[1]
Cragg, G.M.; Newman, D.J. Natural products: A continuing source of novel drug leads. Biochim. Biophys. Acta, 2013, 1830, 3670-3695.
[2]
De Zoysa, M. Medicinal benefits of marine invertebrates: Sources for discovering natural drug candidates. Adv. Food Nutr. Res., 2012, 65, 153-169.
[3]
Kijjoa, A.; Sawangwong, P. Drugs and cosmetics from the sea. Mar. Drugs, 2004, 2, 73-82.
[4]
Fusetani, N. Biotechnological potential of marine natural products. Pure Appl. Chem., 2010, 82, 17-26.
[5]
Newman, D.J.; Cragg, G.M.; Snader, K.M. Natural products as sources of new drugs over the period 1981-2002. J. Nat. Prod., 2003, 66, 1022-1037.
[6]
Newman, D.J.; Cragg, G.M.; Snader, K.M. The influence of natural products upon drug discovery. Nat. Prod. Rep., 2000, 17, 215-234.
[7]
Proksch, P.; Edrada-Ebel, R.A.; Ebel, R. Drugs from the sea opportunities and obstacles. Mar. Drugs, 2003, 1, 5-17.
[8]
Leone, A.; Lecci, R.M.; Durante, M.; Piraino, S. Extract from the zooxanthellate jellyfish Cotylorhiza tuberculata modulates gap junction intercellular communication in human cell cultures. Mar. Drugs, 2013, 11, 1728-1762.
[9]
Nastav, B.; Malej, M.; Malej, A., Jr; Malej, A. Is it possible to determine the economic impact of jellyfish outbreaks on fisheries? A case study- Slovenia. Mediterr. Mar. Sci., 2013, 14, 214-223.
[10]
Mariottini, G.L. Hemolytic venoms from marine cnidarian jellyfish. An overview. J. Venom Res., 2014, 5, 22-32.
[11]
Killi, N.; Mariottini, G.L. Cnidarian jellyfish: Ecological aspects, nematocyst isolation, and treatment methods of sting; In: Marine
Organisms as Model Systems in Biology and Medicine (Results
and Problems in Cell Differentiation). Kloc, M.; Kubiak, J.Z.; Eds.;
Springer Nature: Switzerland. , 2018, Vol. 65, pp. 477-513.
[12]
Lassen, S.; Helmholz, H.; Ruhnau, C.; Prange, A. A novel proteinaceous cytotoxin from the northern Scyphozoa Cyanea capillata (L.) with structural homology to cubozoan haemolysins. Toxicon, 2011, 57, 721-729.
[13]
Mariscal, R.N. Nematocysts; In: Coelenterate biology. Muscatine,
L.; Lenhoff, H.M. Eds.. Academic Press: New York, 1974, pp. 129-178.
[14]
Allavena, A.; Mariottini, G.L.; Carli, A.M.; Contini, S.; Martelli, A. In vitro evaluation of the cytotoxic, hemolytic and clastogenic activities of Rhizostoma pulmo toxin(s). Toxicon, 1998, 36, 933-936.
[15]
Morabito, R.; Condello, S.; Currò, M.; Marino, A.; Ientile, R.; La Spada, G. Oxidative stress induced by crude venom from the jellyfish Pelagia noctiluca in neuronal like differentiated SH-SY5Y cells. Toxicol. In Vitro, 2012, 26, 694-699.
[16]
Rocha, J.; Peixe, L.; Gomes, N.C.M.; Calado, R. Cnidarians as a source of new marine bioactive compounds-An overview of the last decade and future steps for bioprospecting. Mar. Drugs, 2011, 9, 1860-1886.
[17]
Hsieh, Y-H.P.; Leong, F-M.; Rudloe, J. Jellyfish as food. Hydrobiologia, 2001, 451, 11-17.
[18]
Hsieh, Y-H.P.; Rudloe, J. Potential of utilizing jellyfish as food in Western countries. Trends Food Sci. Technol., 1994, 5, 225-229.
[19]
Gopal, R.; Vijayakumaran, M.; Venkatesan, R.; Kathiroli, S. Marine organisms in Indian medicine and their future prospects. Nat. Prod. Rad., 2008, 7, 139-145.
[20]
Kohl, A.C.; Ata, A.; Kerr, R.G. Pseudopterosin biosynthesis-pathway elucidation, enzymology, and a proposed production method for anti-inflammatory metabolites from Pseudopterogorgia elisabethae. J. Ind. Microbiol. Biotechnol., 2003, 30, 495-499.
[21]
Mariottini, G.L.; Pane, L. The role of Cnidaria in drug discovery. A review on CNS implications and new perspectives. Recent Patents CNS Drug Discov., 2013, 8, 110-122.
[22]
Mariottini, G.L. The role of Cnidaria in drug discovery. In: The Cnidaria, past, present and future. The world of Medusa and her sisters; Goffredo, S.; Dubinsky, Z., Eds.; Springer Verlag: Switzerland, 2016, pp. 653-668.
[23]
Mariottini, G.L.; Grice, I.D. Antimicrobials from Cnidarians. A new perspective for anti-infective therapy? Mar. Drugs, 2016, 14, 48.
[24]
Putra, M.Y.; Ianaro, A.; Panza, E.; Bavestrello, G.; Cerrano, C.; Fattorusso, E.; Taglialatela Scafati, O. Sinulasulfoxide and sinulasulfone, sulfur-containing alkaloids from the Indonesian soft coral Sinularia sp. Tetrahedron Lett., 2012, 53, 3937-3939.
[25]
Correa, H.; Aristizabal, F.; Duque, C.; Kerr, R. Cytotoxic and antimicrobial activity of pseudopterosins and secopseudopterosins isolated from the octocoral Pseudopterogorgia elisabethae of San Andrés and Providencia Islands (Southwest Caribbean Sea). Mar. Drugs, 2011, 9, 334-344.
[26]
Wei, W-C.; Sung, P-J.; Duh, C-Y.; Chen, B-W.; Sheu, J-H.; Yang, N-S. Anti-inflammatory activities of natural products isolated from soft corals of Taiwan between 2008 and 2012. Mar. Drugs, 2013, 11, 4083-4126.
[27]
Huang, C-Y.; Su, J-H.; Duh, C-Y.; Chen, B-W.; Wen, Z-H.; Kuo, Y-H.; Sheu, J-H. A new 9,11-secosterol from the soft coral Sinularia granosa. Bioorg. Med. Chem. Lett., 2012, 22, 4373-4376.
[28]
Dmitrenok, A.S.; Radhika, P.; Anjaneyulu, V.; Subrahmanyam, C.; Subba Rao, P.V.; Dmitrenok, P.S.; Boguslavsky, V.M. New lipids from the soft corals of the Andaman Islands. Russian Chem. Bull. Int. Edit., 2003, 52, 1868-1872.
[29]
Yue, Y.; Yu, H.; Li, R.; Xing, R.; Liu, S.; Li, P. Exploring the antibacterial and antifungal potential of jellyfish-associated marine fungi by cultivation-dependent approaches. PLoS ONE, 2015, 10, e0144394.
[30]
Ovchinnikova, T.V.; Balandin, S.V.; Aleshina, G.M.; Tagaev, A.A.; Leonova, Y.F.; Krasnodembsky, E.D.; Men’shenin, A.V.; Kokryakov, V.N. Aurelin, a novel antimicrobial peptide from jellyfish Aurelia aurita with structural features of defensins and channel-blocking toxins. Biochem. Biophys. Res. Commun., 2006, 348, 514-523.
[31]
Tejuca, M.; Anderluh, G. Maˇcek, P.; Marcet, R.; Torres, D.; Sarracent, J.; Alvarez, C.; Lanio, M.E.; Dalla Serra, M.; Menestrina, G. Antiparasite activity of sea anemone cytolysins on Giardia duodenalis and specific targeting with anti-Giardia antibodies. Int. J. Parasitol., 1999, 29, 489-498.
[32]
Reimão, J.Q.; Migotto, A.E.; Kossuga, M.H.; Berlinck, R.G.S.; Tempo, A.G. Antiprotozoan activity of Brazilian marine cnidarian extracts and of a modified steroid from the octocoral Carijoa riisei. Parasitol. Res., 2008, 103, 1445-1450.
[33]
Ishigami, S-T.; Goto, Y.; Inoue, N.; Kawazu, S-I.; Matsumoto, Y.; Imahara, Y.; Tarumi, M.; Nakai, H.; Fusetani, N.; Nakao, Y. Cristaxenicin A, an antiprotozoal xenicane diterpenoid from the deep sea gorgonian Acanthoprimnoa cristata. J. Org. Chem., 2012, 77, 10962-10966.
[34]
Mariottini, G.L.; Brotz, L. Cnidarian venoms and alternative research methods: from cell damage to possible applications; In: Jellyfish:
Ecology, Distribution Patterns and Human Interactions. Mariottini, G.L. Ed.. Nova Science Publishers: Hauppauge, NY, USA, 2017, pp. 257-276.
[35]
Sorek, H.; Rudi, A.; Benayahu, Y.; Ben-Califa, N.; Neumann, D.; Kashman, Y. Nuttingins A-F and Malonganenones D-H, tetraprenylated alkaloids from the Tanzanian gorgonian Euplexaura nuttingi. J. Nat. Prod., 2007, 70, 1104-1109.
[36]
Hong, J-Y.; Boo, H-J.; Kang, J-I.; Kim, M-K.; Yoo, E-S.; Hyun, J-W.; Koh, Y-S.; Kim, G-Y.; Maeng, Y-H.; Hyun, C-L.; Chang, W-Y.; Kim, Y-H.; Kim, Y-R.; Kang, H-K. (1S,2S,3E,7E,11E)-3,7,11,15-Cembratetraen-17,2-olide, a cembrenolide diterpene from soft coral Lobophytum sp., inhibits growth and induces apoptosis in human colon cancer cells through reactive oxygen species generation. Biol. Pharm. Bull., 2012, 35, 1054-1063.
[37]
De Simone, V.; Franzè, E.; Ronchetti, G.; Colantoni, A.; Fantini, M.C.; Di Fusco, D.; Sica, G.S.; Sileri, P.; MacDonald, T.T.; Pallone, F.; Monteleone, G.; Stolfi, C. Th17-type cytokines, IL-6 and TNF-α synergistically activate STAT3 and NF-kB to promote colorectal cancer cell growth. Oncogene, 2015, 34, 3493-3503.
[38]
Blunt, J.W.; Copp, B.R.; Keyzers, R.A.; Munro, M.H.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep., 2014, 31, 160-258.
[39]
Folmer, F.; Jaspars, M.; Solano, G.; Cristofanon, S.; Henry, E.; Tabudravu, J.; Black, K.; Green, D.H.; Küpper, F.C.; Aalbersberg, W.; Feussner, K.; Dicato, M.; Diederich, M. The inhibition of TNF-α-induced NF-κB activation by marine natural products. Biochem. Pharmacol., 2009, 78, 592-606.
[40]
Naguib, Y.M. Antioxidant activities of astaxanthin and related carotenoids. J. Agric. Food Chem., 2000, 48, 1150-1154.
[41]
Takamatsu, S.; Hodges, T.W.; Rajbhandari, I.; Gerwick, W.H.; Hamann, M.T.; Nagle, D.G. Marine natural products as novel antioxidant prototypes. J. Nat. Prod., 2003, 66, 605-608.
[42]
Bowie, A.; O’Neill, L.A. Oxidative stress and nuclear factor-kappaB activation: a reassessment of the evidence in the light of recent discoveries. Biochem. Pharmacol., 2000, 59, 13-23.
[43]
Tcheng, J.E.; O’Shea, J.C. Eptifibatide. A potent inhibitor of the platelet receptor integrin glycoprotein IIb/IIIa. Expert Opin. Pharmacother., 2002, 3, 1199-1210.
[44]
Martin, E.J. Anticoagulant from the sea anemone Rhodactis howesii. Proc. Soc. Exp. Biol. Med., 1966, 121, 1063-1065.
[45]
Lee, H.; Jung, E.; Kang, C.; Yoon, W.D.; Kim, J.S.; Kim, E. Scyphozoan jellyfish venom metalloproteinases and their role in the cytotoxicity. Toxicon, 2011, 58, 277-284.
[46]
Rastogi, A.; Biswas, S.; Sarkar, A.; Chakrabarty, D. Anticoagulant activity of Moon jellyfish (Aurelia aurita) tentacle extract. Toxicon, 2012, 60, 719-723.
[47]
Yao, L-G.; Zhang, H-Y.; Liang, L-F.; Guo, X-J.; Mao, S-C.; Guo, Y-W. Yalongenes A and B, two new cembranoids with cytoprotective effects from the Hainan soft coral Sarcophyton trocheliophorum Marenzeller. Helv. Chim. Acta, 2012, 95, 235-239.
[48]
Mayer, A.M.; Jacobson, P.B.; Fenical, W.; Jacobs, R.S.; Glaser, K.B. Pharmacological characterization of the pseudopterosins: Novel anti-inflammatory natural products isolated from the Caribbean soft coral, Pseudopterogorgia elisabethae. Life Sci., 1998, 62, PL401-PL407.
[49]
Soares, C.L.S.; Pérez, C.D.; Maia, M.B.S.; Silva, R.S.; Melo, L.F.A. Avaliação da atividade antiinflamatória e analgésica do extrato bruto hidroalcoólico do zoantídeo Palythoa caribaeorum (Duchassaing & Michelotti, 1860). Braz. J. Pharmacogn., 2006, 16, 463-468.
[50]
Badria, F.A.; Guirguis, A.N.; Perovic, S.; Steffen, R.; Müller, W.E.G.; Schröder, H.C. Sarcophytolide: A new neuroprotective compound from the soft coral Sarcophyton glaucum. Toxicology, 1998, 131, 133-143.
[51]
Gerwick, W.H.; Moore, B.S. Lessons from the past and charting the future of marine natural products drug discovery and chemical biology. Chem. Biol., 2012, 19, 85-98.
[52]
Mariottini, G.L.; Pane, L. Cytotoxic and cytolytic cnidarian venoms. a review on health implications and possible therapeutic applications. Toxins, 2014, 6, 108-151.
[53]
Hsieh, Y-H.P.; Leong, F-M.; Barnes, K.W. Inorganic constituents in fresh and processed cannonball jellyfish (Stomolophus meleagris). J. Agric. Food Chem., 1996, 44, 3117-3119.
[54]
Armani, A.; Tinacci, L.; Giusti, A.; Castigliego, L.; Gianfaldoni, D.; Guidi, A. What is inside the jar? Forensically informative nucleotide sequencing (FINS) of a short mitochondrial COI gene fragment reveals a high percentage of mislabelling in jellyfish food products. Food Res. Int., 2013, 54, 1383-1393.