[1]
Yee, D.; Valiquette, C.; Pelletier, M.; Parisien, I.; Rocher, I.; Menzies, D. Incidence of serious side effects from first-line antituberculosis drugs among patients treated for active tuberculosis. Am. J. Respir. Crit. Care Med., 2003, 167(11), 1472-1477. [http://dx.doi.org/10.1164/rccm.200206-626OC]. [PMID: 12569078].
[2]
Faustini, A.; Hall, A.J.; Perucci, C.A. Risk factors for multidrug resistant tuberculosis in Europe: a systematic review. Thorax, 2006, 61(2), 158-163. [http://dx.doi.org/10.1136/thx.2005.045963]. [PMID: 16254056].
[3]
Mulu, W.; Mekonnen, D.; Yimer, M.; Admassu, A.; Abera, B. Risk factors for multidrug resistant tuberculosis patients in Amhara National Regional State. Afr. Health Sci., 2015, 15(2), 368-377. [http://dx.doi.org/10.4314/ahs.v15i2.9]. [PMID: 26124781].
[4]
Zhang, Y. The magic bullets and tuberculosis drug targets. Annu. Rev. Pharmacol. Toxicol., 2005, 45, 529-564. [http://dx.doi.org/10.1146/annurev.pharmtox.45.120403.100120]. [PMID: 15822188].
[5]
Chiarelli, L.R.; Mori, G.; Esposito, M.; Orena, B.S.; Pasca, M.R. New and old hot drug targets in tuberculosis. Curr. Med. Chem., 2016, 23(33), 3813-3846. [http://dx.doi.org/10.2174/1389557516666160831164925]. [PMID: 27666933].
[6]
Meneghetti, F.; Villa, S.; Gelain, A.; Barlocco, D.; Chiarelli, L.R.; Pasca, M.R.; Costantino, L. Iron acquisition pathways as targets for antitubercular drugs. Curr. Med. Chem., 2016, 23(35), 4009-4026. [http://dx.doi.org/10.2174/0929867323666160607223747]. [PMID: 27281295].
[7]
Vickers, C.F.; Silva, A.P.G.; Chakraborty, A.; Fernandez, P.; Kurepina, N.; Saville, C.; Naranjo, Y.; Pons, M.; Schnettger, L.S.; Gutierrez, M.G.; Park, S.; Kreiswith, B.N.; Perlin, D.S.; Thomas, E.J.; Cavet, J.S.; Tabernero, L. Structure-based design of MptpB inhibitors that reduce multidrug-resistant Mycobacterium tuberculosis survival and infection burden in vivo. J. Med. Chem., 2018, 61(18), 8337-8352. [http://dx.doi.org/10.1021/acs.jmedchem.8b00832]. [PMID: 30153005].
[8]
Chiarelli, L.R.; Mori, M.; Barlocco, D.; Beretta, G.; Gelain, A.; Pini, E.; Porcino, M.; Mori, G.; Stelitano, G.; Costantino, L.; Lapillo, M.; Bonanni, D.; Poli, G.; Tuccinardi, T.; Villa, S.; Meneghetti, F. Discovery and development of novel salicylate synthase (MbtI) furanic inhibitors as antitubercular agents. Eur. J. Med. Chem., 2018, 155, 754-763. [http://dx.doi.org/10.1016/j.ejmech.2018.06.033]. [PMID: 29940465].
[9]
Pini, E.; Poli, G.; Tuccinardi, T.; Chiarelli, L.R.; Mori, M.; Gelain, A.; Costantino, L.; Villa, S.; Meneghetti, F.; Barlocco, D. New chromane-based derivatives as inhibitors of Mycobacterium tuberculosis salicylate synthase (MbtI): Preliminary biological evaluation and molecular modeling studies. Molecules, 2018, 23(7)E1506 [http://dx.doi.org/10.3390/molecules23071506]. [PMID: 29933627].
[10]
Johnson, B.K.; Abramovitch, R.B. Small Molecules That sabotage bacterial virulence. Trends Pharmacol. Sci., 2017, 38(4), 339-362. [http://dx.doi.org/10.1016/j.tips.2017.01.004]. [PMID: 28209403].
[11]
Bem, A.E.; Velikova, N.; Pellicer, M.T.; Baarlen, Pv.; Marina, A.; Wells, J.M. Bacterial histidine kinases as novel antibacterial drug targets. ACS Chem. Biol., 2015, 10(1), 213-224. [http://dx.doi.org/10.1021/cb5007135]. [PMID: 25436989].
[12]
Prisic, S.; Husson, R.N. Mycobacterium tuberculosis serine/threonine protein kinases. Microbiol. Spectr., 2014, 2, MGM2-MGM0006.
[13]
Bach, H.; Wong, D.; Av-Gay, Y. Mycobacterium tuberculosis PtkA is a novel protein tyrosine kinase whose substrate is PtpA. Biochem. J., 2009, 420(2), 155-160. [http://dx.doi.org/10.1042/BJ20090478]. [PMID: 19366344].
[14]
Wong, D.; Li, W.; Chao, J.D.; Zhou, P.; Narula, G.; Tsui, C.; Ko, M.; Xie, J.; Martinez-Frailes, C.; Av-Gay, Y. Protein tyrosine kinase, PtkA, is required for Mycobacterium tuberculosis growth in macrophages. Sci. Rep., 2018, 8(1), 155. [http://dx.doi.org/10.1038/s41598-017-18547-9]. [PMID: 29317718].
[15]
Fanzani, L.; Porta, F.; Meneghetti, F.; Villa, S.; Gelain, A.; Lucarelli, A.P.; Parisini, E. Mycobacterium tuberculosis low molecular weight phosphatases (MPtpA and MPtpB): From biological insight to inhibitors. Curr. Med. Chem., 2015, 22(27), 3110-3132. [http://dx.doi.org/10.2174/0929867322666150812150036]. [PMID: 26264920].
[16]
Zheng, H.; Colvin, C.J.; Johnson, B.K.; Kirchhoff, P.D.; Wilson, M.; Jorgensen-Muga, K.; Larsen, S.D.; Abramovitch, R.B. Inhibitors of Mycobacterium tuberculosis DosRST signaling and persistence. Nat. Chem. Biol., 2017, 13(2), 218-225. [http://dx.doi.org/10.1038/nchembio.2259]. [PMID: 27992879].
[17]
Gupta, R.K.; Thakur, T.S.; Desiraju, G.R.; Tyagi, J.S. Structure-based design of DevR inhibitor active against nonreplicating Mycobacterium tuberculosis. J. Med. Chem., 2009, 52(20), 6324-6334. [http://dx.doi.org/10.1021/jm900358q]. [PMID: 19827833].
[18]
Wehenkel, A.; Bellinzoni, M.; Graña, M.; Duran, R.; Villarino, A.; Fernandez, P.; Andre-Leroux, G.; England, P.; Takiff, H.; Cerveñansky, C.; Cole, S.T.; Alzari, P.M. Mycobacterial Ser/Thr protein kinases and phosphatases: physiological roles and therapeutic potential. Biochim. Biophys. Acta, 2008, 1784(1), 193-202. [http://dx.doi.org/10.1016/j.bbapap.2007.08.006]. [PMID: 17869195].
[19]
Hanks, S.K.; Hunter, T. Protein kinases 6. The eukaryotic protein kinase superfamily: Kinase (catalytic) domain structure and classification. FASEB J., 1995, 9(8), 576-596. [http://dx.doi.org/10.1096/fasebj.9.8.7768349]. [PMID: 7768349].
[20]
Pérez, J.; Castañeda-García, A.; Jenke-Kodama, H.; Müller, R.; Muñoz-Dorado, J. Eukaryotic-like protein kinases in the prokaryotes and the myxobacterial kinome. Proc. Natl. Acad. Sci. USA, 2008, 105(41), 15950-15955. [http://dx.doi.org/10.1073/pnas.0806851105]. [PMID: 18836084].
[21]
Cole, S.T.; Brosch, R.; Parkhill, J.; Garnier, T.; Churcher, C.; Harris, D.; Gordon, S.V.; Eiglmeier, K.; Gas, S.; Barry, C.E., III; Tekaia, F.; Badcock, K.; Basham, D.; Brown, D.; Chillingworth, T.; Connor, R.; Davies, R.; Devlin, K.; Feltwell, T.; Gentles, S.; Hamlin, N.; Holroyd, S.; Hornsby, T.; Jagels, K.; Krogh, A.; McLean, J.; Moule, S.; Murphy, L.; Oliver, K.; Osborne, J.; Quail, M.A.; Rajandream, M.A.; Rogers, J.; Rutter, S.; Seeger, K.; Skelton, J.; Squares, R.; Squares, S.; Sulston, J.E.; Taylor, K.; Whitehead, S.; Barrell, B.G. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature, 1998, 393(6685), 537-544. [http://dx.doi.org/10.1038/31159]. [PMID: 9634230].
[22]
Narayan, A.; Sachdeva, P.; Sharma, K.; Saini, A.K.; Tyagi, A.K.; Singh, Y. Serine threonine protein kinases of mycobacterial genus: Phylogeny to function. Physiol. Genomics, 2007, 29(1), 66-75. [http://dx.doi.org/10.1152/physiolgenomics.00221.2006]. [PMID: 17148687].
[23]
Av-Gay, Y.; Everett, M. The eukaryotic-like Ser/Thr protein kinases of Mycobacterium tuberculosis. Trends Microbiol., 2000, 8(5), 238-244. [http://dx.doi.org/10.1016/S0966-842X(00)01734-0]. [PMID: 10785641].
[24]
Gay, L.M.; Ng, H.L.; Alber, T. A conserved dimer and global conformational changes in the structure of apo-PknE Ser/Thr protein kinase from Mycobacterium tuberculosis. J. Mol. Biol., 2006, 360(2), 409-420. [http://dx.doi.org/10.1016/j.jmb.2006.05.015]. [PMID: 16762364].
[25]
Ortiz-Lombardía, M.; Pompeo, F.; Boitel, B.; Alzari, P.M. Crystal structure of the catalytic domain of the PknB serine/threonine kinase from Mycobacterium tuberculosis. J. Biol. Chem., 2003, 278(15), 13094-13100. [http://dx.doi.org/10.1074/jbc.M300660200]. [PMID: 12551895].
[26]
Rakette, S.; Donat, S.; Ohlsen, K.; Stehle, T. Structural analysis of Staphylococcus aureus serine/threonine kinase PknB. PLoS One, 2012, 7(6)e39136 [http://dx.doi.org/10.1371/journal.pone.0039136]. [PMID: 22701750].
[27]
Scherr, N.; Honnappa, S.; Kunz, G.; Mueller, P.; Jayachandran, R.; Winkler, F.; Pieters, J.; Steinmetz, M.O. Structural basis for the specific inhibition of protein kinase G, a virulence factor of Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA, 2007, 104(29), 12151-12156. [http://dx.doi.org/10.1073/pnas.0702842104]. [PMID: 17616581].
[28]
Young, T.A.; Delagoutte, B.; Endrizzi, J.A.; Falick, A.M.; Alber, T. Structure of Mycobacterium tuberculosis PknB supports a universal activation mechanism for Ser/Thr protein kinases. Nat. Struct. Biol., 2003, 10(3), 168-174. [http://dx.doi.org/10.1038/nsb897]. [PMID: 12548283].
[29]
Johnson, L.N.; Noble, M.E.; Owen, D.J. Active and inactive protein kinases: Structural basis for regulation. Cell, 1996, 85(2), 149-158. [http://dx.doi.org/10.1016/S0092-8674(00)81092-2]. [PMID: 8612268].
[30]
Boitel, B.; Ortiz-Lombardía, M.; Durán, R.; Pompeo, F.; Cole, S.T.; Cerveñansky, C.; Alzari, P.M. PknB kinase activity is regulated by phosphorylation in two Thr residues and dephosphorylation by PstP, the cognate phospho-Ser/Thr phosphatase, in Mycobacterium tuberculosis. Mol. Microbiol., 2003, 49(6), 1493-1508. [http://dx.doi.org/10.1046/j.1365-2958.2003.03657.x]. [PMID: 12950916].
[31]
Durán, R.; Villarino, A.; Bellinzoni, M.; Wehenkel, A.; Fernandez, P.; Boitel, B.; Cole, S.T.; Alzari, P.M.; Cerveñansky, C. Conserved autophosphorylation pattern in activation loops and juxtamembrane regions of Mycobacterium tuberculosis Ser/Thr protein kinases. Biochem. Biophys. Res. Commun., 2005, 333(3), 858-867. [http://dx.doi.org/10.1016/j.bbrc.2005.05.173]. [PMID: 15967413].
[32]
Pereira, S.F.; Goss, L.; Dworkin, J. Eukaryote-like serine/threonine kinases and phosphatases in bacteria. Microbiol. Mol. Biol. Rev., 2011, 75(1), 192-212. [http://dx.doi.org/10.1128/MMBR.00042-10]. [PMID: 21372323].
[33]
Nolen, B.; Taylor, S.; Ghosh, G. Regulation of protein kinases; Controlling activity through activation segment conformation. Mol. Cell, 2004, 15(5), 661-675. [http://dx.doi.org/10.1016/j.molcel.2004.08.024]. [PMID: 15350212].
[34]
Greenstein, A.E.; Echols, N.; Lombana, T.N.; King, D.S.; Alber, T. Allosteric activation by dimerization of the PknD receptor Ser/Thr protein kinase from Mycobacterium tuberculosis. J. Biol. Chem., 2007, 282(15), 11427-11435. [http://dx.doi.org/10.1074/jbc.M610193200]. [PMID: 17242402].
[35]
Lombana, T.N.; Echols, N.; Good, M.C.; Thomsen, N.D.; Ng, H.L.; Greenstein, A.E.; Falick, A.M.; King, D.S.; Alber, T. Allosteric activation mechanism of the Mycobacterium tuberculosis receptor Ser/Thr protein kinase, PknB. Structure, 2010, 18(12), 1667-1677. [http://dx.doi.org/10.1016/j.str.2010.09.019]. [PMID: 21134645].
[36]
Sassetti, C.M.; Rubin, E.J. Genetic requirements for mycobacterial survival during infection. Proc. Natl. Acad. Sci. USA, 2003, 100(22), 12989-12994. [http://dx.doi.org/10.1073/pnas.2134250100]. [PMID: 14569030].
[37]
Cowley, S.; Ko, M.; Pick, N.; Chow, R.; Downing, K.J.; Gordhan, B.G.; Betts, J.C.; Mizrahi, V.; Smith, D.A.; Stokes, R.W.; Av-Gay, Y. The Mycobacterium tuberculosis protein serine/threonine kinase PknG is linked to cellular glutamate/glutamine levels and is important for growth in vivo. Mol. Microbiol., 2004, 52(6), 1691-1702. [http://dx.doi.org/10.1111/j.1365-2958.2004.04085.x]. [PMID: 15186418].
[38]
Walburger, A.; Koul, A.; Ferrari, G.; Nguyen, L.; Prescianotto-Baschong, C.; Huygen, K.; Klebl, B.; Thompson, C.; Bacher, G.; Pieters, J. Protein kinase G from pathogenic mycobacteria promotes survival within macrophages. Science, 2004, 304(5678), 1800-1804. [http://dx.doi.org/10.1126/science.1099384]. [PMID: 15155913].
[39]
Nakedi, K.C. Nel, A.J.; Garnett, S.; Blackburn, J.M.; Soares, N.C. Comparative Ser/Thr/Tyr phosphoproteomics between two mycobacterial species: the fast growing Mycobacterium smegmatis and the slow growing Mycobacterium bovis BCG. Front. Microbiol., 2015, 6, 237. [http://dx.doi.org/10.3389/fmicb.2015.00237]. [PMID: 25904896].
[40]
Wu, F.L.; Liu, Y.; Jiang, H.W.; Luan, Y.Z.; Zhang, H.N.; He, X.; Xu, Z.W.; Hou, J.L.; Ji, L.Y.; Xie, Z.; Czajkowsky, D.M.; Yan, W.; Deng, J.Y.; Bi, L.J.; Zhang, X.E.; Tao, S.C. The Ser/Thr protein kinase protein-protein interaction map of M. tuberculosis. Mol. Cell. Proteomics, 2017, 16(8), 1491-1506. [http://dx.doi.org/10.1074/mcp.M116.065771]. [PMID: 28572091].
[41]
Meeske, A.J.; Riley, E.P.; Robins, W.P.; Uehara, T.; Mekalanos, J.J.; Kahne, D.; Walker, S.; Kruse, A.C.; Bernhardt, T.G.; Rudner, D.Z. SEDS proteins are a widespread family of bacterial cell wall polymerases. Nature, 2016, 537(7622), 634-638. [http://dx.doi.org/10.1038/nature19331]. [PMID: 27525505].
[42]
Fernandez, P.; Saint-Joanis, B.; Barilone, N.; Jackson, M.; Gicquel, B.; Cole, S.T.; Alzari, P.M. The Ser/Thr protein kinase PknB is essential for sustaining mycobacterial growth. J. Bacteriol., 2006, 188(22), 7778-7784. [http://dx.doi.org/10.1128/JB.00963-06]. [PMID: 16980473].
[43]
Molle, V.; Kremer, L. Division and cell envelope regulation by Ser/Thr phosphorylation: Mycobacterium shows the way. Mol. Microbiol., 2010, 75(5), 1064-1077. [http://dx.doi.org/10.1111/j.1365-2958.2009.07041.x]. [PMID: 20487298].
[44]
Ortega, C.; Liao, R.; Anderson, L.N.; Rustad, T.; Ollodart, A.R.; Wright, A.T.; Sherman, D.R.; Grundner, C. Mycobacterium tuberculosis Ser/Thr protein kinase B mediates an oxygen-dependent replication switch. PLoS Biol., 2014, 12(1)e1001746 [http://dx.doi.org/10.1371/journal.pbio.1001746]. [PMID: 24409094].
[45]
Chawla, Y.; Upadhyay, S.; Khan, S.; Nagarajan, S.N.; Forti, F.; Nandicoori, V.K. Protein kinase B (PknB) of Mycobacterium tuberculosis is essential for growth of the pathogen in vitro as well as for survival within the host. J. Biol. Chem., 2014, 289(20), 13858-13875. [http://dx.doi.org/10.1074/jbc.M114.563536]. [PMID: 24706757].
[46]
Kang, C.M.; Abbott, D.W.; Park, S.T.; Dascher, C.C.; Cantley, L.C.; Husson, R.N. The Mycobacterium tuberculosis serine/threonine kinases PknA and PknB: substrate identification and regulation of cell shape. Genes Dev., 2005, 19(14), 1692-1704. [http://dx.doi.org/10.1101/gad.1311105]. [PMID: 15985609].
[47]
Av-Gay, Y.; Jamil, S.; Drews, S.J. Expression and characterization of the Mycobacterium tuberculosis serine/threonine protein kinase PknB. Infect. Immun., 1999, 67(11), 5676-5682. [PMID: 10531215].
[48]
Singh, A.; Singh, Y.; Pine, R.; Shi, L.; Chandra, R.; Drlica, K. Protein kinase I of Mycobacterium tuberculosis: Cellular localization and expression during infection of macrophage-like cells. Tuberculosis (Edinb.), 2006, 86(1), 28-33. [http://dx.doi.org/10.1016/j.tube.2005.04.002]. [PMID: 16256441].
[49]
Betts, J.C.; Lukey, P.T.; Robb, L.C.; McAdam, R.A.; Duncan, K. Evaluation of a nutrient starvation model of Mycobacterium tuberculosis persistence by gene and protein expression profiling. Mol. Microbiol., 2002, 43(3), 717-731. [http://dx.doi.org/10.1046/j.1365-2958.2002.02779.x]. [PMID: 11929527].
[50]
Gee, C.L.; Papavinasasundaram, K.G.; Blair, S.R.; Baer, C.E.; Falick, A.M.; King, D.S.; Griffin, J.E.; Venghatakrishnan, H.; Zukauskas, A.; Wei, J.R.; Dhiman, R.K.; Crick, D.C.; Rubin, E.J.; Sassetti, C.M.; Alber, T. A phosphorylated pseudokinase complex controls cell wall synthesis in mycobacteria. Sci. Signal., 2012, 5(208), ra7. [http://dx.doi.org/10.1126/scisignal.2002525]. [PMID: 22275220].
[51]
Kang, C.M.; Nyayapathy, S.; Lee, J.Y.; Suh, J.W.; Husson, R.N. Wag31, a homologue of the cell division protein DivIVA, regulates growth, morphology and polar cell wall synthesis in mycobacteria. Microbiology, 2008, 154(Pt 3), 725-735. [http://dx.doi.org/10.1099/mic.0.2007/014076-0]. [PMID: 18310019].
[52]
Shah, I.M.; Laaberki, M.H.; Popham, D.L.; Dworkin, J. A eukaryotic-like Ser/Thr kinase signals bacteria to exit dormancy in response to peptidoglycan fragments. Cell, 2008, 135(3), 486-496. [http://dx.doi.org/10.1016/j.cell.2008.08.039]. [PMID: 18984160].
[53]
Calvanese, L.; Falcigno, L.; Squeglia, F.; Berisio, R.; D’Auria, G. PASTA sequence composition is a predictive tool for protein class identification. Amino Acids, 2018, 50(10), 1441-1450. [http://dx.doi.org/10.1007/s00726-018-2621-8]. [PMID: 30032416].
[54]
Mir, M.; Asong, J.; Li, X.; Cardot, J.; Boons, G.J.; Husson, R.N. The extracytoplasmic domain of the Mycobacterium tuberculosis Ser/Thr kinase PknB binds specific muropeptides and is required for PknB localization. PLoS Pathog., 2011, 7(7)e1002182 [http://dx.doi.org/10.1371/journal.ppat.1002182]. [PMID: 21829358].
[55]
Nott, T.J.; Kelly, G.; Stach, L.; Li, J.; Westcott, S.; Patel, D.; Hunt, D.M.; Howell, S.; Buxton, R.S.; O’Hare, H.M.; Smerdon, S.J. An intramolecular switch regulates phosphoindependent FHA domain interactions in Mycobacterium tuberculosis. Sci. Signal., 2009, 2(63), ra12. [http://dx.doi.org/10.1126/scisignal.2000212]. [PMID: 19318624].
[56]
Ventura, M.; Rieck, B.; Boldrin, F.; Degiacomi, G.; Bellinzoni, M.; Barilone, N.; Alzaidi, F.; Alzari, P.M.; Manganelli, R.; O’Hare, H.M. GarA is an essential regulator of metabolism in Mycobacterium tuberculosis. Mol. Microbiol., 2013, 90(2), 356-366. [PMID: 23962235].
[57]
Molle, V.; Gulten, G.; Vilchèze, C.; Veyron-Churlet, R.; Zanella-Cléon, I.; Sacchettini, J.C.; Jacobs, W.R., Jr; Kremer, L. Phosphorylation of InhA inhibits mycolic acid biosynthesis and growth of Mycobacterium tuberculosis. Mol. Microbiol., 2010, 78(6), 1591-1605. [http://dx.doi.org/10.1111/j.1365-2958.2010.07446.x]. [PMID: 21143326].
[58]
Veyron-Churlet, R.; Zanella-Cléon, I.; Cohen-Gonsaud, M.; Molle, V.; Kremer, L. Phosphorylation of the Mycobacterium tuberculosis beta-ketoacyl-acyl carrier protein reductase MabA regulates mycolic acid biosynthesis. J. Biol. Chem., 2010, 285(17), 12714-12725. [http://dx.doi.org/10.1074/jbc.M110.105189]. [PMID: 20178986].
[59]
Vilchèze, C.; Molle, V.; Carrère-Kremer, S.; Leiba, J.; Mourey, L.; Shenai, S.; Baronian, G.; Tufariello, J.; Hartman, T.; Veyron-Churlet, R.; Trivelli, X.; Tiwari, S.; Weinrick, B.; Alland, D.; Guérardel, Y.; Jacobs, W.R., Jr; Kremer, L. Phosphorylation of KasB regulates virulence and acid-fastness in Mycobacterium tuberculosis. PLoS Pathog., 2014, 10(5)e1004115 [http://dx.doi.org/10.1371/journal.ppat.1004115]. [PMID: 24809459].
[60]
Thakur, M.; Chakraborti, P.K. GTPase activity of mycobacterial FtsZ is impaired due to its transphosphorylation by the eukaryotic-type Ser/Thr kinase, PknA. J. Biol. Chem., 2006, 281(52), 40107-40113. [http://dx.doi.org/10.1074/jbc.M607216200]. [PMID: 17068335].
[61]
Carette, X.; Platig, J.; Young, D.C.; Helmel, M.; Young, A.T.; Wang, Z.; Potluri, L.P.; Moody, C.S.; Zeng, J.; Prisic, S.; Paulson, J.N.; Muntel, J.; Madduri, A.V.R.; Velarde, J.; Mayfield, J.A.; Locher, C.; Wang, T.; Quackenbush, J.; Rhee, K.Y.; Moody, D.B.; Steen, H.; Husson, R.N. Multisystem analysis of Mycobacterium tuberculosis reveals kinase-dependent remodeling of the pathogen-environment interface. MBio, 2018, 9(2), e02333-e17. [http://dx.doi.org/10.1128/mBio.02333-17]. [PMID: 29511081].
[62]
Gupta, A.; Pal, S.K.; Pandey, D.; Fakir, N.A.; Rathod, S.; Sinha, D. SivaKumar, S.; Sinha, P.; Periera, M.; Balgam, S.; Sekar, G.; UmaDevi, K.R.; Anupurba, S.; Nema, V. PknB remains an essential and a conserved target for drug development in susceptible and MDR strains of M. tuberculosis. Ann. Clin. Microbiol. Antimicrob., 2017, 16(1), 56. [http://dx.doi.org/10.1186/s12941-017-0234-9]. [PMID: 28821299].
[63]
Niebisch, A.; Kabus, A.; Schultz, C.; Weil, B.; Bott, M. Corynebacterial protein kinase G controls 2-oxoglutarate dehydrogenase activity via the phosphorylation status of the OdhI protein. J. Biol. Chem., 2006, 281(18), 12300-12307. [http://dx.doi.org/10.1074/jbc.M512515200]. [PMID: 16522631].
[64]
Zulauf, K.E.; Sullivan, J.T.; Braunstein, M. The SecA2 pathway of Mycobacterium tuberculosis exports effectors that work in concert to arrest phagosome and autophagosome maturation. PLoS Pathog., 2018, 14(4)e1007011 [http://dx.doi.org/10.1371/journal.ppat.1007011]. [PMID: 29709019].
[65]
Villarino, A.; Duran, R.; Wehenkel, A.; Fernandez, P.; England, P.; Brodin, P.; Cole, S.T.; Zimny-Arndt, U.; Jungblut, P.R.; Cerveñansky, C.; Alzari, P.M. Proteomic identification of M. tuberculosis protein kinase substrates: PknB recruits GarA, a FHA domain-containing protein, through activation loop-mediated interactions. J. Mol. Biol., 2005, 350(5), 953-963. [http://dx.doi.org/10.1016/j.jmb.2005.05.049]. [PMID: 15978616].
[66]
Rieck, B.; Degiacomi, G.; Zimmermann, M.; Cascioferro, A.; Boldrin, F.; Lazar-Adler, N.R.; Bottrill, A.R.; le Chevalier, F.; Frigui, W.; Bellinzoni, M.; Lisa, M.N.; Alzari, P.M.; Nguyen, L.; Brosch, R.; Sauer, U.; Manganelli, R.; O’Hare, H.M. PknG senses amino acid availability to control metabolism and virulence of Mycobacterium tuberculosis. PLoS Pathog., 2017, 13(5)e1006399 [http://dx.doi.org/10.1371/journal.ppat.1006399]. [PMID: 28545104].
[67]
Wolff, K.A.; de la Peña, A.H.; Nguyen, H.T.; Pham, T.H.; Amzel, L.M.; Gabelli, S.B.; Nguyen, L. A redox regulatory system critical for mycobacterial survival in macrophages and biofilm development. PLoS Pathog., 2015, 11(4)e1004839 [http://dx.doi.org/10.1371/journal.ppat.1004839]. [PMID: 25884716].
[68]
Tiwari, D.; Singh, R.K.; Goswami, K.; Verma, S.K.; Prakash, B.; Nandicoori, V.K. Key residues in Mycobacterium tuberculosis protein kinase G play a role in regulating kinase activity and survival in the host. J. Biol. Chem., 2009, 284(40), 27467-27479. [http://dx.doi.org/10.1074/jbc.M109.036095]. [PMID: 19638631].
[69]
Wolff, K.A.; Nguyen, H.T.; Cartabuke, R.H.; Singh, A.; Ogwang, S.; Nguyen, L. Protein kinase G is required for intrinsic antibiotic resistance in mycobacteria. Antimicrob. Agents Chemother., 2009, 53(8), 3515-3519. [http://dx.doi.org/10.1128/AAC.00012-09]. [PMID: 19528288].
[70]
Paroha, R.; Chourasia, R.; Mondal, R.; Chaurasiya, S.K. PknG supports mycobacterial adaptation in acidic environment. Mol. Cell. Biochem., 2018, 443(1-2), 69-80. [http://dx.doi.org/10.1007/s11010-017-3211-x]. [PMID: 29124568].
[71]
Belanger, A.E.; Hatfull, G.F. Exponential-phase glycogen recycling is essential for growth of Mycobacterium smegmatis. J. Bacteriol., 1999, 181(21), 6670-6678. [PMID: 10542168].
[72]
Deng, J.; Bi, L.; Zhou, L.; Guo, S.J.; Fleming, J.; Jiang, H.W.; Zhou, Y.; Gu, J.; Zhong, Q.; Wang, Z.X.; Liu, Z.; Deng, R.P.; Gao, J.; Chen, T.; Li, W.; Wang, J.F.; Wang, X.; Li, H.; Ge, F.; Zhu, G.; Zhang, H.N.; Gu, J.; Wu, F.L.; Zhang, Z.; Wang, D.; Hang, H.; Li, Y.; Cheng, L.; He, X.; Tao, S.C.; Zhang, X.E. Mycobacterium tuberculosis proteome microarray for global studies of protein function and immunogenicity. Cell Rep., 2014, 9(6), 2317-2329. [http://dx.doi.org/10.1016/j.celrep.2014.11.023]. [PMID: 25497094].
[73]
Nakedi, K.C.; Calder, B.; Banerjee, M.; Giddey, A.; Nel, A.J.M.; Garnett, S.; Blackburn, J.M.; Soares, N.C. Identification of novel physiological substrates of Mycobacterium bovis BCG protein kinase G (PknG) by label-free quantitative phosphoproteomics. Mol. Cell. Proteomics, 2018, 17(7), 1365-1377. [http://dx.doi.org/10.1074/mcp.RA118.000705]. [PMID: 29549130].
[74]
Khan, M.Z.; Bhaskar, A.; Upadhyay, S.; Kumari, P.; Rajmani, R.S.; Jain, P.; Singh, A.; Kumar, D.; Bhavesh, N.S.; Nandicoori, V.K. Protein kinase G confers survival advantage to Mycobacterium tuberculosis during latency-like conditions. J. Biol. Chem., 2017, 292(39), 16093-16108. [http://dx.doi.org/10.1074/jbc.M117.797563]. [PMID: 28821621].
[75]
Nakedi, K.C.; Calder, B.; Banerjee, M.; Giddey, A.; Nel, A.J.M.; Garnett, S.; Blackburn, J.M.; Soares, N.C. Identification of novel physiological substrates of Mycobacterium bovis BCG protein kinase G (PknG) by label-free quantitative phosphoproteomics. Mol. Cell. Proteomics, 2018, 17(7), 1365-1377. [http://dx.doi.org/10.1074/mcp.RA118.000705]. [PMID: 29549130].
[76]
O’Hare, H.M.; Durán, R.; Cerveñansky, C.; Bellinzoni, M.; Wehenkel, A.M.; Pritsch, O.; Obal, G.; Baumgartner, J.; Vialaret, J.; Johnsson, K.; Alzari, P.M. Regulation of glutamate metabolism by protein kinases in mycobacteria. Mol. Microbiol., 2008, 70(6), 1408-1423. [http://dx.doi.org/10.1111/j.1365-2958.2008.06489.x]. [PMID: 19019160].
[77]
Lisa, M.N.; Gil, M.; André-Leroux, G.; Barilone, N.; Durán, R.; Biondi, R.M.; Alzari, P.M. Molecular basis of the activity and the regulation of the eukaryotic-like S/T Protein Kinase PknG from Mycobacterium tuberculosis. Structure, 2015, 23(6), 1039-1048. [http://dx.doi.org/10.1016/j.str.2015.04.001]. [PMID: 25960409].
[78]
Vanzembergh, F.; Peirs, P.; Lefevre, P.; Celio, N.; Mathys, V.; Content, J.; Kalai, M. Effect of PstS sub-units or PknD deficiency on the survival of Mycobacterium tuberculosis. Tuberculosis (Edinb.), 2010, 90(6), 338-345. [http://dx.doi.org/10.1016/j.tube.2010.09.004]. [PMID: 20933472].
[79]
Peirs, P.; Lefèvre, P.; Boarbi, S.; Wang, X.M.; Denis, O.; Braibant, M.; Pethe, K.; Locht, C.; Huygen, K.; Content, J. Mycobacterium tuberculosis with disruption in genes encoding the phosphate binding proteins PstS1 and PstS2 is deficient in phosphate uptake and demonstrates reduced in vivo virulence. Infect. Immun., 2005, 73(3), 1898-1902. [http://dx.doi.org/10.1128/IAI.73.3.1898-1902.2005]. [PMID: 15731097].
[80]
Peirs, P.; De Wit, L.; Braibant, M.; Huygen, K.; Content, J. A serine/threonine protein kinase from Mycobacterium tuberculosis. Eur. J. Biochem., 1997, 244(2), 604-612. [http://dx.doi.org/10.1111/j.1432-1033.1997.00604.x]. [PMID: 9119030].
[81]
Greenstein, A.E.; MacGurn, J.A.; Baer, C.E.; Falick, A.M.; Cox, J.S.; Alber, T.M. tuberculosis Ser/Thr protein kinase D phosphorylates an anti-anti-sigma factor homolog. PLoS Pathog., 2007, 3(4)e49 [http://dx.doi.org/10.1371/journal.ppat.0030049]. [PMID: 17411339].
[82]
Hatzios, S.K.; Baer, C.E.; Rustad, T.R.; Siegrist, M.S.; Pang, J.M.; Ortega, C.; Alber, T.; Grundner, C.; Sherman, D.R.; Bertozzi, C.R. Osmosensory signaling in Mycobacterium tuberculosis mediated by a eukaryotic-like Ser/Thr protein kinase. Proc. Natl. Acad. Sci. USA, 2013, 110(52), E5069-E5077. [http://dx.doi.org/10.1073/pnas.1321205110]. [PMID: 24309377].
[83]
Good, M.C.; Greenstein, A.E.; Young, T.A.; Ng, H.L.; Alber, T. Sensor domain of the Mycobacterium tuberculosis receptor Ser/Thr protein kinase, PknD, forms a highly symmetric beta propeller. J. Mol. Biol., 2004, 339(2), 459-469. [http://dx.doi.org/10.1016/j.jmb.2004.03.063]. [PMID: 15136047].
[84]
Be, N.A.; Bishai, W.R.; Jain, S.K. Role of Mycobacterium tuberculosis pknD in the pathogenesis of central nervous system tuberculosis. BMC Microbiol., 2012, 12, 7. [http://dx.doi.org/10.1186/1471-2180-12-7]. [PMID: 22243650].
[85]
Skerry, C.; Pokkali, S.; Pinn, M.; Be, N.A.; Harper, J.; Karakousis, P.C.; Jain, S.K. Vaccination with recombinant Mycobacterium tuberculosis PknD attenuates bacterial dissemination to the brain in guinea pigs. PLoS One, 2013, 8(6)e66310 [http://dx.doi.org/10.1371/journal.pone.0066310]. [PMID: 23776655].
[86]
Jayakumar, D.; Jacobs, W.R., Jr; Narayanan, S. Protein kinase E of Mycobacterium tuberculosis has a role in the nitric oxide stress response and apoptosis in a human macrophage model of infection. Cell. Microbiol., 2008, 10(2), 365-374. [PMID: 17892498].
[87]
Kumari, R.; Singh, S.K.; Singh, D.K.; Singh, P.K.; Chaurasiya, S.K.; Srivastava, K.K. Functional characterization delineates that a Mycobacterium tuberculosis specific protein kinase (Rv3080c) is responsible for the growth, phagocytosis and intracellular survival of avirulent mycobacteria. Mol. Cell. Biochem., 2012, 369(1-2), 67-74. [http://dx.doi.org/10.1007/s11010-012-1369-9]. [PMID: 22740025].
[88]
Malhotra, V.; Arteaga-Cortés, L.T.; Clay, G.; Clark-Curtiss, J.E. Mycobacterium tuberculosis protein kinase K confers survival advantage during early infection in mice and regulates growth in culture and during persistent infection: implications for immune modulation. Microbiology, 2010, 156(Pt 9), 2829-2841. [http://dx.doi.org/10.1099/mic.0.040675-0]. [PMID: 20522497].
[89]
Papavinasasundaram, K.G.; Chan, B.; Chung, J.H.; Colston, M.J.; Davis, E.O.; Av-Gay, Y. Deletion of the Mycobacterium tuberculosis pknH gene confers a higher bacillary load during the chronic phase of infection in BALB/c mice. J. Bacteriol., 2005, 187(16), 5751-5760. [http://dx.doi.org/10.1128/JB.187.16.5751-5760.2005]. [PMID: 16077122].
[90]
Kumar, D.; Narayanan, S.; Pkn, E. pknE, a serine/threonine kinase of Mycobacterium tuberculosis modulates multiple apoptotic paradigms. Infect. Genet. Evol., 2012, 12(4), 737-747. [http://dx.doi.org/10.1016/j.meegid.2011.09.008]. [PMID: 21945589].
[91]
Kumar, D.; Palaniyandi, K.; Challu, V.K.; Kumar, P.; Narayanan, S.; Pkn, E. PknE, a serine/threonine protein kinase from Mycobacterium tuberculosis has a role in adaptive responses. Arch. Microbiol., 2013, 195(1), 75-80. [http://dx.doi.org/10.1007/s00203-012-0848-4]. [PMID: 23108860].
[92]
Parandhaman, D.K.; Hanna, L.E.; Narayanan, S.; Pkn, E. PknE, a serine/threonine protein kinase of Mycobacterium tuberculosis initiates survival crosstalk that also impacts HIV coinfection. PLoS One, 2014, 9(1)e83541 [http://dx.doi.org/10.1371/journal.pone.0083541]. [PMID: 24421891].
[93]
Chao, J.D.; Papavinasasundaram, K.G.; Zheng, X.; Chávez-Steenbock, A.; Wang, X.; Lee, G.Q.; Av-Gay, Y. Convergence of Ser/Thr and two-component signaling to coordinate expression of the dormancy regulon in Mycobacterium tuberculosis. J. Biol. Chem., 2010, 285(38), 29239-29246. [http://dx.doi.org/10.1074/jbc.M110.132894]. [PMID: 20630871].
[94]
Gómez-Velasco, A.; Bach, H.; Rana, A.K.; Cox, L.R.; Bhatt, A.; Besra, G.S.; Av-Gay, Y. Disruption of the serine/threonine protein kinase H affects phthiocerol dimycocerosates synthesis in Mycobacterium tuberculosis. Microbiology, 2013, 159(Pt 4), 726-736. [http://dx.doi.org/10.1099/mic.0.062067-0]. [PMID: 23412844].
[95]
Venkatesan, A.; Palaniyandi, K.; Sharma, D.; Bisht, D.; Narayanan, S. Functional characterization of PknI-Rv2159c interaction in redox homeostasis of Mycobacterium tuberculosis. Front. Microbiol., 2016, 7, 1654. [http://dx.doi.org/10.3389/fmicb.2016.01654]. [PMID: 27818650].
[96]
Prisic, S.; Dankwa, S.; Schwartz, D.; Chou, M.F.; Locasale, J.W.; Kang, C.M.; Bemis, G.; Church, G.M.; Steen, H.; Husson, R.N. Extensive phosphorylation with overlapping specificity by Mycobacterium tuberculosis serine/threonine protein kinases. Proc. Natl. Acad. Sci. USA, 2010, 107(16), 7521-7526. [http://dx.doi.org/10.1073/pnas.0913482107]. [PMID: 20368441].
[97]
Chou, M.F.; Prisic, S.; Lubner, J.M.; Church, G.M.; Husson, R.N.; Schwartz, D. Using bacteria to determine protein kinase specificity and predict target substrates. PLoS One, 2012, 7(12)e52747 [http://dx.doi.org/10.1371/journal.pone.0052747]. [PMID: 23300758].
[98]
Sassetti, C.M.; Boyd, D.H.; Rubin, E.J. Genes required for mycobacterial growth defined by high density mutagenesis. Mol. Microbiol., 2003, 48(1), 77-84. [http://dx.doi.org/10.1046/j.1365-2958.2003.03425.x]. [PMID: 12657046].
[99]
Sipos, A.; Pató, J.; Székely, R.; Hartkoorn, R.C.; Kékesi, L.; Őrfi, L.; Szántai-Kis, C.; Mikušová, K.; Svetlíková, Z.; Korduláková, J.; Nagaraja, V.; Godbole, A.A.; Bush, N.; Collin, F.; Maxwell, A.; Cole, S.T.; Kéri, G. Lead selection and characterization of antitubercular compounds using the Nested Chemical Library. Tuberculosis (Edinb.), 2015, 95(Suppl. 1), S200-S206. [http://dx.doi.org/10.1016/j.tube.2015.02.028]. [PMID: 25801335].
[100]
Morales-Bayuelo, A. Molecular quantum similarity, chemical reactivity and database screening of 3D Pharmacophores of the protein kinases A, B and G from Mycobacterium tuberculosis. Molecules, 2017, 22(6)E1027 [http://dx.doi.org/10.3390/molecules22061027]. [PMID: 28635627].
[101]
Grangeasse, C.; Nessler, S.; Mijakovic, I. Bacterial tyrosine kinases: Evolution, Biological function and structural insights. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2012, 367(1602), 2640-2655. [http://dx.doi.org/10.1098/rstb.2011.0424]. [PMID: 22889913].
[102]
Hu, Y.; Conway, T.W. 2-Aminopurine inhibits the double-stranded RNA-dependent protein kinase both in vitro and in vivo. J. Interferon Res., 1993, 13(5), 323-328. [http://dx.doi.org/10.1089/jir.1993.13.323]. [PMID: 7905506].
[103]
Huang, J.T.; Schneider, R.J. Adenovirus inhibition of cellular protein synthesis is prevented by the drug 2-aminopurine. Proc. Natl. Acad. Sci. USA, 1990, 87(18), 7115-7119. [http://dx.doi.org/10.1073/pnas.87.18.7115]. [PMID: 1698291].
[104]
Bais, V.S.; Mohapatra, B.; Ahamad, N.; Boggaram, S.; Verma, S.; Prakash, B. Investigating the inhibitory potential of 2-Aminopurine metal complexes against serine/threonine protein kinases from Mycobacterium tuberculosis. Tuberculosis (Edinb.), 2018, 108, 47-55. [http://dx.doi.org/10.1016/j.tube.2017.10.005]. [PMID: 29523327].
[105]
Huang, S.; Qu, L.K.; Cuddihy, A.R.; Ragheb, R.; Taya, Y.; Koromilas, A.E. Protein kinase inhibitor 2-aminopurine overrides multiple genotoxic stress-induced cellular pathways to promote cell survival. Oncogene, 2003, 22(24), 3721-3733. [http://dx.doi.org/10.1038/sj.onc.1206490]. [PMID: 12802279].
[106]
Feng, L.; Geisselbrecht, Y.; Blanck, S.; Wilbuer, A.; Atilla-Gokcumen, G.E.; Filippakopoulos, P.; Kräling, K.; Celik, M.A.; Harms, K.; Maksimoska, J.; Marmorstein, R.; Frenking, G.; Knapp, S.; Essen, L.O.; Meggers, E. Structurally sophisticated octahedral metal complexes as highly selective protein kinase inhibitors. J. Am. Chem. Soc., 2011, 133(15), 5976-5986. [http://dx.doi.org/10.1021/ja1112996]. [PMID: 21446733].
[107]
Székely, R.; Wáczek, F.; Szabadkai, I.; Németh, G.; Hegymegi-Barakonyi, B.; Eros, D.; Szokol, B.; Pató, J.; Hafenbradl, D.; Satchell, J.; Saint-Joanis, B.; Cole, S.T.; Orfi, L.; Klebl, B.M.; Kéri, G. A novel drug discovery concept for tuberculosis: inhibition of bacterial and host cell signalling. Immunol. Lett., 2008, 116(2), 225-231. [http://dx.doi.org/10.1016/j.imlet.2007.12.005]. [PMID: 18258308].
[108]
Wehenkel, A.; Fernandez, P.; Bellinzoni, M.; Catherinot, V.; Barilone, N.; Labesse, G.; Jackson, M.; Alzari, P.M. The structure of PknB in complex with mitoxantrone, an ATP-competitive inhibitor, suggests a mode of protein kinase regulation in mycobacteria. FEBS Lett., 2006, 580(13), 3018-3022. [http://dx.doi.org/10.1016/j.febslet.2006.04.046]. [PMID: 16674948].
[109]
Drews, S.J.; Hung, F.; Av-Gay, Y. A protein kinase inhibitor as an antimycobacterial agent. FEMS Microbiol. Lett., 2001, 205(2), 369-374. [http://dx.doi.org/10.1111/j.1574-6968.2001.tb10974.x]. [PMID: 11750829].
[110]
Kumahara, E.; Ebihara, T.; Saffen, D. Protein kinase inhibitor H7 blocks the induction of immediate-early genes zif268 and c-fos by a mechanism unrelated to inhibition of protein kinase C but possibly related to inhibition of phosphorylation of RNA polymerase II. J. Biol. Chem., 1999, 274(15), 10430-10438. [http://dx.doi.org/10.1074/jbc.274.15.10430]. [PMID: 10187833].
[111]
Chapman, T.M.; Bouloc, N.; Buxton, R.S.; Chugh, J.; Lougheed, K.E.; Osborne, S.A.; Saxty, B.; Smerdon, S.J.; Taylor, D.L.; Whalley, D. Substituted aminopyrimidine protein kinase B (PknB) inhibitors show activity against Mycobacterium tuberculosis. Bioorg. Med. Chem. Lett., 2012, 22(9), 3349-3353. [http://dx.doi.org/10.1016/j.bmcl.2012.02.107]. [PMID: 22469702].
[112]
Lougheed, K.E.; Osborne, S.A.; Saxty, B.; Whalley, D.; Chapman, T.; Bouloc, N.; Chugh, J.; Nott, T.J.; Patel, D.; Spivey, V.L.; Kettleborough, C.A.; Bryans, J.S.; Taylor, D.L.; Smerdon, S.J.; Buxton, R.S. Effective inhibitors of the essential kinase PknB and their potential as anti-mycobacterial agents. Tuberculosis (Edinb.), 2011, 91(4), 277-286. [http://dx.doi.org/10.1016/j.tube.2011.03.005]. [PMID: 21482481].
[113]
Palomino, J.C.; Ramos, D.F.; da Silva, P.A. New anti-tuberculosis drugs: Strategies, sources and new molecules. Curr. Med. Chem., 2009, 16(15), 1898-1904. [http://dx.doi.org/10.2174/092986709788186066]. [PMID: 19442153].
[114]
Copp, B.R.; Pearce, A.N. Natural product growth inhibitors of Mycobacterium tuberculosis. Nat. Prod. Rep., 2007, 24(2), 278-297. [http://dx.doi.org/10.1039/B513520F]. [PMID: 17389998].
[115]
Gibbons, S.; Fallah, F.; Wright, C.W. Cryptolepine hydrochloride:A potent antimycobacterial alkaloid derived from Cryptolepis sanguinolenta. Phytother. Res., 2003, 17(4), 434-436. [http://dx.doi.org/10.1002/ptr.1284]. [PMID: 12722159].
[116]
Martinez, J.; Silván, A.M.; Abad, M.J.; Bermejo, P.; Villar, A.; Söllhuber, M. Isolation of two flavonoids from Tanacetum microphyllum as PMA-induced ear edema inhibitors. J. Nat. Prod., 1997, 60(2), 142-144. [http://dx.doi.org/10.1021/np960163u]. [PMID: 9051913].
[117]
Suksamrarn, S.; Suwannapoch, N.; Phakhodee, W.; Thanuhiranlert, J.; Ratananukul, P.; Chimnoi, N.; Suksamrarn, A. Antimycobacterial activity of prenylated xanthones from the fruits of Garcinia mangostana. Chem. Pharm. Bull. (Tokyo), 2003, 51(7), 857-859. [http://dx.doi.org/10.1248/cpb.51.857]. [PMID: 12843596].
[118]
Appunni, S.; Rajisha, P.M.; Rubens, M.; Chandana, S.; Singh, H.N.; Swarup, V.; Targeting Pkn, B. Targeting PknB, an eukaryotic-like serine/threonine protein kinase of Mycobacterium tuberculosis with phytomolecules. Comput. Biol. Chem., 2017, 67, 200-204. [http://dx.doi.org/10.1016/j.compbiolchem.2017.01.003]. [PMID: 28131886].
[119]
Sharma, A.; Dutta, P.; Sharma, M.; Rajput, N.K.; Dodiya, B.; Georrge, J.J.; Kholia, T.; Bhardwaj, A.; Consortium, O. BioPhytMol: A drug discovery community resource on anti-mycobacterial phytomolecules and plant extracts. J. Cheminform., 2014, 6(1), 46. [http://dx.doi.org/10.1186/s13321-014-0046-2]. [PMID: 25360160].
[120]
Xu, J.; Wang, J.X.; Zhou, J.M.; Xu, C.L.; Huang, B.; Xing, Y.; Wang, B.; Luo, R.; Wang, Y.C.; You, X.F.; Lu, Y.; Yu, L.Y. A novel protein kinase inhibitor IMB-YH-8 with anti-tuberculosis activity. Sci. Rep., 2017, 7(1), 5093. [http://dx.doi.org/10.1038/s41598-017-04108-7]. [PMID: 28698545].
[121]
Mieczkowski, C.; Iavarone, A.T.; Alber, T. Auto-activation mechanism of the Mycobacterium tuberculosis PknB receptor Ser/Thr kinase. EMBO J., 2008, 27(23), 3186-3197. [http://dx.doi.org/10.1038/emboj.2008.236]. [PMID: 19008858].
[122]
Dasgupta, A.; Datta, P.; Kundu, M.; Basu, J. The serine/threonine kinase PknB of Mycobacterium tuberculosis phosphorylates PBPA, a penicillin-binding protein required for cell division. Microbiology, 2006, 152(Pt 2), 493-504. [http://dx.doi.org/10.1099/mic.0.28630-0]. [PMID: 16436437].
[123]
Wang, T.; Bemis, G.; Hanzelka, B.; Zuccola, H.; Wynn, M.; Moody, C.S.; Green, J.; Locher, C.; Liu, A.; Gao, H.; Xu, Y.; Wang, S.; Wang, J.; Bennani, Y.L.; Thomson, J.A.; Müh, U. Mtb PKNA/PKNB dual inhibition provides selectivity advantages for inhibitor design to minimize host kinase interactions. ACS Med. Chem. Lett., 2017, 8(12), 1224-1229. [http://dx.doi.org/10.1021/acsmedchemlett.7b00239]. [PMID: 29259738].
[124]
Zahrt, T.C.; Deretic, V. Mycobacterium tuberculosis signal transduction system required for persistent infections. Proc. Natl. Acad. Sci. USA, 2001, 98(22), 12706-12711. [http://dx.doi.org/10.1073/pnas.221272198]. [PMID: 11675502].
[125]
Pieters, J. Evasion of host cell defense mechanisms by pathogenic bacteria. Curr. Opin. Immunol., 2001, 13(1), 37-44. [http://dx.doi.org/10.1016/S0952-7915(00)00179-5]. [PMID: 11154915].
[126]
Chen, D.; Ma, S.; He, L.; Yuan, P.; She, Z.; Lu, Y. Sclerotiorin inhibits protein kinase G from Mycobacterium tuberculosis and impairs mycobacterial growth in macrophages. Tuberculosis (Edinb.), 2017, 103, 37-43. [http://dx.doi.org/10.1016/j.tube.2017.01.001]. [PMID: 28237032].
[127]
Anand, N.; Singh, P.; Sharma, A.; Tiwari, S.; Singh, V.; Singh, D.K.; Srivastava, K.K.; Singh, B.N.; Tripathi, R.P. Synthesis and evaluation of small libraries of triazolylmethoxy chalcones, flavanones and 2-aminopyrimidines as inhibitors of mycobacterial FAS-II and PknG. Bioorg. Med. Chem., 2012, 20(17), 5150-5163. [http://dx.doi.org/10.1016/j.bmc.2012.07.009]. [PMID: 22854194].
[128]
Chidananda, C.; Rao, L.J.; Sattur, A.P. Sclerotiorin, from Penicillium frequentans, a potent inhibitor of aldose reductase. Biotechnol. Lett., 2006, 28(20), 1633-1636. [http://dx.doi.org/10.1007/s10529-006-9133-4]. [PMID: 16900332].
[129]
Chidananda, C.; Sattur, A.P. Sclerotiorin, a novel inhibitor of lipoxygenase from Penicillium frequentans. J. Agric. Food Chem., 2007, 55(8), 2879-2883. [http://dx.doi.org/10.1021/jf062032x]. [PMID: 17385879].
[130]
Somoza, A.D.; Lee, K.H.; Chiang, Y.M.; Oakley, B.R.; Wang, C.C. Reengineering an azaphilone biosynthesis pathway in Aspergillus nidulans to create lipoxygenase inhibitors. Org. Lett., 2012, 14(4), 972-975. [http://dx.doi.org/10.1021/ol203094k]. [PMID: 22296232].
[131]
Wienken, C.J.; Baaske, P.; Rothbauer, U.; Braun, D.; Duhr, S. Protein-binding assays in biological liquids using microscale thermophoresis. Nat. Commun., 2010, 1, 100. [http://dx.doi.org/10.1038/ncomms1093]. [PMID: 20981028].
[132]
Singh, N.; Tiwari, S.; Srivastava, K.K.; Siddiqi, M.I. Identification of novel inhibitors of Mycobacterium tuberculosis PknG using pharmacophore based virtual screening, docking, molecular dynamics simulation, and their biological evaluation. J. Chem. Inf. Model., 2015, 55(6), 1120-1129. [http://dx.doi.org/10.1021/acs.jcim.5b00150]. [PMID: 25965448].
[133]
Kanehiro, Y.; Tomioka, H.; Pieters, J.; Tatano, Y.; Kim, H.; Iizasa, H.; Yoshiyama, H. Identification of novel mycobacterial inhibitors against mycobacterial protein kinase G. Front. Microbiol., 2018, 9, 1517. [http://dx.doi.org/10.3389/fmicb.2018.01517]. [PMID: 30050511].
[134]
Ravala, S.K.; Singh, S.; Yadav, G.S.; Kumar, S.; Karthikeyan, S.; Chakraborti, P.K. Evidence that phosphorylation of threonine in the GT motif triggers activation of PknA, a eukaryotic-type serine/threonine kinase from Mycobacterium tuberculosis. FEBS J., 2015, 282(8), 1419-1431. [http://dx.doi.org/10.1111/febs.13230]. [PMID: 25665034].
[135]
Cavazos, A.; Prigozhin, D.M.; Alber, T. Structure of the sensor domain of Mycobacterium tuberculosis PknH receptor kinase reveals a conserved binding cleft. J. Mol. Biol., 2012, 422(4), 488-494. [http://dx.doi.org/10.1016/j.jmb.2012.06.011]. [PMID: 22727744].