracycline cardiotoxicity: An update on mechanisms, monitoring and prevention. Heart, 2018, 104(12), 971-977. [http://dx.doi.org/10.1136/heartjnl-2017-312103]. [PMID: 29217634].
[20]
Zhang, S.; Liu, X.; Bawa-Khalfe, T.; Lu, L.S.; Lyu, Y.L.; Liu, L.F.; Yeh, E.T. Identification of the molecular basis of doxorubicin-induced cardiotoxicity. Nat. Med., 2012, 18(11), 1639-1642. [http://dx.doi.org/10.1038/nm.2919]. [PMID: 23104132].
[21]
de Almeida, S.M.V.; Ribeiro, A.G.; de Lima Silva, G.C.; Ferreira Alves, J.E.; Beltrão, E.I.C.; de Oliveira, J.F.; de Carvalho, L.B.; Alves de Lima, M.D.C. DNA binding and Topoisomerase inhibition: How can these mechanisms be explored to design more specific anticancer agents? Biomed. Pharmacjournal., 2017, 96, 1538-1556. [http://dx.doi.org/10.1016/j.biopha.2017.11.054]. [PMID: 29174576].
[22]
Botella, P.; Rivero-Buceta, E. Safe approaches for camptothecin delivery: Structural analogues and nanomedicines. J. Control. Release, 2017, 247, 28-54. [http://dx.doi.org/10.1016/j.jconrel.2016.12.023]. [PMID: 28027948].
[23]
Orth, M.; Lauber, K.; Niyazi, M.; Friedl, A.A.; Li, M.; Maihöfer, C.; Schüttrumpf, L.; Ernst, A.; Niemöller, O.M.; Belka, C. Current concepts in clinical radiation oncology. Radiat. Environ. Biophys., 2014, 53(1), 1-29. [http://dx.doi.org/10.1007/s00411-013-0497-2]. [PMID: 24141602].
[24]
Mehta, V.K.; Cho, C.; Ford, J.M.; Jambalos, C.; Poen, J.; Koong, A.; Lin, A.; Bastidas, J.A.; Young, H.; Dunphy, E.P.; Fisher, G. Phase II trial of preoperative 3D conformal radijournalapy, protracted venous infusion 5-fluorouracil, and weekly CPT-11, followed by surgery for ultrasound-staged T3 rectal cancer. Int. J. Radiat. Oncol. Biol. Phys., 2003, 55(1), 132-137. [http://dx.doi.org/10.1016/S0360-3016(02)03863-4]. [PMID: 12504045].
[25]
Klautke, G.; Feyerherd, P.; Ludwig, K.; Prall, F.; Foitzik, T.; Fietkau, R. Intensified concurrent chemoradijournalapy with 5-fluorouracil and irinotecan as neoadjuvant treatment in patients with locally advanced rectal cancer. Br. J. Cancer, 2005, 92(7), 1215-1220. [http://dx.doi.org/10.1038/sj.bjc.6602492]. [PMID: 15785742].
[26]
Iles, S.; Gollins, S.; Susnerwala, S.; Haylock, B.; Myint, S.; Biswas, A.; Swindell, R.; Levine, E. Irinotecan+5-fluorouracil with concomitant pre-operative radijournalapy in locally advanced non-resectable rectal cancer: a phase I/II study. Br. J. Cancer, 2008, 98(7), 1210-1216. [http://dx.doi.org/10.1038/sj.bjc.6604292]. [PMID: 18349840].
[27]
Glynne-Jones, R.; Falk, S.; Maughan, T.S.; Meadows, H.M.; Sebag-Montefiore, D. A phase I/II study of irinotecan when added to 5-fluorouracil and leucovorin and pelvic radiation in locally advanced rectal cancer: A colorectal clinical oncology group study. Br. J. Cancer, 2007, 96(4), 551-558. [http://dx.doi.org/10.1038/sj.bjc.6603570]. [PMID: 17262086].
[28]
Clark, A.J.; Wiley, D.T.; Zuckerman, J.E.; Webster, P.; Chao, J.; Lin, J.; Yen, Y.; Davis, M.E. CRLX101 nanoparticles localize in human tumors and not in adjacent, nonneoplastic tissue after intravenous dosing. Proc. Natl. Acad. Sci. USA, 2016, 113(14), 3850-3854. [http://dx.doi.org/10.1073/pnas.1603018113]. [PMID: 27001839].
[29]
Tian, X.; Nguyen, M.; Foote, H.P.; Caster, J.M.; Roche, K.C.; Peters, C.G.; Wu, P.; Jayaraman, L.; Garmey, E.G.; Tepper, J.E.; Eliasof, S.; Wang, A.Z. CRLX101, A nanoparticle-drug conjugate containing camptothecin, improves rectal cancer chemoradijournalapy by inhibiting DNA repair and HIF1α. Cancer Res., 2017, 77(1), 112-122. [http://dx.doi.org/10.1158/0008-5472.CAN-15-2951]. [PMID: 27784746].
[30]
Minchom, A.; Aversa, C.; Lopez, J. Dancing with the DNA damage response: Next-generation anti-cancer therapeutic strategies. Ther. Adv. Med. Oncol., 2018, 101758835918786658 [http://dx.doi.org/10.1177/1758835918786658]. [PMID: 30023007].
[31]
Pilie, P.G.; Tang, C.; Mills, G.B.; Yap, T.A. State-of-the-art strategies for targeting the DNA damage response in cancer. Nat. Rev. Clin. Oncol., 2018, 16(2), 81-104. [PMID: 30356138].
[32]
Nickoloff, J.A.; Jones, D.; Lee, S.H.; Williamson, E.A.; Hromas, R. Drugging the Cancers Addicted to DNA Repair. J. Natl. Cancer Inst., 2017, 109(11) [http://dx.doi.org/10.1093/jnci/djx059]. [PMID: 28521333].
[33]
Kawale, A.S.; Povirk, L.F. Tyrosyl-DNA phosphodiesterases: Rescuing the genome from the risks of relaxation. Nucleic Acids Res., 2018, 46(2), 520-537. [http://dx.doi.org/10.1093/nar/gkx1219]. [PMID: 29216365].
[34]
Schellenberg, M.J.; Lieberman, J.A.; Herrero-Ruiz, A.; Butler, L.R.; Williams, J.G.; Muñoz-Cabello, A.M.; Mueller, G.A.; London, R.E.; Cortés-Ledesma, F.; Williams, R.S. ZATT (ZNF451)-mediated resolution of topoisomerase 2 DNA-protein cross-links. Science, 2017, 357(6358), 1412-1416. [http://dx.doi.org/10.1126/science.aam6468]. [PMID: 28912134].
[35]
Laev, S.S.; Salakhutdinov, N.F.; Lavrik, O.I. Tyrosyl-DNA phosphodiesterase inhibitors: Progress and potential. Bioorg. Med. Chem., 2016, 24(21), 5017-5027. [http://dx.doi.org/10.1016/j.bmc.2016.09.045]. [PMID: 27687971].
[36]
Das, S.K.; Rehman, I.; Ghosh, A.; Sengupta, S.; Majumdar, P.; Jana, B.; Das, B.B. Poly(ADP-ribose) polymers regulate DNA topoisomerase I (Top1) nuclear dynamics and camptothecin sensitivity in living cells. Nucleic Acids Res., 2016, 44(17), 8363-8375. [http://dx.doi.org/10.1093/nar/gkw665]. [PMID: 27466387].
[37]
Li, M.; Yu, X. The role of poly(ADP-ribosyl)ation in DNA damage response and cancer chemjournalapy. Oncogene, 2015, 34(26), 3349-3356. [http://dx.doi.org/10.1038/onc.2014.295]. [PMID: 25220415].
[38]
Palazzo, L.; Ahel, I. PARPs in genome stability and signal transduction: Implications for cancer therapy. Biochem. Soc. Trans., 2018, 46(6), 1681-1695. [http://dx.doi.org/10.1042/BST20180418].
[39]
McCann, K.E.; Hurvitz, S.A. Advances in the use of PARP inhibitor therapy for breast cancer. Drugs Context, 2018, 72, 12540. [http://dx.doi.org/10.7573/dic.212540]. [PMID: 30116283].
[40]
Kummar, S.; Chen, A.; Ji, J.; Zhang, Y.; Reid, J.M.; Ames, M.; Jia, L.; Weil, M.; Speranza, G.; Murgo, A.J.; Kinders, R.; Wang, L.; Parchment, R.E.; Carter, J.; Stotler, H.; Rubinstein, L.; Hollingshead, M.; Melillo, G.; Pommier, Y.; Bonner, W.; Tomaszewski, J.E.; Doroshow, J.H. Phase I study of PARP inhibitor ABT-888 in combination with topotecan in adults with refractory solid tumors and lymphomas. Cancer Res., 2011, 71(17), 5626-5634. [http://dx.doi.org/10.1158/0008-5472.CAN-11-1227]. [PMID: 21795476].
[41]
Hjortkjaer, M.; Kanstrup, H.; Jakobsen, A.; Steffensen, K.D. Veliparib and topotecan for patients with platinum-resistant or partially platinum-sensitive relapse of epithelial ovarian cancer with BRCA negative or unknown BRCA status.Cancer. Treat. Res. Commun; , 2018, 14, pp. 7-12.
[42]
Kunos, C.; Deng, W.; Dawson, D.; Lea, J.S.; Zanotti, K.M.; Gray, H.J.; Bender, D.P.; Guaglianone, P.P.; Carter, J.S.; Moore, K.N. A phase I-II evaluation of veliparib (NSC #737664), topotecan, and filgrastim or pegfilgrastim in the treatment of persistent or recurrent carcinoma of the uterine cervix: an NRG oncology/gynecologic oncology group study. Int. J. Gynecol. Cancer, 2015, 25(3), 484-492. [http://dx.doi.org/10.1097/IGC.0000000000000380]. [PMID: 25594147].
[43]
LoRusso, P.M.; Li, J.; Burger, A.; Heilbrun, L.K.; Sausville, E.A.; Boerner, S.A.; Smith, D.; Pilat, M.J.; Zhang, J.; Tolaney, S.M.; Cleary, J.M.; Chen, A.P.; Rubinstein, L.; Boerner, J.L.; Bowditch, A.; Cai, D.; Bell, T.; Wolanski, A.; Marrero, A.M.; Zhang, Y.; Ji, J.; Ferry-Galow, K.; Kinders, R.J.; Parchment, R.E.; Shapiro, G.I.; Phase, I. Safety, pharmacokinetic, and pharmacodynamic study of the Poly(ADP-ribose) Polymerase (PARP) inhibitor veliparib (ABT-888) in combination with irinotecan in patients with advanced solid tumors. Clin. Cancer Res., 2016, 22(13), 3227-3237. [http://dx.doi.org/10.1158/1078-0432.CCR-15-0652]. [PMID: 26842236].
[44]
Samol, J.; Ranson, M.; Scott, E.; Macpherson, E.; Carmichael, J.; Thomas, A.; Cassidy, J. Safety and tolerability of the poly(ADP-ribose) polymerase (PARP) inhibitor, olaparib (AZD2281) in combination with topotecan for the treatment of patients with advanced solid tumors: a phase I study. Invest. New Drugs, 2012, 30(4), 1493-1500. [http://dx.doi.org/10.1007/s10637-011-9682-9]. [PMID: 21590367].
[45]
Mehrotra, S.; Gopalakrishnan, M.; Gobburu, J.; Greer, J.M.; Piekarz, R.; Karp, J.E.; Pratz, K.; Rudek, M.A. Population pharmacokinetics and site of action exposures of veliparib with topotecan plus carboplatin in patients with haematological malignancies. Br. J. Clin. Pharmacol., 2017, 83(8), 1688-1700. [http://dx.doi.org/10.1111/bcp.13253]. [PMID: 28156017].
[46]
Pratz, K.W.; Rudek, M.A.; Gojo, I.; Litzow, M.R.; McDevitt, M.A.; Ji, J.; Karnitz, L.M.; Herman, J.G.; Kinders, R.J.; Smith, B.D.; Gore, S.D.; Carraway, H.E.; Showel, M.M.; Gladstone, D.E.; Levis, M.J.; Tsai, H.L.; Rosner, G.; Chen, A.; Kaufmann, S.H.; Karp, J.E. A Phase I study of topotecan, carboplatin and the PARP inhibitor veliparib in acute leukemias, aggressive myeloproliferative neoplasms, and chronic myelomonocytic leukemia. Clin. Cancer Res., 2017, 23(4), 899-907. [http://dx.doi.org/10.1158/1078-0432.CCR-16-1274]. [PMID: 27551000].
[47]
Del Conte, G.; Sessa, C.; von Moos, R.; Viganò, L.; Digena, T.; Locatelli, A.; Gallerani, E.; Fasolo, A.; Tessari, A.; Cathomas, R.; Gianni, L. Phase I study of olaparib in combination with liposomal doxorubicin in patients with advanced solid tumours. Br. J. Cancer, 2014, 111(4), 651-659. [http://dx.doi.org/10.1038/bjc.2014.345]. [PMID: 25025963].
[48]
Jossé, R.; Martin, S.E.; Guha, R.; Ormanoglu, P.; Pfister, T.D.; Reaper, P.M.; Barnes, C.S.; Jones, J.; Charlton, P.; Pollard, J.R.; Morris, J.; Doroshow, J.H.; Pommier, Y. ATR inhibitors VE-821 and VX-970 sensitize cancer cells to topoisomerase i inhibitors by disabling DNA replication initiation and fork elongation responses. Cancer Res., 2014, 74(23), 6968-6979. [http://dx.doi.org/10.1158/0008-5472.CAN-13-3369]. [PMID: 25269479].
[49]
Thomas, A.; Redon, C.E.; Sciuto, L.; Padiernos, E.; Ji, J.; Lee, M.J.; Yuno, A.; Lee, S.; Zhang, Y.; Tran, L.; Yutzy, W.; Rajan, A.; Guha, U.; Chen, H.; Hassan, R.; Alewine, C.C.; Szabo, E.; Bates, S.E.; Kinders, R.J.; Steinberg, S.M.; Doroshow, J.H.; Aladjem, M.I.; Trepel, J.B.; Pommier, Y.; Phase, I. Phase I study of ATR inhibitor M6620 in combination with topotecan in patients with advanced solid tumors. J. Clin. Oncol., 2018, 36(16), 1594-1602. [http://dx.doi.org/10.1200/JCO.2017.76.6915]. [PMID: 29252124].
[50]
Wang, Z.; Dabrosin, C.; Yin, X.; Fuster, M.M.; Arreola, A.; Rathmell, W.K.; Generali, D.; Nagaraju, G.P.; El-Rayes, B.; Ribatti, D.; Chen, Y.C.; Honoki, K.; Fujii, H.; Georgakilas, A.G.; Nowsheen, S.; Amedei, A.; Niccolai, E.; Amin, A.; Ashraf, S.S.; Helferich, B.; Yang, X.; Guha, G.; Bhakta, D.; Ciriolo, M.R.; Aquilano, K.; Chen, S.; Halicka, D.; Mohammed, S.I.; Azmi, A.S.; Bilsland, A.; Keith, W.N.; Jensen, L.D. Broad targeting of angiogenesis for cancer prevention and therapy. Semin. Cancer Biol., 2015, 35(Suppl.), S224-S243. [http://dx.doi.org/10.1016/j.semcancer.2015.01.001]. [PMID: 25600295].
[51]
Kong, D.H.; Kim, M.R.; Jang, J.H.; Na, H.J.; Lee, S. A review of anti-angiogenic targets for monoclonal antibody cancer therapy. Int. J. Mol. Sci., 2017, 18(8)E1786 [http://dx.doi.org/10.3390/ijms18081786]. [PMID: 28817103].
[52]
Rosen, V.M.; Guerra, I.; McCormack, M.; Nogueira-Rodrigues, A.; Sasse, A.; Munk, V.C.; Shang, A. Systematic review and network meta-analysis of bevacizumab plus first-line topotecan-paclitaxel or cisplatin-paclitaxel versus non-bevacizumab-containing therapies in persistent, recurrent, or metastatic cervical cancer. Int. J. Gynecol. Cancer, 2017, 27(6), 1237-1246. [http://dx.doi.org/10.1097/IGC.0000000000001000]. [PMID: 28448304].
[53]
Azizi, A.A.; Schouten-van Meeteren, A.Y.N. Current and emerging treatment strategies for children with progressive chiasmatic-hypothalamic glioma diagnosed as infants: a web-based survey. J. Neurooncol., 2018, 136(1), 127-134. [http://dx.doi.org/10.1007/s11060-017-2630-6]. [PMID: 29071540].
[54]
Loupakis, F.; Cremolini, C.; Masi, G.; Lonardi, S.; Zagonel, V.; Salvatore, L.; Cortesi, E.; Tomasello, G.; Ronzoni, M.; Spadi, R.; Zaniboni, A.; Tonini, G.; Buonadonna, A.; Amoroso, D.; Chiara, S.; Carlomagno, C.; Boni, C.; Allegrini, G.; Boni, L.; Falcone, A. Initial therapy with FOLFOXIRI and bevacizumab for metastatic colorectal cancer. N. Engl. J. Med., 2014, 371(17), 1609-1618. [http://dx.doi.org/10.1056/NEJMoa1403108]. [PMID: 25337750].
[55]
Cremolini, C.; Loupakis, F.; Antoniotti, C.; Lupi, C.; Sensi, E.; Lonardi, S.; Mezi, S.; Tomasello, G.; Ronzoni, M.; Zaniboni, A.; Tonini, G.; Carlomagno, C.; Allegrini, G.; Chiara, S.; D’Amico, M.; Granetto, C.; Cazzaniga, M.; Boni, L.; Fontanini, G.; Falcone, A. FOLFOXIRI plus bevacizumab versus FOLFIRI plus bevacizumab as first-line treatment of patients with metastatic colorectal cancer: updated overall survival and molecular subgroup analyses of the open-label, phase 3 TRIBE study. Lancet Oncol., 2015, 16(13), 1306-1315. [http://dx.doi.org/10.1016/S1470-2045(15)00122-9]. [PMID: 26338525].
[56]
Tomasello, G.; Petrelli, F.; Ghidini, M.; Russo, A.; Passalacqua, R.; Barni, S. FOLFOXIRI Plus Bevacizumab as conversion therapy for patients with initially unresectable metastatic colorectal cancer: A systematic review and pooled analysis. JAMA Oncol., 2017, 3(7)e170278 [http://dx.doi.org/10.1001/jamaoncol.2017.0278]. [PMID: 28542671].
[57]
Keefe, S.M.; Hoffman-Censits, J.; Cohen, R.B.; Mamtani, R.; Heitjan, D.; Eliasof, S.; Nixon, A.; Turnbull, B.; Garmey, E.G.; Gunnarsson, O.; Waliki, M.; Ciconte, J.; Jayaraman, L.; Senderowicz, A.; Tellez, A.B.; Hennessy, M.; Piscitelli, A.; Vaughn, D.; Smith, A.; Haas, N.B. Efficacy of the nanoparticle-drug conjugate CRLX101 in combination with bevacizumab in metastatic renal cell carcinoma: results of an investigator-initiated phase I-IIa clinical trial. Ann. Oncol., 2016, 27(8), 1579-1585. [http://dx.doi.org/10.1093/annonc/mdw188]. [PMID: 27457310].
[58]
Voss, M.H.; Hussain, A.; Vogelzang, N.; Lee, J.L.; Keam, B.; Rha, S.Y.; Vaishampayan, U.; Harris, W.B.; Richey, S.; Randall, J.M.; Shaffer, D.; Cohn, A.; Crowell, T.; Li, J.; Senderowicz, A.; Stone, E.; Figlin, R.; Motzer, R.J.; Haas, N.B.; Hutson, T. A randomized phase II trial of CRLX101 in combination with bevacizumab versus standard of care in patients with advanced renal cell carcinoma. Ann. Oncol., 2017, 28(11), 2754-2760. [http://dx.doi.org/10.1093/annonc/mdx493]. [PMID: 28950297].
[59]
Satake, H.; Sagawa, T.; Fujikawa, K.; Hatachi, Y.; Yasui, H.; Kotaka, M.; Kato, T.; Tsuji, A. Phase Ib study of irinotecan and ramucirumab for advanced gastric cancer previously treated with fluoropyrimidine with/without platinum and taxane. Cancer Chemjournal. Pharmacol., 2018, 82(5), 839-845. [http://dx.doi.org/10.1007/s00280-018-3678-5]. [PMID: 30167847].
[60]
Sakai, D.; Boku, N.; Kodera, Y.; Komatsu, Y.; Fujii, M.; Iwasa, S.; Oki, E.; Koizumi, W.; Gamoh, M.; Muro, K.; Shimokawa, T.; Satoh, T. An intergroup phase III trial of ramucirumab plus irinotecan in third or more line beyond progression after ramucirumab for advanced gastric cancer (RINDBeRG trial). J. Clin. Oncol., 2018, 36(15_suppl), TPS4138-TPS4138.
[61]
Shapiro, J.D.; Thavaneswaran, S.; Underhill, C.R.; Robledo, K.P.; Karapetis, C.S.; Day, F.L.; Nott, L.M.; Jefford, M.; Chantrill, L.A.; Pavlakis, N.; Tebbutt, N.C.; Price, T.J.; Khasraw, M.; Van Hazel, G.A.; Waring, P.M.; Tejpar, S.; Simes, J.; Gebski, V.J.; Desai, J.; Segelov, E. Cetuximab Alone or With Irinotecan for Resistant KRAS-, NRAS-, BRAF- and PIK3CA-wild-type metastatic colorectal cancer: The AGITG randomized phase II ICECREAM study. Clin. Colorectal Cancer, 2018, 17(4), 313-319. [http://dx.doi.org/10.1016/j.clcc.2018.06.002]. [PMID: 30463680].
[62]
Cremolini, C.; Rossini, D.; Dell’Aquila, E.; Lonardi, S.; Conca, E.; Del Re, M.; Busico, A.; Pietrantonio, F.; Danesi, R.; Aprile, G.; Tamburini, E.; Barone, C.; Masi, G.; Pantano, F.; Pucci, F.; Corsi, D.C.; Pella, N.; Bergamo, F.; Rofi, E.; Barbara, C.; Falcone, A.; Santini, D. Rechallenge for patients with RAS and BRAF wild-type metastatic colorectal cancer with acquired resistance to first-line cetuximab and irinotecan: A phase 2 single-arm clinical trial. JAMA Oncol., 2018, 5(3), 343-350. [http://dx.doi.org/10.1001/jamaoncol.2018.5080]. [PMID: 30476968].
[63]
Macy, M.E.; Kieran, M.W.; Chi, S.N.; Cohen, K.J.; MacDonald, T.J.; Smith, A.A.; Etzl, M.M.; Kuei, M.C.; Donson, A.M.; Gore, L.; DiRenzo, J.; Trippett, T.M.; Ostrovnaya, I.; Narendran, A.; Foreman, N.K.; Dunkel, I.J. A pediatric trial of radiation/cetuximab followed by irinotecan/cetuximab in newly diagnosed diffuse pontine gliomas and high-grade astrocytomas: A pediatric oncology experimental therapeutics investigators’ consortium study. Pediatr. Blood Cancer, 2017, 64(11)e26621 [http://dx.doi.org/10.1002/pbc.26621]. [PMID: 28544128].
[64]
Satoh, T.; Lee, K.H.; Rha, S.Y.; Sasaki, Y.; Park, S.H.; Komatsu, Y.; Yasui, H.; Kim, T.Y.; Yamaguchi, K.; Fuse, N.; Yamada, Y.; Ura, T.; Kim, S.Y.; Munakata, M.; Saitoh, S.; Nishio, K.; Morita, S.; Yamamoto, E.; Zhang, Q.; Kim, J.M.; Kim, Y.H.; Sakata, Y. Randomized phase II trial of nimotuzumab plus irinotecan versus irinotecan alone as second-line therapy for patients with advanced gastric cancer. Gastric Cancer, 2015, 18(4), 824-832. [http://dx.doi.org/10.1007/s10120-014-0420-9]. [PMID: 25185971].
[65]
Sirachainan, N.; Boongird, A.; Swangsilpa, T.; Klaisuban, W.; Lusawat, A.; Hongeng, S. Reported outcomes of children with newly diagnosed high-grade gliomas treated with nimotuzumab and irinotecan. Childs Nerv. Syst., 2017, 33(6), 893-897. [http://dx.doi.org/10.1007/s00381-017-3409-y]. [PMID: 28439659].
[66]
Yoon, H.; Karapetyan, L.; Choudhary, A.; Kosozi, R.; Bali, G.S.; Zaidi, A.H.; Atasoy, A.; Forastiere, A.A.; Gibson, M.K.; Phase, I.I. Phase II study of irinotecan plus panitumumab as second-line therapy for patients with advanced esophageal adenocarcinoma. Oncologist, 2018, 23(9), 1004-e102. [http://dx.doi.org/10.1634/theoncologist.2017-0657]. [PMID: 29769385].
[67]
Gherardi, E.; Birchmeier, W.; Birchmeier, C.; Vande Woude, G. Targeting MET in cancer: Rationale and progress. Nat. Rev. Cancer, 2012, 12(2), 89-103. [http://dx.doi.org/10.1038/nrc3205]. [PMID: 22270953].
[68]
Miekus, K. The Met tyrosine kinase receptor as a therapeutic target and a potential cancer stem cell factor responsible for therapy resistance.(Review) Oncol. Rep., 2017, 37(2), 647-656. [http://dx.doi.org/10.3892/or.2016.5297]. [PMID: 27959446].
[69]
Rolle, C.E.; Kanteti, R.; Surati, M.; Nandi, S.; Dhanasingh, I.; Yala, S.; Tretiakova, M.; Arif, Q.; Hembrough, T.; Brand, T.M.; Wheeler, D.L.; Husain, A.N.; Vokes, E.E.; Bharti, A.; Salgia, R. Combined MET inhibition and topoisomerase I inhibition block cell growth of small cell lung cancer. Mol. Cancer Ther., 2014, 13(3), 576-584. [http://dx.doi.org/10.1158/1535-7163.MCT-13-0109]. [PMID: 24327519].
[70]
Liu, S.V.; Groshen, S.G.; Kelly, K.; Reckamp, K.L.; Belani, C.; Synold, T.W.; Goldkorn, A.; Gitlitz, B.J.; Cristea, M.C.; Gong, I.Y.; Semrad, T.J.; Xu, Y.; Xu, T.; Koczywas, M.; Gandara, D.R.; Newman, E.M. A phase I trial of topotecan plus tivantinib in patients with advanced solid tumors. Cancer Chemjournal. Pharmacol., 2018, 82(4), 723-732. [http://dx.doi.org/10.1007/s00280-018-3672-y]. [PMID: 30128950].
[71]
Wilhelm, S.M.; Adnane, L.; Newell, P.; Villanueva, A.; Llovet, J.M.; Lynch, M. Preclinical overview of sorafenib, a multikinase inhibitor that targets both Raf and VEGF and PDGF receptor tyrosine kinase signaling. Mol. Cancer Ther., 2008, 7(10), 3129-3140. [http://dx.doi.org/10.1158/1535-7163.MCT-08-0013]. [PMID: 18852116].
[72]
Samalin, E.; Bouché, O.; Thézenas, S.; Francois, E.; Adenis, A.; Bennouna, J.; Taieb, J.; Desseigne, F.; Seitz, J.F.; Conroy, T.; Galais, M.P.; Assenat, E.; Crapez, E.; Poujol, S.; Bibeau, F.; Boissière, F.; Laurent-Puig, P.; Ychou, M.; Mazard, T. Sorafenib and irinotecan (NEXIRI) as second- or later-line treatment for patients with metastatic colorectal cancer and KRAS-mutated tumours: a multicentre Phase I/II trial. Br. J. Cancer, 2014, 110(5), 1148-1154. [http://dx.doi.org/10.1038/bjc.2013.813]. [PMID: 24407191].
[73]
Reed, D.R.; Mascarenhas, L.; Manning, K.; Hale, G.A.; Goldberg, J.; Gill, J.; Sandler, E.; Isakoff, M.S.; Smith, T.; Caracciolo, J.; Lush, R.M.; Juan, T.H.; Lee, J.K.; Neuger, A.M.; Sullivan, D.M. Pediatric phase I trial of oral sorafenib and topotecan in refractory or recurrent pediatric solid malignancies. Cancer Med., 2016, 5(2), 294-303. [http://dx.doi.org/10.1002/cam4.598]. [PMID: 26714427].
[74]
Kichenadasse, G.; Mangoni, A.; Miners, J. Combination of small-molecule kinase inhibitors and irinotecan in cancer clinical trials: efficacy and safety considerations. Transl. Cancer Res., 2017, 6, 10. [http://dx.doi.org/10.21037/tcr.2017.10.07].
[75]
Nebbioso, A.; Tambaro, F.P.; Dell’Aversana, C.; Altucci, L. Cancer epigenetics: Moving forward. PLoS Genet., 2018, 14(6)e1007362 [http://dx.doi.org/10.1371/journal.pgen.1007362]. [PMID: 29879107].
[76]
Chatterjee, A.; Rodger, E.J.; Eccles, M.R. Epigenetic drivers of tumourigenesis and cancer metastasis. Semin. Cancer Biol., 2018, 51, 149-159. [http://dx.doi.org/10.1016/j.semcancer.2017.08.004]. [PMID: 28807546].
[77]
Chistiakov, D.A.; Myasoedova, V.A.; Orekhov, A.N.; Bobryshev, Y.V. Epigenetically active drugs inhibiting dna methylation and histone deacetylation. Curr. Pharm. Des., 2017, 23(8), 1167-1174. [http://dx.doi.org/10.2174/1381612822666161021110827]. [PMID: 27774908].
[78]
Gallipoli, P.; Huntly, B.J.P. Novel epigenetic therapies in hematological malignancies: Current status and beyond. Semin. Cancer Biol., 2018, 51, 198-210. [http://dx.doi.org/10.1016/j.semcancer.2017.07.005]. [PMID: 28782607].
[79]
Almasri, J.; Alkhateeb, H.B.; Firwana, B.; Sonbol, M.B.; Damlaj, M.; Wang, Z.; Murad, M.H.; Al-Kali, A. A systematic review and network meta-analysis comparing azacitidine and decitabine for the treatment of myelodysplastic syndrome. Syst. Rev., 2018, 7(1), 144. [http://dx.doi.org/10.1186/s13643-018-0805-7].
[80]
Yun, S.; Vincelette, N.D.; Abraham, I.; Robertson, K.D.; Fernandez-Zapico, M.E.; Patnaik, M.M. Targeting epigenetic pathways in acute myeloid leukemia and myelodysplastic syndrome: A systematic review of hypomethylating agents trials. Clin. Epigenetics, 2016, 8, 68. [http://dx.doi.org/10.1186/s13148-016-0233-2].
[81]
Onec, B.; Okutan, H.; Albayrak, M.; Can, E.S.; Aslan, V.; Koluman, B.U.; Kosemehmetoglu, O.S.; Albayrak, A. Combination therapy with azacitidine, etoposide, and cytarabine in the treatment of elderly acute myeloid leukemia patients: A single center experience. J. Cancer Res. Ther., 2018, 14(5), 1105-1111. [http://dx.doi.org/10.4103/0973-1482.187369]. [PMID: 30197357].
[82]
Lancet J.E. Is the overall survival for older adults with AML finally improving? Best Pract. Res. Clin. Haematol., 2018, 31(4), 387-390. [http://dx.doi.org/10.1016/j.beha.2018.09.005]. [PMID: 30466753].
[83]
Brunetti, C.; Anelli, L.; Zagaria, A.; Specchia, G.; Albano, F. CPX-351 in acute myeloid leukemia: Can a new formulation maximize the efficacy of old compounds? Expert Rev. Hematol., 2017, 10(10), 853-862. [http://dx.doi.org/10.1080/17474086.2017.1369400]. [PMID: 28814164].
[84]
J. E. Uy, G. L.; Cortes, J. E.; Newell, L. F.; Lin, T. L.; Ritchie, E. K.; Stuart, R. K.; Strickland, S. A.; Hogge, D.; Solomon, S. R.; Stone, R. M.; Bixby, D. L.; Kolitz, J. E.; Schiller, G. J.; Wieduwilt, M. J.; Ryan, D. H.; Hoering, A.; Banerjee, K.; Chiarella, M.; Louie, A. C.; Medeiros, B. C. CPX-351 (cytarabine and daunorubicin) liposome for injection versus conventional cytarabine plus daunorubicin in older patients with newly diagnosed secondary acute myeloid leukemia. J. Clin. Oncol., 2018, 36, 2684-2692. [DOI: doi: 10.1200/JCO.2017.77.6112].
[85]
Chen, E.C.; Fathi, A.T.; Brunner, A.M. Reformulating acute myeloid leukemia: liposomal cytarabine and daunorubicin (CPX-351) as an emerging therapy for secondary AML. OncoTargets Ther., 2018, 11, 3425-3434. [http://dx.doi.org/10.2147/OTT.S141212]. [PMID: 29928134].
[86]
Eckschlager, T.; Plch, J.; Stiborova, M.; Hrabeta, J. Histone deacetylase inhibitors as anticancer drugs. Int. J. Mol. Sci., 2017, 18(7)E1414 [http://dx.doi.org/10.3390/ijms18071414]. [PMID: 28671573].
[87]
Cappellacci, L.; Perinelli, D.R.; Maggi, F.; Grifantini, M.; Petrelli, R. Recent progress in histone deacetylase inhibitors as anticancer agents. Curr. Med. Chem., 2018. [Epub ahead of print]. [http://dx.doi.org/10.2174/0929867325666181016163110]. [PMID: 30332940].
[88]
Balasubramaniam, S.; Redon, C.E.; Peer, C.J.; Bryla, C.; Lee, M.J.; Trepel, J.B.; Tomita, Y.; Rajan, A.; Giaccone, G.; Bonner, W.M.; Figg, W.D.; Fojo, T.; Piekarz, R.L.; Bates, S.E. Phase I trial of belibelinostat with cisplatin and etoposide in advanced solid tumors, with a focus on neuroendocrine and small cell cancers of the lung. Anticancer Drugs, 2018, 29(5), 457-465. [http://dx.doi.org/10.1097/CAD.0000000000000596]. [PMID: 29420340].
[89]
Hu, B.; Younes, A.; Westin, J.R.; Turturro, F.; Claret, L.; Feng, L.; Fowler, N.; Neelapu, S.; Romaguera, J.; Hagemeister, F.B.; Rodriguez, M.A.; Samaniego, F.; Fayad, L.E.; Copeland, A.R.; Nastoupil, L.J.; Nieto, Y.; Fanale, M.A.; Oki, Y. Phase-I and randomized phase-II trial of panobinostat in combination with ICE (ifosfamide, carboplatin, etoposide) in relapsed or refractory classical Hodgkin lymphoma. Leuk. Lymphoma, 2018, 59(4), 863-870. [http://dx.doi.org/10.1080/10428194.2017.1359741]. [PMID: 28792260].
[90]
Feld, E.; Mitchell, T.C. Immunjournalapy in melanoma. Immunjournalapy, 2018, 10(11), 987-998. [http://dx.doi.org/10.2217/imt-2017-0143]. [PMID: 30149766].
[91]
Buchbinder, E.I.; Desai, A. CTLA-4 and PD-1 pathways: Similarities, differences, and implications of their inhibition. Am. J. Clin. Oncol., 2016, 39(1), 98-106. [http://dx.doi.org/10.1097/COC.0000000000000239]. [PMID: 26558876].
[92]
George, S.; Rini, B.I.; Hammers, H.J. Emerging role of combination immunjournalapy in the first-line treatment of advanced renal cell carcinoma: A review. JAMA Oncol., 2018. [Epub ahead of print]. [PMID: 30476955].
[93]
Wilt, C.; Le, D.T. Integrating immunjournalapy into colorectal cancer care. Oncology (Williston Park), 2018, 32(10), 494-498. [PMID: 30334238].
[94]
Chae, Y.K.; Arya, A.; Iams, W.; Cruz, M.R.; Chandra, S.; Choi, J.; Giles, F. Current landscape and future of dual anti-CTLA4 and PD-1/PD-L1 blockade immunjournalapy in cancer; lessons learned from clinical trials with melanoma and non-small cell lung cancer (NSCLC). J. Immunjournal. Cancer., 2018, 6(1), 39.
[95]
Cooper, M.R.; Alrajhi, A.M.; Durand, C.R. Role of immune checkpoint inhibitors in small cell lung cancer. Am. J. Ther., 2018, 25(3), e349-e356. [http://dx.doi.org/10.1097/MJT.0000000000000686]. [PMID: 29722737].
[96]
Nakad, R.; Schumacher, B. DNA damage response and immune defense: Links and mechanisms. Front. Genet., 2016, 7, 147. [http://dx.doi.org/10.3389/fgene.2016.00147]. [PMID: 27555866].
[97]
Mondal, P.; Jain, D.; Aronow, W.S.; Frishman, W.H. Cardiotoxicity of cancer therapies. Cardiol. Rev., 2018, 23(30), 7685-7696. [http://dx.doi.org/10.1097/CRD.0000000000000239]. [PMID: 30433897].
[98]
McGowan, J.V.; Chung, R.; Maulik, A.; Piotrowska, I.; Walker, J.M.; Yellon, D.M. Anthracycline chemjournalapy and cardiotoxicity. Cardiovasc. Drugs Ther., 2017, 31(1), 63-75. [http://dx.doi.org/10.1007/s10557-016-6711-0]. [PMID: 28185035].
[99]
Abdel-Qadir, H.; Ong, G.; Fazelzad, R.; Amir, E.; Lee, D.S.; Thavendiranathan, P.; Tomlinson, G. Interventions for preventing cardiomyopathy due to anthracyclines: A Bayesian network meta-analysis. Ann. Oncol., 2017, 28(3), 628-633. [PMID: 28028033].
[100]
Finet, J. E.; Tang, W. H. W. Protecting the heart in cancer therapy. F1000Res, 2018, 7 F1000 Faculty Rev-1566. [http://dx.doi.org/10.12688/f1000research.15190.1]
[101]
Dong, J.; Chen, H. Cardiotoxicity of anticancer therapeutics. Front. Cardiovasc. Med., 2018, 5, 9. [http://dx.doi.org/10.3389/fcvm.2018.00009]. [PMID: 29473044].
[102]
Vejpongsa, P.; Yeh, E.T. Topoisomerase 2β: A promising molecular target for primary prevention of anthracycline-induced cardiotoxicity. Clin. Pharmacol. Ther., 2014, 95(1), 45-52. [http://dx.doi.org/10.1038/clpt.2013.201]. [PMID: 24091715].
[103]
Huang, W.C.; Lee, C.Y.; Hsieh, T.S. Single-molecule Förster resonance energy transfer (FRET) analysis discloses the dynamics of the DNA-topoisomerase II (Top2) interaction in the presence of TOP2-targeting agents. J. Biol. Chem., 2017, 292(30), 12589-12598. [http://dx.doi.org/10.1074/jbc.M117.792861]. [PMID: 28630044].
[104]
Schloemer, N.J.; Brickler, M.; Hoffmann, R.; Pan, A.; Simpson, P.; McFadden, V.; Block, J.; Tower, R.L., II; Burke, M.J. Administration of dexrazoxane improves cardiac indices in children and young adults with acute myeloid leukemia (AML) while maintaining survival outcomes. J. Pediatr. Hematol. Oncol., 2017, 39(5), e254-e258. [http://dx.doi.org/10.1097/MPH.0000000000000838]. [PMID: 28452856].
[105]
Asselin, B.L.; Devidas, M.; Chen, L.; Franco, V.I.; Pullen, J.; Borowitz, M.J.; Hutchison, R.E.; Ravindranath, Y.; Armenian, S.H.; Camitta, B.M.; Lipshultz, S.E. Cardioprotection and safety of dexrazoxane in patients treated for newly diagnosed t-cell acute lymphoblastic leukemia or advanced-stage lymphoblastic non-hodgkin lymphoma: A report of the children’s oncology group randomized trial pediatric oncology group 9404. J. Clin. Oncol., 2016, 34(8), 854-862. [http://dx.doi.org/10.1200/JCO.2015.60.8851]. [PMID: 26700126].
[106]
Tahover, E.; Segal, A.; Isacson, R.; Rosengarten, O.; Grenader, T.; Gips, M.; Cherny, N.; Heching, N.I.; Mesika, L.; Catane, R.; Gabizon, A. Dexrazoxane added to doxorubicin-based adjuvant chemjournalapy of breast cancer: A retrospective cohort study with a comparative analysis of toxicity and survival. Anticancer Drugs, 2017, 28(7), 787-794. [http://dx.doi.org/10.1097/CAD.0000000000000514]. [PMID: 28562379].
[107]
Liesse, K.; Harris, J.; Chan, M.; Schmidt, M.L.; Chiu, B. Dexrazoxane significantly reduces anthracycline-induced cardiotoxicity in pediatric solid tumor patients: A systematic review. J. Pediatr. Hematol. Oncol., 2018, 40(6), 417-425. [http://dx.doi.org/10.1097/MPH.0000000000001118]. [PMID: 29432315].
[108]
Gujral, D.M.; Lloyd, G.; Bhattacharyya, S. Effect of prophylactic betablocker or ACE inhibitor on cardiac dysfunction & heart failure during anthracycline chemjournalapy ± trastuzumab. Breast, 2018, 37, 64-71. [http://dx.doi.org/10.1016/j.breast.2017.10.010]. [PMID: 29101824].
[109]
Avila, M.S.; Ayub-Ferreira, S.M.; de Barros Wanderley, M.R., Jr das Dores Cruz, F.; Gonçalves Brandão, S.M.; Rigaud, V.O.C.; Higuchi-Dos-Santos, M.H.; Hajjar, L.A.; Kalil Filho, R.; Hoff, P.M.; Sahade, M.; Ferrari, M.S.M.; de Paula Costa, R.L.; Mano, M.S.; Bittencourt Viana Cruz, C.B.; Abduch, M.C.; Lofrano Alves, M.S.; Guimaraes, G.V.; Issa, V.S.; Bittencourt, M.S.; Bocchi, E.A. Carvedilol for prevention of chemjournalapy-related cardiotoxicity: The CECCY trial. J. Am. Coll. Cardiol., 2018, 71(20), 2281-2290. [http://dx.doi.org/10.1016/j.jacc.2018.02.049]. [PMID: 29540327].
[110]
Yang, L.; Jiang, X.; Yan, H.; Li, Y.; Zhen, H.; Chang, B.; Kariminia, S.; Li, Q. Irinotecan-containing doublet treatment versus irinotecan monjournalapy as second-line choice for advanced gastric cancer. BMC Gastroenterol., 2018, 18(1), 43. [http://dx.doi.org/10.1186/s12876-018-0772-4].
[111]
Martino, E.; Della Volpe, S.; Terribile, E.; Benetti, E.; Sakaj, M.; Centamore, A.; Sala, A.; Collina, S. The long story of camptothecin: From traditional medicine to drugs. Bioorg. Med. Chem. Lett., 2017, 27(4), 701-707. [http://dx.doi.org/10.1016/j.bmcl.2016.12.085]. [PMID: 28073672].
[112]
Franco, Y.L.; Vaidya, T.R.; Ait-Oudhia, S. Anticancer and cardio-protective effects of liposomal doxorubicin in the treatment of breast cancer. Breast Cancer (Dove Med. Press), 2018, 10, 131-141. [http://dx.doi.org/10.2147/BCTT.S170239]. [PMID: 30237735].