Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Research Article

Synthesis, Screening and Docking Analysis of Hispolon Pyrazoles and Isoxazoles as Potential Antitubercular Agents

Author(s): Neduri V. Balaji, Bollikolla HariBabu*, Vanga U. Rao, Gottumukkala V. Subbaraju, Kurre P. Nagasree and Muthyala M.K. Kumar*

Volume 19, Issue 9, 2019

Page: [662 - 682] Pages: 21

DOI: 10.2174/1568026619666190305124954

Price: $65

Abstract

Background: Hispolons are natural products known to possess cytoprotective, antioxidant and anti-cancer activities. We have found recently anti TB activity in these compounds. Efforts were made to optimize the structure with bioisosteric replacement of 1,3-diketo functional group with the corresponding pyrazole and isoxazole moieties.

Objective: The goal of this paper is designing new hispolon isoxazole and pyrazole and the evaluation of their biological activities.

Methods: The designed compounds were prepared using classical organic synthesis methods. The anti- TB activity was evaluated using the MABA method.

Results: A total of 44 compounds were synthesized (1a- 1v and 2a-2v) and screened for anti TB activity and antibacterial activity. The compounds 1b and 1n showed the highest potency with MIC 1.6µg/mL against M. tuberculosis H37Rv.

Conclusion: Bioisosteric replacement of 1,3-diketo functional group in hispolons with pyrazole or isoxazole rings have resulted in potent anti TB molecules. Docking simulations of these compounds on mtFabH enzyme resulted in a clear understanding of bioactivity profiles of these compounds. Docking scores are in good agreement with the anti TB activity obtained for these compounds. Computational studies and in vitro screening results indicate mtFabH as the probable target of these compounds.

Keywords: Isoxazole, Pyrazole, Antitubercular, Antibacterial, mtbFabH, Ketoacyl synthase inhibition.

Graphical Abstract

[1]
Lu, X.Y.; You, Q.D.; Chen, Y.D. Recent progress in the Identification and Development of InhA direct inhibitors of Mycobacterium tuberculosis. Mini Rev. Med. Chem., 2010, 10(3), 182-193.
[2]
Heath, R.J.; White, S.W.; Rock, C.O. Inhibitors of fatty acid synthesis as antimicrobial chemotherapeutics. Appl. Microbiol. Biotechnol., 2002, 58(6), 695-703. [http://dx.doi.org/10.1007/s00253-001-0918-z]. [PMID: 12021787].
[3]
Kuck, N.A.; Peets, E.A.; Forbes, M. Mode of action of ethambutol on Mycobacterium tuberculosis, strain H37R V. Am. Rev. Respir. Dis., 1963, 87(6), 905-906. [PMID: 13927289].
[4]
Timmins, G.S.; Deretic, V. Mechanisms of action of isoniazid. Mol. Microbiol., 2006, 62(5), 1220-1227. [http://dx.doi.org/10.1111/j.1365-2958.2006.05467.x]. [PMID: 17074073].
[5]
(a)Barryiii, C.E.; Lee, R.E.; Mdluli, K.; Sampson, A.E.; Schoeder, B.G.; Slayden, R.A.; Prog, Y. Yuan. Mycolic acids, structure, biosynthesis and physiological functions. Prog. Lipids Res., 1998, synthesis and physiological functions. Prog. Lipids Res.1998. 37, 143-179.
(b)Brennan, P.J. Structure, function and biogenesis of the cell wall of Mycobacterium tuberculosis. Tuberculosis (Edinb.), 2003, 83, 91-97. [PMID].[12758196]
[6]
Asselineau, J.; Lanéelle, G. Mycobacterial lipids: A historical perspective. Front. Biosci., 1998, 3, e164-e174. [http://dx.doi.org/10.2741/A373]. [PMID: 9751667].
[7]
George, K.M.; Yuan, Y.; Sherman, D.R.; Barry, C.E., III The biosynthesis of cyclopropanated mycolic acids in Mycobacterium tuberculosis. Identification and functional analysis of CMAS-2. J. Biol. Chem., 1995, 270(45), 27292-27298. [http://dx.doi.org/10.1074/jbc.270.45.27292]. [PMID: 7592990].
[8]
Glickman, M.S. The mmaA2 gene of Mycobacterium tuberculosis encodes the distal cyclopropane synthase of the alpha-mycolic acid. J. Biol. Chem., 2003, 278(10), 7844-7849. [http://dx.doi.org/10.1074/jbc.M212458200]. [PMID: 12502719].
[9]
Heath, R.J.; Rock, C.O. Fatty acid biosynthesis as a target for novel antibacterials. Curr. Opin. Investig. Drugs, 2004, 5(2), 146-153. [PMID: 15043388].
[10]
Lu, H. Tonge,P.J. Inhibitors of FabH, an enzyme drug target in the bacterials. Acc. Chem. Res., 2008, 41(1), 11-20. [http://dx.doi.org/10.1021/ar700156e]. [PMID: 18193820].
[11]
Tonge, P.J.; Kisker, C.; Slayden, R.A. The SeeDs approach: Integrating fragments into drug discovery. Curr. Top. Med. Chem., 2007, 7(5), 489-498. [http://dx.doi.org/10.2174/156802607780059781]. [PMID: 17346194].
[12]
Balaji, N.V.; Hari, Babu. B.; Subbaraju, G.V.; Purna Nagasree, K.; Murali Krishna Kumar, M. Synthesis, screening and docking analysis of hispolon analogs as potential antitubercular agents. Bioorg. Med. Chem. Lett., 2017, 27(1), 11-15. [http://dx.doi.org/10.1016/j.bmcl.2016.11.047]. [PMID: 27894872].
[13]
Qiu, X.; Janson, C.A.; Konstantinidis, A.K.; Nwagwu, S.; Silverman, C.; Smith, W.W.; Khandekar, S.; Lonsdale, J.; Abdel-Meguid, S.S. Crystal structure of beta-ketoacyl-acyl carrier protein synthase III. A key condensing enzyme in bacterial fatty acid biosynthesis. J. Biol. Chem., 1999, 274(51), 36465-36471. [http://dx.doi.org/10.1074/jbc.274.51.36465]. [PMID: 10593943].
[14]
Choi, K.H.; Kremer, L.; Besra, G.S.; Rock, C.O. Identification and substrate specificity of beta -ketoacyl (acyl carrier protein) synthase III (mtFabH) from Mycobacterium tuberculosis. J. Biol. Chem., 2000, 275(36), 28201-28207. [PMID: 10840036].
[15]
Kremer, L.; Douglas, J.D.; Baulard, A.R.; Morehouse, C.; Guy, M.R.; Alland, D.; Dover, L.G.; Lakey, J.H.; Jacobs, W.R., Jr; Brennan, P.J.; Minnikin, D.E.; Besra, G.S. Thiolactomycin and related analogues as novel anti-mycobacterial agents targeting KasA and KasB condensing enzymes in Mycobacterium tuberculosis. J. Biol. Chem., 2000, 275(22), 16857-16864. [http://dx.doi.org/10.1074/jbc.M000569200]. [PMID: 10747933].
[16]
Vilchèze, C.; Morbidoni, H.R.; Weisbrod, T.R.; Iwamoto, H.; Kuo, M.; Sacchettini, J.C.; Jacobs, W.R., Jr Inactivation of the inhA-encoded fatty acid synthase II (FASII) enoyl-acyl carrier protein reductase induces accumulation of the FASI end products and cell lysis of Mycobacterium smegmatis. J. Bacteriol., 2000, 182(14), 4059-4067. [http://dx.doi.org/10.1128/JB.182.14.4059-4067.2000]. [PMID: 10869086].
[17]
Slayden, R.A.; Lee, R.E.; Barry, C.E. III Isoniazid affects multiple components of the type II fatty acid synthase system of Mycobacterium tuberculosis. Mol. Microbiol., 2000, 38(3), 514-525. [http://dx.doi.org/10.1046/j.1365-2958.2000.02145.x]. [PMID: 11069675].
[18]
Garg, H.G.; Singh, P.P. New compounds: potential antidiabetics. IV. 1-(2,4-Dinitrophenyl)-3,5-diphenyl-4-arylazopyrazoles and 1-carbamoyl-3,5-diphenyl-4-arylazopyrazoles. J. Pharm. Sci., 1970, 59(6), 876-877. [http://dx.doi.org/10.1002/jps.2600590641]. [PMID: 5423103].
[19]
Farghaly, A.M.; Soliman, F.S.; Semary, M.M. Polysubstituted pyrazoles, part 4: Synthesis and anti-inflammatory activity of trisubstituted pyrimidines and triazines. J. Pharm. (Cairo), 2001, 56(1), 28-32. [PMID: 11210663].
[20]
Sofia, R.D.; Diamantis, W.; Ludwig, B.J. Comparative anti-inflammatory, analgesic, and antipyretic activities of 7-chloro-3,3a-dihydro-2-methyl-2H,9H-isoxazolo-(3,2-b)(1,3)-benzoxazin-9-one and 5-chlorosalicylic acid in rats. J. Pharm. Sci., 1975, 64(8), 1321-1324. [http://dx.doi.org/10.1002/jps.2600640813]. [PMID: 1151704].
[21]
Lee, H.W.; Kim, B.Y.; Ahn, J.B.; Kang, S.K.; Lee, J.H.; Shin, J.S.; Ahn, S.K.; Lee, S.J.; Yoon, S.S. Molecular design, synthesis, and hypoglycemic and hypolipidemic activities of novel pyrimidine derivatives having thiazolidinedione. Eur. J. Med. Chem., 2005, 40(9), 862-874. [http://dx.doi.org/10.1016/j.ejmech.2005.03.019]. [PMID: 15908051].
[22]
Bennett, G.B.; Mason, R.B.; Alden, L.J.J.; Roach, J.B., Jr Synthesis and antiinflammatory activity of trisubstituted pyrimidines and triazines. J. Med. Chem., 1978, 21(7), 623-628. [http://dx.doi.org/10.1021/jm00205a006]. [PMID: 671461].
[23]
Lee, Y.S.; Kim, B.H. Heterocyclic nucleoside analogues: design and synthesis of antiviral, modified nucleosides containing isoxazole heterocycles. Bioorg. Med. Chem. Lett., 2002, 12(10), 1395-1397. [http://dx.doi.org/10.1016/S0960-894X(02)00182-8]. [PMID: 11992785].
[24]
Pancic, F.; Steinberg, B.A.; Diana, G.D.; Carabateas, P.M.; Gorman, W.G.; Came, P.E. Antiviral activity of Win 41258-3, a pyrazole compound, against herpes simplex virus in mouse genital infection and in guinea pig skin infection. Antimicrob. Agents Chemother., 1981, 19(3), 470-476. [http://dx.doi.org/10.1128/AAC.19.3.470]. [PMID: 7247370].
[25]
Holý, A.; Votruba, I.; Masojídková, M.; Andrei, G.; Snoeck, R.; Naesens, L.; De Clercq, E.; Balzarini, J. 6-[2(Phosphonomethoxy)alkoxy]pyrimidines with antiviral activity. J. Med. Chem., 2002, 45(9), 1918-1929. [http://dx.doi.org/10.1021/jm011095y]. [PMID: 11960502].
[26]
Kudlacz, E.; Whitney, C.; Andresen, C.; Duplantier, A.; Beckius, G.; Chupak, L.; Klein, A.; Kraus, K.; Milici, A. Pulmonary eosinophilia in a murine model of allergic inflammation is attenuated by small molecule alpha4beta1 antagonists. J. Pharmacol. Exp. Ther., 2002, 301(2), 747-752. [http://dx.doi.org/10.1124/jpet.301.2.747]. [PMID: 11961081].
[27]
Naito, H.; Sugimori, M.; Mitsui, I.; Nakamura, Y.; Iwahana, M.; Ishii, M.; Hirotani, K.; Kumazawa, E.; Ejima, A. Synthesis and antitumor activity of novel pyrimidinyl pyrazole derivatives. Chem. Pharm. Bull. (Tokyo), 1999, 47(12), 1679-1684. [http://dx.doi.org/10.1248/cpb.47.1679]. [PMID: 10748712].
[28]
Diana, P.; Carbone, A.; Barraja, P.; Kelter, G.; Fiebig, H.H.; Cirrincione, G. Synthesis and antitumor activity of 2,5-bis(3′-indolyl)-furans and 3,5-bis(3′-indolyl)-isoxazoles, nortopsentin analogues. Bioorg. Med. Chem., 2010, 18(12), 4524-4529. [http://dx.doi.org/10.1016/j.bmc.2010.04.061]. [PMID: 20472437].
[29]
Jeong, L.S.; Zhao, L.X.; Choi, W.J.; Pal, S.; Park, Y.H.; Lee, S.K.; Chun, M.W.; Lee, Y.B.; Ahn, C.H.; Moon, H.R. Synthesis and antitumor activity of fluorocyclopentenyl-pyrimidines. Nucleosides Nucleotides Nucleic Acids, 2007, 26(6-7), 713-716. [http://dx.doi.org/10.1080/15257770701490852]. [PMID: 18066886].
[30]
Bolvig, T.; Larsson, O.M.; Pickering, D.S.; Nelson, N.; Falch, E.; Krogsgaard-Larsen, P.; Schousboe, A. Action of bicyclic isoxazole GABA analogues on GABA transporters and its relation to anticonvulsant activity. Eur. J. Pharmacol., 1999, 375(1-3), 367-374. [http://dx.doi.org/10.1016/S0014-2999(99)00263-0]. [PMID: 10443590].
[31]
Abdel-Aziz, M. Abuo-Rahma, Gel-D.; Hassan, A.A. Synthesis of novel pyrazole derivatives and evaluation of their antidepressant and anticonvulsant activities. Eur. J. Med. Chem., 2009, 44(9), 3480-3487. [http://dx.doi.org/10.1016/j.ejmech.2009.01.032]. [PMID: 19268406].
[32]
Panda, S.S.; Chowdary, P.V.R.; Jayashree, B.S. Synthesis, anti-inflammatory and antibacterial activity of novel idolyl-isoxazoles. Indian J. Pharm. Sci., 2009, 71(6), 684-687. [http://dx.doi.org/10.4103/0250-474X.59554]. [PMID: 20376225].
[33]
Solankee, A.; Solankee, S.; Patel, G. Synthesis of and antibacterial evalution of some novel isoxazole and pyrazoline derivaties. Rasayan J. Chem., 2008, 1(3), 581-585.
[34]
Berghot, M.A.; Moawad, E.B. Convergent synthesis and antibacterial activity of pyrazole and pyrazoline derivatives of diazepam. Eur. J. Pharm. Sci., 2003, 20(2), 173-179. [http://dx.doi.org/10.1016/S0928-0987(03)00162-3]. [PMID: 14550883].
[35]
Ramiz, M.M.; El-Sayed, W.A.; El-Tantawy, A.I.; Abdel-Rahman, A.A. Antimicrobial activity of new 4,6-disubstituted pyrimidine, pyrazoline, and pyran derivatives. Arch. Pharm. Res., 2010, 33(5), 647-654. [http://dx.doi.org/10.1007/s12272-010-0501-1]. [PMID: 20512460].
[36]
Flynn, D.L.; Belliotti, T.R.; Boctor, A.M.; Connor, D.T.; Kostlan, C.R.; Nies, D.E.; Ortwine, D.F.; Schrier, D.J.; Sircar, J.C.; Belliotti, T.T. Styrylpyrazoles, styrylisoxazoles, and styrylisothiazoles. Novel 5-lipoxygenase and cyclooxygenase inhibitors. J. Med. Chem., 1991, 34(2), 518-525. [http://dx.doi.org/10.1021/jm00106a006]. [PMID: 1847426].
[37]
Balaji, N.V.; Ramani, M.V.; Viana, A.G.; Sanglard, L.P.; White, J.; Mulabagal, V.; Lee, C.; Gana, T.J.; Egiebor, N.O.; Subbaraju, G.V.; Tiwari, A.K. Design, synthesis and in vitro cell-based evaluation of the anti-cancer activities of hispolon analogs. Bioorg. Med. Chem., 2015, 23(9), 2148-2158. [http://dx.doi.org/10.1016/j.bmc.2015.03.002]. [PMID: 25842364].
[38]
Claramunt, R.M.; Bouissane, L.; Cabildo, M.P.; Cornago, M.P.; Elguero, J.; Radziwon, A.; Medina, C. Synthesis and biological evaluation of curcuminoid pyrazoles as new therapeutic agents in inflammatory bowel disease: Effect on matrix metalloproteinases. Bioorg. Med. Chem., 2009, 17(3), 1290-1296. [http://dx.doi.org/10.1016/j.bmc.2008.12.029]. [PMID: 19128977].
[39]
Shaikh, S.A.; Barik, A.; Singh, B.G.; Modukuri, R.V.; Balaji, N.V.; Subbaraju, G.V.; Naik, D.B.; Priyadarsini, K.I. Free radical reactions of isoxazole and pyrazole derivatives of hispolon: kinetics correlated with molecular descriptors. Free Radic. Res., 2016, 50(12), 1361-1373. [http://dx.doi.org/10.1080/10715762.2016.1247955]. [PMID: 27733076].
[40]
Scarsdale, J.N.; Kazanina, G.; He, X.; Reynolds, K.A.; Wright, H.T. Crystal structure of the Mycobacterium tuberculosis β-ketoacyl-acyl carrier protein synthase III. J. Biol. Chem., 2001, 276(23), 20516-20522. [http://dx.doi.org/10.1074/jbc.M010762200]. [PMID: 11278743].

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy