[1]
Bartus, R.T.; Dean, R.L. 3rd; Beer, B.; Lippa, A.S. The cholinergic hypothesis of geriatric memory dysunction. Science, 1982, 217(4558), 408-414.
[2]
Picciotto, M.R.; Zoli, M. Nicotinic receptors in aging and dementia. J. Neurobiol., 2002, 53(4), 641-655.
[3]
Court, J.A.; Lloyd, S.; Johnson, M.; Griffiths, M.; Birdsall, N.J.; Piggott, M.A.; Oakley, A.E.; Ince, P.G.; Perry, E.K.; Perry, R.H. Nicotinic and muscarinic cholinergic receptor binding in the human hippocampal formation during development and aging. Brain Res. Dev. Brain Res., 1997, 101(1-2), 93-105.
[4]
Hellström-Lindahl, E.; Court, J.A. Nicotinic acetylcholine receptors during prenatal development and brain pathology in human aging. Behav. Brain Res., 2000, 113(1-2), 159-168.
[5]
Perry, E.; Martin-Ruiz, C.; Lee, M.; Griffiths, M.; Johnson, M.; Piggott, M.; Haroutunian, V.; Buxbaum, J.D.; Nãsland, J.; Davis, K.; Gotti, C.; Clementi, F.; Tzartos, S.; Cohen, O.; Soreq, H.; Jaros, E.; Perry, R.; Ballard, C.; McKeith, I.; Court, J. Nicotinic receptor subtypes in human brain ageing, Alzheimer and Lewy body diseases. Eur. J. Pharmacol., 2000, 393(1-3), 215-222.
[6]
Zanardi, A.; Leo, G.; Biagini, G.; Zoli, M. Nicotine and neurodegeneration in ageing. Toxicol. Lett., 2002, 127(1-3), 207-215.
[7]
Ellis, J.R.; Nathan, P.J.; Villemagne, V.L.; Mulligan, R.S.; Ellis, K.A.; Tochon-Danguy, H.J.; Chan, J.G.; O’keefe, G.J.; Bradley, J.; Savage, G.; Rowe, C.C. The relationship between nicotinic receptors and cognitive functioning in healthy aging: An in vivo positron emission tomography (PET) study with 2-[(18)F]fluoro-A-85380. Synapse, 2009, 63(9), 752-763.
[8]
Mitsis, E.M.; Cosgrove, K.P.; Staley, J.K.; Bois, F.; Frohlich, E.B.; Tamagnan, G.D.; Estok, K.M.; Seibyl, J.P.; van Dyck, C.H. Age-related decline in nicotinic receptor availability with [(123)I]5-IA-85380 SPECT. Neurobiol. Aging, 2009, 30(9), 1490-1497.
[9]
Lagarde, J.; Sarazin, M.; Chauviré, V.; Stankoff, B.; Kas, A.; Lacomblez, L.; Peyronneau, M.A.; Bottlaender, M. Cholinergic Changes in Aging and Alzheimer Disease: An [18F]-F-A-85380 Exploratory PET Study. Alzheimer Dis. Assoc. Disord., 2017, 31(1), 8-12.
[10]
Sultzer, D.L.; Melrose, R.J.; Riskin-Jones, H.; Narvaez, T.A.; Veliz, J.; Ando, T.K.; Juarez, K.O.; Harwood, D.G.; Brody, A.L.; Mandelkern, M.A. Cholinergic receptor binding in alzheimer disease and healthy aging: Assessment in vivo with positron emission tomography imaging. Am. J. Geriatr. Psychiatry, 2017, 25(4), 342-353.
[11]
Mukherjee, J.; Lao, P.J.; Betthauser, T.J.; Samra, G.K.; Pan, M.L.; Patel, I.H.; Liang, C.; Metherate, R.; Christian, B.T. Human brain imaging of nicotinic acetylcholine α4β2* receptors using [18 F]Nifene: Selectivity, functional activity, toxicity, aging effects, gender effects, and extrathalamic pathways. J. Comp. Neurol., 2018, 526(1), 80-95.
[12]
Tohgi, H.; Utsugisawa, K.; Yoshimura, M.; Nagane, Y.; Mihara, M. Age-related changes in nicotinic acetylcholine receptor subunits alpha4 and beta2 messenger RNA expression in postmortem human frontal cortex and hippocampus. Neurosci. Lett., 1998, 245(3), 139-142.
[13]
Utsugisawa, K.; Nagane, Y.; Tohgi, H.; Yoshimura, M.; Ohba, H.; Genda, Y. Changes with aging and ischemia in nicotinic acetylcholine receptor subunit alpha7 mRNA expression in postmortem human frontal cortex and putamen. Neurosci. Lett., 1999, 270(3), 145-148.
[14]
Falk, L.; Nordberg, A.; Seiger, A.; Kjaeldgaard, A.; Hellström-Lindahl, E. Higher expression of alpha7 nicotinic acetylcholine receptors in human fetal compared to adult brain. Brain Res. Dev. Brain Res., 2003, 142(2), 151-160.
[15]
Coughlin, J.; Du, Y.; Rosenthal, H.B.; Slania, S.; Min Koo, S.; Park, A.; Solomon, G.; Vranesic, M.; Antonsdottir, I.; Speck, C.L.; Rootes-Murdy, K.; Lerner, A.; Rowe, S.P.; Wang, Y.; Lesniak, W.G.; Minn, I.; Bakker, A.; Smith, G.S.; Dannals, R.F.; Kuwabara, H.; Horti, A.; Wong, D.F.; Pomper, M.G. The distribution of the alpha7 nicotinic acetylcholine receptor in healthy aging: An in vivo positron emission tomography study with [18F]ASEM. Neuroimage, 2018, 65, 118-124.
[16]
Tribollet, E.; Bertrand, D.; Marguerat, A.; Raggenbass, M. Comparative distribution of nicotinic receptor subtypes during development, adulthood and aging: An autoradiographic study in the rat brain. Neuroscience, 2004, 124(2), 405-420.
[17]
Gahring, L.C.; Persiyanov, K.; Rogers, S.W. Mouse strain-specific changes in nicotinic receptor expression with age. Neurobiol. Aging, 2005, 26(6), 973-980.
[18]
Christensen, M.H.; Kohlmeier, K.A. Age-related changes in functional postsynaptic nicotinic acetylcholine receptor subunits in neurons of the laterodorsal tegmental nucleus, a nucleus important in drug addiction. Addict. Biol., 2016, 21(2), 267-281.
[19]
Narla, S.; Klejbor, I.; Birkaya, B.; Lee, Y.W.; Morys, J.; Stachowiak, E.K.; Terranova, C.; Bencherif, M.; Stachowiak, M.K. α7 nicotinic receptor agonist reactivates neurogenesis in adult brain. Biochem. Pharmacol., 2013, 86(8), 1099-1104.
[20]
Dumas, J.A.; Newhouse, P.A. The cholinergic hypothesis of cognitive aging revisited again: Cholinergic functional compensation. Pharmacol. Biochem. Behav., 2011, 99(2), 254-261.
[21]
Okada, H.; Ouchi, Y.; Ogawa, M.; Futatsubashi, M.; Saito, Y.; Yoshikawa, E.; Terada, T.; Oboshi, Y.; Tsukada, H.; Ueki, T.; Watanabe, M.; Yamashita, T.; Magata, Y. Alterations in α4β2 nicotinic receptors in cognitive decline in Alzheimer’s aetiopathology. Brain, 2013, 136(Pt 10), 3004-3017.
[22]
Tohgi, H.; Utsugisawa, K.; Yoshimura, M.; Nagane, Y.; Mihara, M. Alterations with aging and ischemia in nicotinic acetylcholine receptor subunits alpha4 and beta2 messenger RNA expression in postmortem human putamen. Implications for susceptibility to parkinsonism. Brain Res., 1998, 791(1-2), 186-190.
[23]
Tang, X.; Zhu, X.; Ding, B.; Walton, J.P.; Frisina, R.D.; Su, J. Age-related hearing loss: GABA, nicotinic acetylcholine and NMDA receptor expression changes in spiral ganglion neurons of the mouse. Neuroscience, 2014, 259, 184-193.
[24]
Bao, J.; Lei, D.; Du, Y.; Ohlemiller, K.K.; Beaudet, A.L.; Role, L.W. Requirement of nicotinic acetylcholine receptor subunit beta2 in the maintenance of spiral ganglion neurons during aging. J. Neurosci., 2005, 25(12), 3041-3045.
[25]
Sottile, S.Y.; Hackett, T.A.; Cai, R.; Ling, L.; Llano, D.A.; Caspary, D.M. presynaptic neuronal nicotinic receptors differentially shape select inputs to auditory thalamus and are negatively impacted by aging. J. Neurosci., 2017, 37(47), 11377-11389.
[26]
Sottile, S.Y.; Ling, L.; Cox, B.C.; Caspary, D.M. Impact of ageing on postsynaptic neuronal nicotinic neurotransmission in auditory thalamus. J. Physiol., 2017, 595(15), 5375-5385.
[27]
Utkin, Y.N.; Kryukova, E.V.; Tsetlin, V.I. What Animal Models of Parkinsonism Tell us About the Distinct Nicotinic Acetylcholine Receptors Involved in Pathogenesis? J. Alzheimers Dis. Parkinsonism, 2015, 5, 181.
[28]
Quik, M.; Zhang, D.; McGregor, M.; Bordia, T. Alpha7 nicotinic receptors as therapeutic targets for Parkinson’s disease. Biochem. Pharmacol., 2015, 97(4), 399-407.
[29]
De Jaco, A.; Bernardini, L.; Rosati, J.; Tata, A.M. Alpha-7 Nicotinic receptors in nervous system disorders: From function to therapeutic perspectives. Cent. Nerv. Syst. Agents Med. Chem., 2017, 17(2), 100-108.