[1]
Lu, X.Y.; You, Q.D.; Chen, Y.D. Recent progress in the Identification and Development of InhA direct inhibitors of Mycobacterium tuberculosis. Mini Rev. Med. Chem., 2010, 10(3), 182-193.
[2]
Heath, R.J.; White, S.W.; Rock, C.O. Inhibitors of fatty acid synthesis as antimicrobial chemotherapeutics. Appl. Microbiol. Biotechnol., 2002, 58(6), 695-703. [http://dx.doi.org/10.1007/s00253-001-0918-z]. [PMID: 12021787].
[3]
Kuck, N.A.; Peets, E.A.; Forbes, M. Mode of action of ethambutol on Mycobacterium tuberculosis, strain H37R V. Am. Rev. Respir. Dis., 1963, 87(6), 905-906. [PMID: 13927289].
[4]
Timmins, G.S.; Deretic, V. Mechanisms of action of isoniazid. Mol. Microbiol., 2006, 62(5), 1220-1227. [http://dx.doi.org/10.1111/j.1365-2958.2006.05467.x]. [PMID: 17074073].
[5]
(a)Barryiii, C.E.; Lee, R.E.; Mdluli, K.; Sampson, A.E.; Schoeder, B.G.; Slayden, R.A.; Prog, Y. Yuan. Mycolic acids, structure, biosynthesis and physiological functions. Prog. Lipids Res., 1998, synthesis and physiological functions. Prog. Lipids Res.1998. 37, 143-179.
(b)Brennan, P.J. Structure, function and biogenesis of the cell wall of Mycobacterium tuberculosis. Tuberculosis (Edinb.), 2003, 83, 91-97. [PMID].[12758196]
[6]
Asselineau, J.; Lanéelle, G. Mycobacterial lipids: A historical perspective. Front. Biosci., 1998, 3, e164-e174. [http://dx.doi.org/10.2741/A373]. [PMID: 9751667].
[7]
George, K.M.; Yuan, Y.; Sherman, D.R.; Barry, C.E., III The biosynthesis of cyclopropanated mycolic acids in Mycobacterium tuberculosis. Identification and functional analysis of CMAS-2. J. Biol. Chem., 1995, 270(45), 27292-27298. [http://dx.doi.org/10.1074/jbc.270.45.27292]. [PMID: 7592990].
[8]
Glickman, M.S. The mmaA2 gene of Mycobacterium tuberculosis encodes the distal cyclopropane synthase of the alpha-mycolic acid. J. Biol. Chem., 2003, 278(10), 7844-7849. [http://dx.doi.org/10.1074/jbc.M212458200]. [PMID: 12502719].
[9]
Heath, R.J.; Rock, C.O. Fatty acid biosynthesis as a target for novel antibacterials. Curr. Opin. Investig. Drugs, 2004, 5(2), 146-153. [PMID: 15043388].
[10]
Lu, H. Tonge,P.J. Inhibitors of FabH, an enzyme drug target in the bacterials. Acc. Chem. Res., 2008, 41(1), 11-20. [http://dx.doi.org/10.1021/ar700156e]. [PMID: 18193820].
[11]
Tonge, P.J.; Kisker, C.; Slayden, R.A. The SeeDs approach: Integrating fragments into drug discovery. Curr. Top. Med. Chem., 2007, 7(5), 489-498. [http://dx.doi.org/10.2174/156802607780059781]. [PMID: 17346194].
[12]
Balaji, N.V.; Hari, Babu. B.; Subbaraju, G.V.; Purna Nagasree, K.; Murali Krishna Kumar, M. Synthesis, screening and docking analysis of hispolon analogs as potential antitubercular agents. Bioorg. Med. Chem. Lett., 2017, 27(1), 11-15. [http://dx.doi.org/10.1016/j.bmcl.2016.11.047]. [PMID: 27894872].
[13]
Qiu, X.; Janson, C.A.; Konstantinidis, A.K.; Nwagwu, S.; Silverman, C.; Smith, W.W.; Khandekar, S.; Lonsdale, J.; Abdel-Meguid, S.S. Crystal structure of beta-ketoacyl-acyl carrier protein synthase III. A key condensing enzyme in bacterial fatty acid biosynthesis. J. Biol. Chem., 1999, 274(51), 36465-36471. [http://dx.doi.org/10.1074/jbc.274.51.36465]. [PMID: 10593943].
[14]
Choi, K.H.; Kremer, L.; Besra, G.S.; Rock, C.O. Identification and substrate specificity of beta -ketoacyl (acyl carrier protein) synthase III (mtFabH) from Mycobacterium tuberculosis. J. Biol. Chem., 2000, 275(36), 28201-28207. [PMID: 10840036].
[15]
Kremer, L.; Douglas, J.D.; Baulard, A.R.; Morehouse, C.; Guy, M.R.; Alland, D.; Dover, L.G.; Lakey, J.H.; Jacobs, W.R., Jr; Brennan, P.J.; Minnikin, D.E.; Besra, G.S. Thiolactomycin and related analogues as novel anti-mycobacterial agents targeting KasA and KasB condensing enzymes in Mycobacterium tuberculosis. J. Biol. Chem., 2000, 275(22), 16857-16864. [http://dx.doi.org/10.1074/jbc.M000569200]. [PMID: 10747933].
[16]
Vilchèze, C.; Morbidoni, H.R.; Weisbrod, T.R.; Iwamoto, H.; Kuo, M.; Sacchettini, J.C.; Jacobs, W.R., Jr Inactivation of the inhA-encoded fatty acid synthase II (FASII) enoyl-acyl carrier protein reductase induces accumulation of the FASI end products and cell lysis of Mycobacterium smegmatis. J. Bacteriol., 2000, 182(14), 4059-4067. [http://dx.doi.org/10.1128/JB.182.14.4059-4067.2000]. [PMID: 10869086].
[17]
Slayden, R.A.; Lee, R.E.; Barry, C.E. III Isoniazid affects multiple components of the type II fatty acid synthase system of Mycobacterium tuberculosis. Mol. Microbiol., 2000, 38(3), 514-525. [http://dx.doi.org/10.1046/j.1365-2958.2000.02145.x]. [PMID: 11069675].
[18]
Garg, H.G.; Singh, P.P. New compounds: potential antidiabetics. IV. 1-(2,4-Dinitrophenyl)-3,5-diphenyl-4-arylazopyrazoles and 1-carbamoyl-3,5-diphenyl-4-arylazopyrazoles. J. Pharm. Sci., 1970, 59(6), 876-877. [http://dx.doi.org/10.1002/jps.2600590641]. [PMID: 5423103].
[19]
Farghaly, A.M.; Soliman, F.S.; Semary, M.M. Polysubstituted pyrazoles, part 4: Synthesis and anti-inflammatory activity of trisubstituted pyrimidines and triazines. J. Pharm. (Cairo), 2001, 56(1), 28-32. [PMID: 11210663].
[20]
Sofia, R.D.; Diamantis, W.; Ludwig, B.J. Comparative anti-inflammatory, analgesic, and antipyretic activities of 7-chloro-3,3a-dihydro-2-methyl-2H,9H-isoxazolo-(3,2-b)(1,3)-benzoxazin-9-one and 5-chlorosalicylic acid in rats. J. Pharm. Sci., 1975, 64(8), 1321-1324. [http://dx.doi.org/10.1002/jps.2600640813]. [PMID: 1151704].
[21]
Lee, H.W.; Kim, B.Y.; Ahn, J.B.; Kang, S.K.; Lee, J.H.; Shin, J.S.; Ahn, S.K.; Lee, S.J.; Yoon, S.S. Molecular design, synthesis, and hypoglycemic and hypolipidemic activities of novel pyrimidine derivatives having thiazolidinedione. Eur. J. Med. Chem., 2005, 40(9), 862-874. [http://dx.doi.org/10.1016/j.ejmech.2005.03.019]. [PMID: 15908051].
[22]
Bennett, G.B.; Mason, R.B.; Alden, L.J.J.; Roach, J.B., Jr Synthesis and antiinflammatory activity of trisubstituted pyrimidines and triazines. J. Med. Chem., 1978, 21(7), 623-628. [http://dx.doi.org/10.1021/jm00205a006]. [PMID: 671461].
[23]
Lee, Y.S.; Kim, B.H. Heterocyclic nucleoside analogues: design and synthesis of antiviral, modified nucleosides containing isoxazole heterocycles. Bioorg. Med. Chem. Lett., 2002, 12(10), 1395-1397. [http://dx.doi.org/10.1016/S0960-894X(02)00182-8]. [PMID: 11992785].
[24]
Pancic, F.; Steinberg, B.A.; Diana, G.D.; Carabateas, P.M.; Gorman, W.G.; Came, P.E. Antiviral activity of Win 41258-3, a pyrazole compound, against herpes simplex virus in mouse genital infection and in guinea pig skin infection. Antimicrob. Agents Chemother., 1981, 19(3), 470-476. [http://dx.doi.org/10.1128/AAC.19.3.470]. [PMID: 7247370].
[25]
Holý, A.; Votruba, I.; Masojídková, M.; Andrei, G.; Snoeck, R.; Naesens, L.; De Clercq, E.; Balzarini, J. 6-[2(Phosphonomethoxy)alkoxy]pyrimidines with antiviral activity. J. Med. Chem., 2002, 45(9), 1918-1929. [http://dx.doi.org/10.1021/jm011095y]. [PMID: 11960502].
[26]
Kudlacz, E.; Whitney, C.; Andresen, C.; Duplantier, A.; Beckius, G.; Chupak, L.; Klein, A.; Kraus, K.; Milici, A. Pulmonary eosinophilia in a murine model of allergic inflammation is attenuated by small molecule alpha4beta1 antagonists. J. Pharmacol. Exp. Ther., 2002, 301(2), 747-752. [http://dx.doi.org/10.1124/jpet.301.2.747]. [PMID: 11961081].
[27]
Naito, H.; Sugimori, M.; Mitsui, I.; Nakamura, Y.; Iwahana, M.; Ishii, M.; Hirotani, K.; Kumazawa, E.; Ejima, A. Synthesis and antitumor activity of novel pyrimidinyl pyrazole derivatives. Chem. Pharm. Bull. (Tokyo), 1999, 47(12), 1679-1684. [http://dx.doi.org/10.1248/cpb.47.1679]. [PMID: 10748712].
[28]
Diana, P.; Carbone, A.; Barraja, P.; Kelter, G.; Fiebig, H.H.; Cirrincione, G. Synthesis and antitumor activity of 2,5-bis(3′-indolyl)-furans and 3,5-bis(3′-indolyl)-isoxazoles, nortopsentin analogues. Bioorg. Med. Chem., 2010, 18(12), 4524-4529. [http://dx.doi.org/10.1016/j.bmc.2010.04.061]. [PMID: 20472437].
[29]
Jeong, L.S.; Zhao, L.X.; Choi, W.J.; Pal, S.; Park, Y.H.; Lee, S.K.; Chun, M.W.; Lee, Y.B.; Ahn, C.H.; Moon, H.R. Synthesis and antitumor activity of fluorocyclopentenyl-pyrimidines. Nucleosides Nucleotides Nucleic Acids, 2007, 26(6-7), 713-716. [http://dx.doi.org/10.1080/15257770701490852]. [PMID: 18066886].
[30]
Bolvig, T.; Larsson, O.M.; Pickering, D.S.; Nelson, N.; Falch, E.; Krogsgaard-Larsen, P.; Schousboe, A. Action of bicyclic isoxazole GABA analogues on GABA transporters and its relation to anticonvulsant activity. Eur. J. Pharmacol., 1999, 375(1-3), 367-374. [http://dx.doi.org/10.1016/S0014-2999(99)00263-0]. [PMID: 10443590].
[31]
Abdel-Aziz, M. Abuo-Rahma, Gel-D.; Hassan, A.A. Synthesis of novel pyrazole derivatives and evaluation of their antidepressant and anticonvulsant activities. Eur. J. Med. Chem., 2009, 44(9), 3480-3487. [http://dx.doi.org/10.1016/j.ejmech.2009.01.032]. [PMID: 19268406].
[32]
Panda, S.S.; Chowdary, P.V.R.; Jayashree, B.S. Synthesis, anti-inflammatory and antibacterial activity of novel idolyl-isoxazoles. Indian J. Pharm. Sci., 2009, 71(6), 684-687. [http://dx.doi.org/10.4103/0250-474X.59554]. [PMID: 20376225].
[33]
Solankee, A.; Solankee, S.; Patel, G. Synthesis of and antibacterial evalution of some novel isoxazole and pyrazoline derivaties. Rasayan J. Chem., 2008, 1(3), 581-585.
[34]
Berghot, M.A.; Moawad, E.B. Convergent synthesis and antibacterial activity of pyrazole and pyrazoline derivatives of diazepam. Eur. J. Pharm. Sci., 2003, 20(2), 173-179. [http://dx.doi.org/10.1016/S0928-0987(03)00162-3]. [PMID: 14550883].
[35]
Ramiz, M.M.; El-Sayed, W.A.; El-Tantawy, A.I.; Abdel-Rahman, A.A. Antimicrobial activity of new 4,6-disubstituted pyrimidine, pyrazoline, and pyran derivatives. Arch. Pharm. Res., 2010, 33(5), 647-654. [http://dx.doi.org/10.1007/s12272-010-0501-1]. [PMID: 20512460].
[36]
Flynn, D.L.; Belliotti, T.R.; Boctor, A.M.; Connor, D.T.; Kostlan, C.R.; Nies, D.E.; Ortwine, D.F.; Schrier, D.J.; Sircar, J.C.; Belliotti, T.T. Styrylpyrazoles, styrylisoxazoles, and styrylisothiazoles. Novel 5-lipoxygenase and cyclooxygenase inhibitors. J. Med. Chem., 1991, 34(2), 518-525. [http://dx.doi.org/10.1021/jm00106a006]. [PMID: 1847426].
[37]
Balaji, N.V.; Ramani, M.V.; Viana, A.G.; Sanglard, L.P.; White, J.; Mulabagal, V.; Lee, C.; Gana, T.J.; Egiebor, N.O.; Subbaraju, G.V.; Tiwari, A.K. Design, synthesis and in vitro cell-based evaluation of the anti-cancer activities of hispolon analogs. Bioorg. Med. Chem., 2015, 23(9), 2148-2158. [http://dx.doi.org/10.1016/j.bmc.2015.03.002]. [PMID: 25842364].
[38]
Claramunt, R.M.; Bouissane, L.; Cabildo, M.P.; Cornago, M.P.; Elguero, J.; Radziwon, A.; Medina, C. Synthesis and biological evaluation of curcuminoid pyrazoles as new therapeutic agents in inflammatory bowel disease: Effect on matrix metalloproteinases. Bioorg. Med. Chem., 2009, 17(3), 1290-1296. [http://dx.doi.org/10.1016/j.bmc.2008.12.029]. [PMID: 19128977].
[39]
Shaikh, S.A.; Barik, A.; Singh, B.G.; Modukuri, R.V.; Balaji, N.V.; Subbaraju, G.V.; Naik, D.B.; Priyadarsini, K.I. Free radical reactions of isoxazole and pyrazole derivatives of hispolon: kinetics correlated with molecular descriptors. Free Radic. Res., 2016, 50(12), 1361-1373. [http://dx.doi.org/10.1080/10715762.2016.1247955]. [PMID: 27733076].
[40]
Scarsdale, J.N.; Kazanina, G.; He, X.; Reynolds, K.A.; Wright, H.T. Crystal structure of the Mycobacterium tuberculosis β-ketoacyl-acyl carrier protein synthase III. J. Biol. Chem., 2001, 276(23), 20516-20522. [http://dx.doi.org/10.1074/jbc.M010762200]. [PMID: 11278743].