[1]
Hakim, F.A.; Shen, W.K. Atrial fibrillation in the elderly: A review. Future Cardiol., 2014, 10, 745-758.
[2]
Abed, H.S.; Wittert, G.A. Obesity and atrial fibrillation. Obes. Rev., 2013, 14, 929-938.
[3]
Vargas-Uricoechea, H.; Sierra-Torres, C.H. Thyroid hormones and the heart. Horm. Mol. Biol. Clin. Investig., 2014, 18, 15-26.
[4]
Goudis, C.A.; Korantzopoulos, P.; Ntalas, I.V.; Kallergis, E.M.; Liu, T.; Ketikoglou, D.G. Diabetes mellitus and atrial fibrillation: Pathophysiological mechanisms and potential upstream therapies. Int. J. Cardiol., 2015, 184, 617-622.
[5]
De Caterina, R.; Camm, A.J. What is ‘valvular’ atrial fibrillation? A reappraisal. Eur. Heart J., 2014, 35, 3328-3335.
[6]
Kumar, K.R.; Mandleywala, S.N.; Link, M.S. Atrial and ventricular arrhythmias in hypertrophic cardiomyopathy. Card. Electrophysiol. Clin., 2015, 7, 173-186.
[7]
Riber, L.P.; Larsen, T.B.; Christensen, T.D. Postoperative atrial fibrillation prophylaxis after lung surgery: systematic review and meta-analysis. Ann. Thorac. Surg., 2014, 98, 1989-1997.
[8]
Qaddoura, A.; Kabali, C.; Drew, D.; van Oosten, E.M.; Michael, K.A.; Redfearn, D.P.; Simpson, C.S.; Baranchuk, A. Obstructive sleep apnea as a predictor of atrial fibrillation after coronary artery bypass grafting: A systematic review and meta-analysis. Can. J. Cardiol., 2014, 30, 1516-2522.
[9]
Anumonwo, J.M.; Kalifa, J. Risk factors and genetics of atrial fibrillation. Cardiol. Clin., 2014, 32, 485-494.
[10]
Yadava, M.; Hughey, A.B.; Crawford, T.C. Postoperative atrial fibrillation: Incidence, mechanisms, and clinical correlates. Cardiol. Clin., 2014, 32, 627-636.
[11]
Akoum, N.; Marrouche, N. Assessment and impact of cardiac fibrosis on atrial fibrillation. Curr. Cardiol. Rep., 2014, 16, 518.
[12]
Berenfeld, O.; Jalife, J. Mechanisms of atrial fibrillation: rotors, ionic determinants, and excitation frequency. Cardiol. Clin., 2014, 32, 495-506.
[13]
Heijman, J.; Voigt, N.; Wehrens, X.H.; Dobrev, D. Calcium dysregulation in atrial fibrillation: the role of CaMKII. Front. Pharmacol., 2014, 5, 30.
[14]
Wolke, C.; Bukowska, A.; Goette, A.; Lendeckel, U. Redox control of cardiac remodeling in atrial fibrillation. Biochim. Biophys. Acta, 2015, 1850, 1555-1565.
[15]
Jalife, J.; Kaur, K. Atrial remodeling, fibrosis, and atrial fibrillation. Trends Cardiovasc. Med., 2015, 25, 475-484.
[16]
Corradi, D. Atrial fibrillation from the pathologist’s perspective. Cardiovasc. Pathol., 2014, 23, 71-84.
[17]
Seno, K.; Lane, D.; Lip, G.Y. Stroke and bleeding risk in atrial fibrillation. Korean Circ. J., 2014, 44, 281-290.
[18]
Zimetbaum, P.; Waks, J.W.; Ellis, E.R.; Glotzer, T.V.; Passman, R.S. Role of atrial fibrillation burden in assessing thromboembolic risk. Circ Arrhythm Electrophysiol, 2014, 7, 1223-1229.
[19]
Hirsh, B.J.; Copeland-Halperin, R.S.; Halperin, J.L. Fibrotic atrial cardiomyopathy, atrial fibrillation, and thromboembolism: Mechanistic links and clinical inferences. J. Am. Coll. Cardiol., 2015, 65, 2239-2251.
[20]
Hui, D.S.; Morley, J.E.; Mikolajczak, P.C.; Lee, R. Atrial fibrillation: A major risk factor for cognitive decline. Am. Heart J., 2015, 169, 448-456.
[21]
Jacobs, V.; Cutler, M.J.; Day, J.D.; Bunch, T.J. Atrial fibrillation and dementia. Trends Cardiovasc. Med., 2015, 25, 44-51.
[22]
Luong, C.; Barnes, M.E.; Tsang, T.S. Atrial fibrillation and heart failure: cause or effect? Curr. Heart Fail. Rep., 2014, 11, 463-470.
[23]
Wijesurendra, R.S.; Casadei, B. Atrial fibrillation: effects beyond the atrium? Cardiovasc. Res., 2015, 105, 238-247.
[24]
Chen, L.Y.; Benditt, D.G.; Alonso, A. Atrial fibrillation and its association with sudden cardiac death. Circ. J., 2014, 78, 2588-2593.
[25]
Potpara, T.S.; Lip, G.Y. A brief history of ‘lone’ atrial fibrillation: from ‘a peculiar pulse irregularity’ to a modern public health concern. Curr. Pharm. Des., 2015, 21, 679-696.
[26]
Tello-Montoliu, A.; Hernández-Romero, D.; Sanchez-Martínez, M.; Valdes, M.; Marín, F. Lone atrial fibrillation - a diagnosis of exclusion. Curr. Pharm. Des., 2015, 21, 544-550.
[27]
Brugada, R.; Tapscott, T.; Czernuszewicz, G.Z.; Marian, A.J.; Iglesias, A.; Mont, L.; Brugada, J.; Girona, J.; Domingo, A.; Bachinski, L.L.; Roberts, R. Identification of a genetic locus for familial atrial fibrillation. N. Engl. J. Med., 1997, 336, 905-911.
[28]
Chen, Y.H.; Xu, S.J.; Bendahhou, S.; Wang, X.L.; Wang, Y.; Xu, W.Y.; Jin, H.W.; Sun, H.; Su, X.Y.; Zhuang, Q.N.; Yang, Y.Q.; Li, Y.B.; Liu, Y.; Xu, H.J.; Li, X.F.; Ma, N.; Mou, C.P.; Chen, Z.; Barhanin, J.; Huang, W. KCNQ1 gain-of-function mutation in familial atrial fibrillation. Science, 2003, 299, 251-254.
[29]
Xia, M.; Jin, Q.; Bendahhou, S.; He, Y.; Larroque, M.M.; Chen, Y.; Zhou, Q.; Yang, Y.; Liu, Y.; Liu, B.; Zhu, Q.; Zhou, Y.; Lin, J.; Liang, B.; Li, L.; Dong, X.; Pan, Z.; Wang, R.; Wan, H.; Qiu, W.; Xu, W.; Eurlings, P.; Barhanin, J.; Chen, Y.A. Kir2.1 gain-of-function mutation underlies familial atrial fibrillation. Biochem. Biophys. Res. Commun., 2005, 332, 1012-1019.
[30]
Yang, Y.; Xia, M.; Jin, Q.; Bendahhou, S.; Shi, J.; Chen, Y.; Liang, B.; Lin, J.; Liu, Y.; Liu, B.; Zhou, Q.; Zhang, D.; Wang, R.; Ma, N.; Su, X.; Niu, K.; Pei, Y.; Xu, W.; Chen, Z.; Wan, H.; Cui, J.; Barhanin, J.; Chen, Y. Identification of a KCNE2 gain-of-function mutation in patients with familial atrial fibrillation. Am. J. Hum. Genet., 2004, 75, 899-905.
[31]
Berenfeld, O.; Zaitsev, A.V.; Mironov, S.F.; Pertsov, A.M.; Jalife, J. Frequency-dependent breakdown of wave propagation into fibrillatory conduction across the pectinate muscle network in the isolated sheep right atrium. Circ. Res., 2002, 90, 1173-1180.
[32]
Chen, J.; Mandapati, R.; Berenfeld, O.; Skanes, A.C.; Gray, R.A.; Jalife, J. Dynamics of wavelets and their role in atrial fibrillation in the isolated sheep heart. Cardiovasc. Res., 2000, 48, 220-232.
[33]
Mandapati, R.; Skanes, A.; Chen, J.; Berenfeld, O.; Jalife, J. Stable microreentrant sources as a mechanism of atrial fibrillation in the isolated sheep heart. Circulation, 2000, 101, 194-199.
[34]
Gudbjartsson, D.F.; Arnar, D.O.; Helgadottir, A.; Gretarsdottir, S.; Holm, H.; Sigurdsson, A.; Jonasdottir, A.; Baker, A.; Thorleifsson, G.; Kristjansson, K.; Palsson, A.; Blondal, T.; Sulem, P.; Backman, V.M.; Hardarson, G.A.; Palsdottir, E.; Helgason, A.; Sigurjonsdottir, R.; Sverrisson, J.T.; Kostulas, K.; Ng, M.C.; Baum, L.; So, W.Y.; Wong, K.S.; Chan, J.C.; Furie, K.L.; Greenberg, S.M.; Sale, M.; Kelly, P.; MacRae, C.A.; Smith, E.E.; Rosand, J.; Hillert, J.; Ma, R.C.; Ellinor, P.T.; Thorgeirsson, G.; Gulcher, J.R.; Kong, A.; Thorsteinsdottir, U.; Stefansson, K. Variants conferring risk of atrial fibrillation on chromosome 4q25. Nature, 2007, 448, 353-357.
[35]
Benjamin, E.J.; Rice, K.M.; Arking, D.E.; Pfeufer, A.; van Noord, C.; Smith, A.V.; Schnabel, R.B.; Bis, J.C.; Boerwinkle, E.; Sinner, M.F.; Dehghan, A.; Lubitz, S.A.; D’Agostino, R.B. Sr, Lumley, T.; Ehret, G.B.; Heeringa, J.; Aspelund, T.; Newton-Cheh, C.; Larson, M.G.; Marciante, K.D.; Soliman, E.Z.; Rivadeneira, F.; Wang, T.J.; Eiríksdottir, G.; Levy, D.; Psaty, B.M.; Li, M.; Chamberlain, A.M.; Hofman, A.; Vasan, R.S.; Harris, T.B.; Rotter, J.I.; Kao, W.H.; Agarwal, S.K.; Stricker, B.H.; Wang, K.; Launer, L.J.; Smith, N.L.; Chakravarti, A.; Uitterlinden, A.G.; Wolf, P.A.; Sotoodehnia, N.; Köttgen, A.; van Duijn, C.M.; Meitinger, T.; Mueller, M.; Perz, S.; Steinbeck, G.; Wichmann, H.E.; Lunetta, K.L.; Heckbert, S.R.; Gudnason, V.; Alonso, A.; Kääb, S.; Ellinor, P.T.; Witteman, J.C. Variants in ZFHX3 are associated with atrial fibrillation in individuals of European ancestry. Nat. Genet., 2009, 41, 879-881.
[36]
Ellinor, P.T.; Lunetta, K.L.; Albert, C.M.; Glazer, N.L.; Ritchie, M.D.; Smith, A.V.; Arking, D.E.; Müller-Nurasyid, M.; Krijthe, B.P.; Lubitz, S.A.; Bis, J.C.; Chung, M.K.; Dörr, M.; Ozaki, K.; Roberts, J.D.; Smith, J.G.; Pfeufer, A.; Sinner, M.F.; Lohman, K.; Ding, J.; Smith, N.L.; Smith, J.D.; Rienstra, M.; Rice, K.M.; Van Wagoner, D.R.; Magnani, J.W.; Wakili, R.; Clauss, S.; Rotter, J.I.; Steinbeck, G.; Launer, L.J.; Davies, R.W.; Borkovich, M.; Harris, T.B.; Lin, H.; Völker, U.; Völzke, H.; Milan, D.J.; Hofman, A.; Boerwinkle, E.; Chen, L.Y.; Soliman, E.Z.; Voight, B.F.; Li, G.; Chakravarti, A.; Kubo, M.; Tedrow, U.B.; Rose, L.M.; Ridker, P.M.; Conen, D.; Tsunoda, T.; Furukawa, T.; Sotoodehnia, N.; Xu, S.; Kamatani, N.; Levy, D.; Nakamura, Y.; Parvez, B.; Mahida, S.; Furie, K.L.; Rosand, J.; Muhammad, R.; Psaty, B.M.; Meitinger, T.; Perz, S.; Wichmann, H.E.; Witteman, J.C.; Kao, W.H.; Kathiresan, S.; Roden, D.M.; Uitterlinden, A.G.; Rivadeneira, F.; McKnight, B.; Sjögren, M.; Newman, A.B.; Liu, Y.; Gollob, M.H.; Melander, O.; Tanaka, T.; Stricker, B.H.; Felix, S.B.; Alonso, A.; Darbar, D.; Barnard, J.; Chasman, D.I.; Heckbert, S.R.; Benjamin, E.J.; Gudnason, V.; Kääb, S. Meta-analysis identifies six new susceptibility loci for atrial fibrillation. Nat. Genet., 2012, 44, 670-675.
[37]
Ellinor, P.T.; Lunetta, K.L.; Glazer, N.L.; Pfeufer, A.; Alonso, A.; Chung, M.K.; Sinner, M.F.; de Bakker, P.I.; Mueller, M.; Lubitz, S.A.; Fox, E.; Darbar, D.; Smith, N.L.; Smith, J.D.; Schnabel, R.B.; Soliman, E.Z.; Rice, K.M.; Van Wagoner, D.R.; Beckmann, B.M.; van Noord, C.; Wang, K.; Ehret, G.B.; Rotter, J.I.; Hazen, S.L.; Steinbeck, G.; Smith, A.V.; Launer, L.J.; Harris, T.B.; Makino, S.; Nelis, M.; Milan, D.J.; Perz, S.; Esko, T.; Köttgen, A.; Moebus, S.; Newton-Cheh, C.; Li, M.; Möhlenkamp, S.; Wang, T.J.; Kao, W.H.; Vasan, R.S.; Nöthen, M.M.; MacRae, C.A.; Stricker, B.H.; Hofman, A.; Uitterlinden, A.G.; Levy, D.; Boerwinkle, E.; Metspalu, A.; Topol, E.J.; Chakravarti, A.; Gudnason, V.; Psaty, B.M.; Roden, D.M.; Meitinger, T.; Wichmann, H.E.; Witteman, J.C.; Barnard, J.; Arking, D.E.; Benjamin, E.J.; Heckbert, S.R.; Kääb, S. Common variants in KCNN3 are associated with lone atrial fibrillation. Nat. Genet., 2010, 42, 240-244.
[38]
Gudbjartsson, D.F.; Holm, H.; Gretarsdottir, S.; Thorleifsson, G.; Walters, G.B.; Thorgeirsson, G.; Gulcher, J.; Mathiesen, E.B.; Njølstad, I.; Nyrnes, A.; Wilsgaard, T.; Hald, E.M.; Hveem, K.; Stoltenberg, C.; Kucera, G.; Stubblefield, T.; Carter, S.; Roden, D.; Ng, M.C.; Baum, L.; So, W.Y.; Wong, K.S.; Chan, J.C.; Gieger, C.; Wichmann, H.E.; Gschwendtner, A.; Dichgans, M.; Kuhlenbäumer, G.; Berger, K.; Ringelstein, E.B.; Bevan, S.; Markus, H.S.; Kostulas, K.; Hillert, J.; Sveinbjörnsdóttir, S.; Valdimarsson, E.M.; Løchen, M.L.; Ma, R.C.; Darbar, D.; Kong, A.; Arnar, D.O.; Thorsteinsdottir, U.; Stefansson, K. A sequence variant in ZFHX3 on 16q22 associates with atrial fibrillation and ischemic stroke. Nat. Genet., 2009, 41, 876-878.
[39]
Schnabel, R.B.; Kerr, K.F.; Lubitz, S.A.; Alkylbekova, E.L.; Marcus, G.M.; Sinner, M.F.; Magnani, J.W.; Wolf, P.A.; Deo, R.; Lloyd-Jones, D.M.; Lunetta, K.L.; Mehra, R.; Levy, D.; Fox, E.R.; Arking, D.E.; Mosley, T.H.; Müller-Nurasyid, M.; Young, T.R.; Wichmann, H.E.; Seshadri, S.; Farlow, D.N.; Rotter, J.I.; Soliman, E.Z.; Glazer, N.L.; Wilson, J.G.; Breteler, M.M.; Sotoodehnia, N.; Newton-Cheh, C.; Kääb, S.; Ellinor, P.T.; Alonso, A.; Benjamin, E.J.; Heckbert, S.R. Candidate Gene Association Resource. (CARe) Atrial Fibrillation/Electrocardiography Working Group. Large-scale candidate gene analysis in whites and African Americans identifies IL6R polymorphism in relation to atrial fibrillation: the National Heart, Lung, and Blood Institute’s Candidate Gene Association Resource (CARe) project. Circ Cardiovasc Genet, 2011, 4, 557-564.
[40]
He, J.; Zhu, W.; Yu, Y.; Hu, J.; Hong, K. Variant rs2200733 and rs10033464 on chromosome 4q25 are associated with increased risk of atrial fibrillation after catheter ablation: Evidence from a meta-analysis. Cardiol. J., 2018, 25(5), 628-638.
[41]
Miyazaki, S.; Ebana, Y.; Liu, L.; Nakamura, H.; Hachiya, H.; Taniguchi, H.; Takagi, T.; Kajiyama, T.; Watanabe, T.; Igarashi, M.; Kusa, S.; Niida, T.; Iesaka, Y.; Furukawa, T. Chromosome 4q25 variants and recurrence after second-generation cryoballoon ablation in patients with paroxysmal atrial fibrillation. Int. J. Cardiol., 2017, 244, 151-157.
[42]
Zhao, L.Q.; Zhang, G.B.; Wen, Z.J.; Huang, C.K.; Wu, H.Q.; Xu, J.; Qi, B.Z.; Wang, Z.M.; Shi, Y.Y.; Liu, S.W. Common variants predict recurrence after nonfamilial atrial fibrillation ablation in Chinese Han population. Int. J. Cardiol., 2017, 227, 360-366.
[43]
Chen, F.; Yang, Y.; Zhang, R.; Zhang, S.; Dong, Y.; Yin, X.; Chang, D.; Yang, Z.; Wang, K.; Gao, L.; Xia, Y. Polymorphism rs2200733 at chromosome 4q25 is associated with atrial fibrillation recurrence after radiofrequency catheter ablation in the Chinese Han population. Am. J. Transl. Res., 2016, 8, 688-697.
[44]
Parvez, B.; Shoemaker, M.B.; Muhammad, R.; Richardson, R.; Jiang, L.; Blair, M.A.; Roden, D.M.; Darbar, D. Common genetic polymorphism at 4q25 locus predicts atrial fibrillation recurrence after successful cardioversion. Heart Rhythm, 2013, 10, 849-855.
[45]
Benjamin Shoemaker, M.; Muhammad, R.; Parvez, B.; White, B.W.; Streur, M.; Song, Y.; Stubblefield, T.; Kucera, G.; Blair, M.; Rytlewski, J.; Parvathaneni, S.; Nagarakanti, R.; Saavedra, P.; Ellis, C.R.; Patrick Whalen, S.; Roden, D.M.; Darbar, R.D. Common atrial fibrillation risk alleles at 4q25 predict recurrence after catheter-based atrial fibrillation ablation. Heart Rhythm, 2013, 10, 394-400.
[46]
Husser, D.; Adams, V.; Piorkowski, C.; Hindricks, G.; Bollmann, A. Chromosome 4q25 variants and atrial fibrillation recurrence after catheter ablation. J. Am. Coll. Cardiol., 2010, 55(8), 747-753.
[47]
Amin, A.S.; Bhuiyan, Z.A. SCN5A mutations in atrial fibrillation. Heart Rhythm, 2010, 7, 1870-1871.
[48]
Blana, A.; Kaese, S.; Fortmüller, L.; Laakmann, S.; Damke, D.; van Bragt, K.; Eckstein, J.; Piccini, I.; Kirchhefer, U.; Nattel, S.; Breithardt, G.; Carmeliet, P.; Carmeliet, E.; Schotten, U.; Verheule, S.; Kirchhof, P.; Fabritz, L. Knock-in gain-of-function sodium channel mutation prolongs atrial action potentials and alters atrial vulnerability. Heart Rhythm, 2010, 7, 1862-1869.
[49]
Laitinen-Forsblom, P.J.; Mäkynen, P.; Mäkynen, H.; Yli-Mäyry, S.; Virtanen, V.; Kontula, K.; Aalto-Setälä, K. SCN5A mutation associated with cardiac conduction defect and atrial arrhythmias. J. Cardiovasc. Electrophysiol., 2006, 17, 480-485.
[50]
Li, Q.; Huang, H.; Liu, G.; Lam, K.; Rutberg, J.; Green, M.S.; Birnie, D.H.; Lemery, R.; Chahine, M.; Gollob, M.H. Gain-of-function mutation of Nav1.5 in atrial fibrillation enhances cellular excitability and lowers the threshold for action potential firing. Biochem. Biophys. Res. Commun., 2009, 380, 132-137.
[51]
Makiyama, T.; Akao, M.; Shizuta, S.; Doi, T.; Nishiyama, K.; Oka, Y. A novel SCN5A gain-of-function mutation M1875T associated with familial atrial fibrillation. J. Am. Coll. Cardiol., 2008, 52, 1326-1334.
[52]
Benito, B.; Brugada, R.; Perich, R.M.; Lizotte, E.; Cinca, J.; Mont, L.; Berruezo, A.; Tolosana, J.M.; Freixa, X.; Brugada, P.; Brugada, J. A mutation in the sodium channel is responsible for the association of long QT syndrome and familial atrial fibrillation. Heart Rhythm, 2008, 5, 1434-1440.
[53]
Calloe, K.; Schmitt, N.; Grubb, S.; Pfeiffer, R.; David, J.P.; Kanter, R.; Cordeiro, J.M.; Antzelevitch, C. Multiple arrhythmic syndromes in a newborn, owing to a novel mutation in SCN5A. Can. J. Physiol. Pharmacol., 2011, 89, 723-736.
[54]
Dolz-Gaitón, P.; Núñez, M.; Núñez, L.; Barana, A.; Amorós, I.; Matamoros, M.; Pérez-Hernández, M.; González de la Fuente, M.; Alvarez-López, M.; Macías-Ruiz, R.; Tercedor-Sánchez, L.; Jiménez-Jáimez, J.; Delpón, E.; Caballero, R.; Tamargo, J. Functional characterization of a novel frameshift mutation in the C-terminus of the Nav1.5 channel underlying a Brugada syndrome with variable expression in a Spanish family. PLoS One, 2013, 8e81493
[55]
Olson, T.M.; Michels, V.V.; Ballew, J.D.; Reyna, S.P.; Karst, M.L.; Herron, K.J.; Horton, S.C.; Rodeheffer, R.J.; Anderson, J.L. Sodium channel mutations and susceptibility to heart failure and atrial fibrillation. JAMA, 2005, 293, 447-454.
[56]
Ziyadeh-Isleem, A.; Clatot, J.; Duchatelet, S.; Gandjbakhch, E.; Denjoy, I.; Hidden-Lucet, F.; Hatem, S.; Deschênes, I.; Coulombe, A.; Neyroud, N.; Guicheney, P. A truncating SCN5A mutation combined with genetic variability causes sick sinus syndrome and early atrial fibrillation. Heart Rhythm, 2014, 11, 1015-1023.
[57]
Rossenbacker, T.; Carroll, S.J.; Liu, H.; Kuipéri, C.; de Ravel, T.J.; Devriendt, K.; Carmeliet, P.; Kass, R.S.; Heidbüchel, H. Novel pore mutation in SCN5A manifests as a spectrum of phenotypes ranging from atrial flutter, conduction disease, and Brugada syndrome to sudden cardiac death. Heart Rhythm, 2004, 1, 610-615.
[58]
Watanabe, H.; Darbar, D.; Kaiser, D.W.; Jiramongkolchai, K.; Chopra, S.; Donahue, B.S.; Kannankeril, P.J.; Roden, D.M. Mutations in sodium channel β1- and β2-subunits associated with atrial fibrillation. Circ Arrhythm Electrophysiol, 2009, 2, 268-275.
[59]
Wang, P.; Yang, Q.; Wu, X.; Yang, Y.; Shi, L.; Wang, C.; Wu, G.; Xia, Y.; Yang, B.; Zhang, R.; Xu, C.; Cheng, X.; Li, S.; Zhao, Y.; Fu, F.; Liao, Y.; Fang, F.; Chen, Q.; Tu, X.; Wang, Q.K. Functional dominant-negative mutation of sodium channel subunit gene SCN3B associated with atrial fibrillation in a Chinese GeneID population. Biochem. Biophys. Res. Commun., 2010, 398, 98-104.
[60]
Olesen, M.S.; Jespersen, T.; Nielsen, J.B.; Liang, B.; Møller, D.V.; Hedley, P.; Christiansen, M.; Varró, A.; Olesen, S.P.; Haunsø, S.; Schmitt, N.; Svendsen, J.H. Mutations in sodium channel β-subunit SCN3B are associated with early-onset lone atrial fibrillation. Cardiovasc. Res., 2011, 89, 786-793.
[61]
Li, R.G.; Wang, Q.; Xu, Y.J.; Zhang, M.; Qu, X.K.; Liu, X.; Fang, W.Y.; Yang, Y.Q. Mutations of the SCN4B-encoded sodium channel β4 subunit in familial atrial fibrillation. Int. J. Mol. Med., 2013, 32, 144-150.
[62]
Olesen, M.S.; Holst, A.G.; Svendsen, J.H.; Haunsø, S.; Tfelt-Hansen, J. SCN1Bb R214Q found in 3 patients: 1 with Brugada syndrome and 2 with lone atrial fibrillation. Heart Rhythm, 2012, 9, 770-773.
[63]
Macri, V.; Mahida, S.N.; Zhang, M.L.; Sinner, M.F.; Dolmatova, E.V.; Tucker, N.R.; McLellan, M.; Shea, M.A.; Milan, D.J.; Lunetta, K.L.; Benjamin, E.J.; Ellinor, P.T. A novel trafficking-defective HCN4 mutation is associated with early-onset atrial fibrillation. Heart Rhythm, 2014, 11, 1055-1062.
[64]
Hong, K.; Piper, D.R.; Diaz-Valdecantos, A.; Brugada, J.; Oliva, A.; Burashnikov, E.; Santos-de-Soto, J.; Grueso-Montero, J.; Diaz-Enfante, E.; Brugada, P.; Sachse, F.; Sanguinetti, M.C.; Brugada, R. De novo KCNQ1 mutation responsible for atrial fibrillation and short QT syndrome in utero. Cardiovasc. Res., 2005, 68, 433-440.
[65]
Lundby, A.; Ravn, L.S.; Svendsen, J.H.; Olesen, S.P.; Schmitt, N. KCNQ1 mutation Q147R is associated with atrial fibrillation and prolonged QT interval. Heart Rhythm, 2007, 4, 1532-1541.
[66]
Kharche, S.; Adeniran, I.; Stott, J.; Law, P.; Boyett, M.R.; Hancox, J.C.; Zhang, H. Pro-arrhythmogenic effects of the S140G KCNQ1 mutation in human atrial fibrillation - insights from modelling. J. Physiol., 2012, 590, 4501-4514.
[67]
Das, S.; Makino, S.; Melman, Y.F.; Shea, M.A.; Goyal, S.B.; Rosenzweig, A.; Macrae, C.A.; Ellinor, P.T. Mutation in the S3 segment of KCNQ1 results in familial lone atrial fibrillation. Heart Rhythm, 2009, 6, 1146-1153.
[68]
El Harchi, A.; Zhang, H.; Hancox, J.C. The S140G KCNQ1 atrial fibrillation mutation affects ‘I(KS)’ profile during both atrial and ventricular action potentials. J. Physiol. Pharmacol., 2010, 61, 759-764.
[69]
Ravn, L.S.; Aizawa, Y.; Pollevick, G.D.; Hofman-Bang, J.; Cordeiro, J.M.; Dixen, U.; Jensen, G.; Wu, Y.; Burashnikov, E.; Haunso, S.; Guerchicoff, A.; Hu, D.; Svendsen, J.H.; Christiansen, M.; Antzelevitch, C. Gain of function in IKs secondary to a mutation in KCNE5 associated with atrial fibrillation. Heart Rhythm, 2008, 5, 427-435.
[70]
Nielsen, J.B.; Bentzen, B.H.; Olesen, M.S.; David, J.P.; Olesen, S.P.; Haunsø, S.; Svendsen, J.H.; Schmitt, N. Gain-of-function mutations in potassium channel subunit KCNE2 associated with early-onset lone atrial fibrillation. Biomarkers Med., 2014, 8, 557-570.
[71]
Deo, M.; Ruan, Y.; Pandit, S.V.; Shah, K.; Berenfeld, O.; Blaufox, A.; Cerrone, M.; Noujaim, S.F.; Denegri, M.; Jalife, J.; Priori, S.G. KCNJ2 mutation in short QT syndrome 3 results in atrial fibrillation and ventricular proarrhythmia. Proc. Natl. Acad. Sci. USA, 2013, 110, 4291-4296.
[72]
Kharche, S.; Garratt, C.J.; Boyett, M.R.; Inada, S.; Holden, A.V.; Hancox, J.C.; Zhang, H. Atrial proarrhythmia due to increased inward rectifier current (I(K1)) arising from KCNJ2 mutation--a simulation study. Prog. Biophys. Mol. Biol., 2008, 98, 186-197.
[73]
Chelu, M.G.; Sarma, S.; Sood, S.; Wang, S.; van Oort, R.J.; Skapura, D.G.; Li, N.; Santonastasi, M.; Müller, F.U.; Schmitz, W.; Schotten, U.; Anderson, M.E.; Valderrábano, M.; Dobrev, D.; Wehrens, X.H. Calmodulin kinase II-mediated sarcoplasmic reticulum Ca2+ leak promotes atrial fibrillation in mice. J. Clin. Invest., 2009, 119, 1940-1951.
[74]
Shan, J.; Xie, W.; Betzenhauser, M.; Reiken, S.; Chen, B.X.; Wronska, A.; Marks, A.R. Calcium leak through ryanodine receptors leads to atrial fibrillation in 3 mouse models of catecholaminergic polymorphic ventricular tachycardia. Circ. Res., 2012, 111, 708-717.
[75]
Li, N.; Wang, T.; Wang, W.; Cutler, M.J.; Wang, Q.; Voigt, N.; Rosenbaum, D.S.; Dobrev, D.; Wehrens, X.H. Inhibition of CaMKII phosphorylation of RyR2 prevents induction of atrial fibrillation in FKBP12.6 knockout mice. Circ. Res., 2012, 110, 465-470.
[76]
Di Pino, A.; Caruso, E.; Costanzo, L.; Guccione, P. A novel RyR2 mutation in a 2-year-old baby presenting with atrial fibrillation, atrial flutter, and atrial ectopic tachycardia. Heart Rhythm, 2014, 11, 1480-1483.
[77]
Zhabyeyev, P.; Hiess, F.; Wang, R.; Liu, Y.; Wayne Chen, S.R.; Oudit, G.Y. S4153R is a gain-of-function mutation in the cardiac Ca(2+) release channel ryanodine receptor associated with catecholaminergic polymorphic ventricular tachycardia and paroxysmal atrial fibrillation. Can. J. Cardiol., 2013, 29, 993-996.
[78]
Kazemian, P.; Gollob, M.H.; Pantano, A.; Oudit, G.Y. A novel mutation in the RYR2 gene leading to catecholaminergic polymorphic ventricular tachycardia and paroxysmal atrial fibrillation: dose-dependent arrhythmia-event suppression by β-blocker therapy. Can. J. Cardiol., 2011, 27, 870.e7-870.e10.
[79]
Zhang, Y.; Fraser, J.A.; Jeevaratnam, K.; Hao, X.; Hothi, S.S.; Grace, A.A.; Lei, M.; Huang, C.L. Acute atrial arrhythmogenicity and altered Ca(2+) homeostasis in murine RyR2-P2328S hearts. Cardiovasc. Res., 2011, 89, 794-804.
[80]
Thibodeau, I.L.; Xu, J.; Li, Q.; Liu, G.; Lam, K.; Veinot, J.P.; Birnie, D.H.; Jones, D.L.; Krahn, A.D.; Lemery, R.; Nicholson, B.J.; Gollob, M.H. Paradigm of genetic mosaicism and lone atrial fibrillation: physiological characterization of a connexin 43-deletion mutant identified from atrial tissue. Circulation, 2010, 122, 236-244.
[81]
Tuomi, J.M.; Tyml, K.; Jones, D.L. Atrial tachycardia/fibrillation in the connexin 43 G60S mutant (Oculodentodigital dysplasia) mouse. Am. J. Physiol. Heart Circ. Physiol., 2011, 300, H1402-H1411.
[82]
Delmar, M.; Makita, N. Cardiac connexins, mutations and arrhythmias. Curr. Opin. Cardiol., 2012, 27, 236-241.
[83]
Gollob, M.H.; Jones, D.L.; Krahn, A.D.; Danis, L.; Gong, X.Q.; Shao, Q.; Liu, X.; Veinot, J.P.; Tang, A.S.; Stewart, A.F.; Tesson, F.; Klein, G.J.; Yee, R.; Skanes, A.C.; Guiraudon, G.M.; Ebihara, L.; Bai, D. Somatic mutations in the connexin 40 gene (GJA5) in atrial fibrillation. N. Engl. J. Med., 2006, 354, 2677-2688.
[84]
Yang, Y.Q.; Liu, X.; Zhang, X.L.; Wang, X.H.; Tan, H.W.; Shi, H.F.; Jiang, W.F.; Fang, W.Y. Novel connexin40 missense mutations in patients with familial atrial fibrillation. Europace, 2010, 12, 1421-1427.
[85]
Yang, Y.Q.; Zhang, X.L.; Wang, X.H.; Tan, H.W.; Shi, H.F.; Jiang, W.F.; Fang, W.Y.; Liu, X. Connexin40 nonsense mutation in familial atrial fibrillation. Int. J. Mol. Med., 2010, 26, 605-610.
[86]
Gemel, J.; Simon, A.R.; Patel, D.; Xu, Q.; Matiukas, A.; Veenstra, R.D.; Beyer, E.C. Degradation of a connexin40 mutant linked to atrial fibrillation is accelerated. J. Mol. Cell. Cardiol., 2014, 74, 330-339.
[87]
Sun, Y.; Hills, M.D.; Ye, W.G.; Tong, X.; Bai, D. Atrial fibrillation-linked germline GJA5/connexin40 mutants showed an increased hemichannel function. PLoS One, 2014, 9e95125
[88]
Sun, Y.; Tong, X.; Chen, H.; Huang, T.; Shao, Q.; Huang, W.; Laird, D.W.; Bai, D. An atrial-fibrillation-linked connexin40 mutant is retained in the endoplasmic reticulum and impairs the function of atrial gap-junction channels. Dis. Model. Mech., 2014, 7, 561-569.
[89]
Patel, D.; Gemel, J.; Xu, Q.; Simon, A.R.; Lin, X.; Matiukas, A.; Beyer, E.C.; Veenstra, R.D. Atrial fibrillation-associated connexin40 mutants make hemichannels and synergistically form gap junction channels with novel properties. FEBS Lett., 2014, 588, 1458-1464.
[90]
Bai, D. Atrial fibrillation-linked GJA5/connexin40 mutants impaired gap junctions via different mechanisms. FEBS Lett., 2014, 588, 1238-1243.
[91]
Postma, A.V.; van de Meerakker, J.B.; Mathijssen, I.B.; Barnett, P.; Christoffels, V.M.; Ilgun, A.; Lam, J.; Wilde, A.A.; Lekanne Deprez, R.H.; Moorman, A.F. A gain-of-function TBX5 mutation is associated with atypical Holt-Oram syndrome and paroxysmal atrial fibrillation. Circ. Res., 2008, 102, 1433-1442.
[92]
Gutierrez-Roelens, I.; De Roy, L.; Ovaert, C.; Sluysmans, T.; Devriendt, K.; Brunner, H.G.; Vikkula, M. A novel CSX/NKX2-5 mutation causes autosomal-dominant AV block: are atrial fibrillation and syncopes part of the phenotype? Eur. J. Hum. Genet., 2006, 14, 1313-1316.
[93]
Huang, R.T.; Xue, S.; Xu, Y.J.; Zhou, M.; Yang, Y.Q. A novel NKX2.5 loss-of-function mutation responsible for familial atrial fibrillation. Int. J. Mol. Med., 2013, 31, 1119-1126.
[94]
Xie, W.H.; Chang, C.; Xu, Y.J.; Li, R.G.; Qu, X.K.; Fang, W.Y.; Liu, X.; Yang, Y.Q. Prevalence and spectrum of Nkx2.5 mutations associated with idiopathic atrial fibrillation. Clinics , 2013, 68, 777-784.
[95]
Yu, H.; Xu, J.H.; Song, H.M.; Zhao, L.; Xu, W.J.; Wang, J.; Li, R.G.; Xu, L.; Jiang, W.F.; Qiu, X.B.; Jiang, J.Q.; Qu, X.K.; Liu, X.; Fang, W.Y.; Jiang, J.F.; Yang, Y.Q. Mutational spectrum of the NKX2-5 gene in patients with lone atrial fibrillation. Int. J. Med. Sci., 2014, 11, 554-563.
[96]
Yuan, F.; Qiu, X.B.; Li, R.G.; Qu, X.K.; Wang, J.; Xu, Y.J.; Liu, X.; Fang, W.Y.; Yang, Y.Q.; Liao, D.N. A novel NKX2-5 loss-of-function mutation predisposes to familial dilated cardiomyopathy and arrhythmias. Int. J. Mol. Med., 2015, 35, 478-486.
[97]
Wang, J.; Zhang, D.F.; Sun, Y.M.; Li, R.G.; Qiu, X.B.; Qu, X.K.; Liu, X.; Fang, W.Y. Yang YQ3. NKX2-6 mutation predisposes to familial atrial fibrillation. Int. J. Mol. Med., 2014, 34, 1581-1590.
[98]
Wang, J.; Zhang, D.F.; Sun, Y.M.; Yang, Y.Q. A novel PITX2c loss-of-function mutation associated with familial atrial fibrillation. Eur. J. Med. Genet., 2014, 57, 25-31.
[99]
Zhou, Y.M.; Zheng, P.X.; Yang, Y.Q.; Ge, Z.M.; Kang, W.Q. A novel PITX2c lossoffunction mutation underlies lone atrial fibrillation. Int. J. Mol. Med., 2013, 32, 827-834.
[100]
Tsai, C.T.; Hsieh, C.S.; Chang, S.N.; Chuang, E.Y.; Juang, J.M.; Lin, L.Y.; Lai, L.P.; Hwang, J.J.; Chiang, F.T.; Lin, J. Next-generation sequencing of nine atrial fibrillation candidate genes identified novel de novo mutations in patients with extreme trait of atrial fibrillation. J. Med. Genet., 2015, 52, 28-36.
[101]
Li, Q.Y.; Newbury-Ecob, R.A.; Terrett, J.A.; Wilson, D.I.; Curtis, A.R.; Yi, C.H.; Gebuhr, T.; Bullen, P.J.; Robson, S.C.; Strachan, T.; Bonnet, D.; Lyonnet, S.; Young, I.D.; Raeburn, J.A.; Buckler, A.J.; Law, D.J.; Brook, J.D. Holt-Oram syndrome is caused by mutations in TBX5, a member of the Brachyury (T) gene family. Nat. Genet., 1997, 15, 21-29.
[102]
Costa, M.W.; Guo, G.; Wolstein, O.; Vale, M.; Castro, M.L.; Wang, L.; Otway, R.; Riek, P.; Cochrane, N.; Furtado, M.; Semsarian, C.; Weintraub, R.G.; Yeoh, T.; Hayward, C.; Keogh, A.; Macdonald, P.; Feneley, M.; Graham, R.M.; Seidman, J.G.; Seidman, C.E.; Rosenthal, N.; Fatkin, D.; Harvey, R.P. Functional characterization of a novel mutation in NKX2-5 associated with congenital heart disease and adult-onset cardiomyopathy. Circ Cardiovasc Genet, 2013, 6, 238-247.
[103]
Qu, X.K.; Qiu, X.B.; Yuan, F.; Wang, J.; Zhao, C.M.; Liu, X.Y.; Zhang, X.L.; Li, R.G.; Xu, Y.J.; Hou, X.M.; Fang, W.Y.; Liu, X.; Yang, Y.Q. A novel NKX2.5 loss-of-function mutation associated with congenital bicuspid aortic valve. Am. J. Cardiol., 2014, 114, 1891-1895.
[104]
Wang, J.; Mao, J.H.; Ding, K.K.; Xu, W.J.; Liu, X.Y.; Qiu, X.B.; Li, R.G.; Qu, X.K.; Xu, Y.J.; Huang, R.T.; Xue, S.; Yang, Y.Q. A novel NKX2.6 mutation associated with congenital ventricular septal defect. Pediatr. Cardiol., 2015, 36, 646-656.
[105]
Lin, Y.; Guo, X.; Zhao, B.; Xu, W.J.; Liu, X.Y.; Qiu, X.B.; Li, R.G.; Qu, X.K.; Xu, Y.J.; Huang, R.T.; Xue, S.; Yang, Y.Q. Association analysis identifies new risk loci for congenital heart disease in Chinese populations. Nat. Commun., 2015, 6, 8082.
[106]
Chowdhury, R.; Ashraf, H.; Melanson, M.; Tanada, Y.; Nguyen, M.; Silberbach, M.; Wakimoto, H.; Benson, D.W.; Anderson, R.H.; Kasahara, H. A mouse model of human congenital heart disease: progressive atrioventricular block induced by a heterozygous nkx2-5 homeodomain missense mutation. Circ Arrhythm Electrophysiol, 2015, 8, 1255-1264.
[107]
Zhou, W.; Zhao, L.; Jiang, J.Q.; Jiang, W.F.; Yang, Y.Q.; Qiu, X.B. A novel TBX5 loss-of-function mutation associated with sporadic dilated cardiomyopathy. Int. J. Mol. Med., 2015, 36, 282-288.
[108]
Zhao, L.; Ni, S.H.; Liu, X.Y.; Wei, D.; Yuan, F.; Xu, L.; Li, X.; Li, R.G.; Qu, X.K.; Xu, Y.J.; Fang, W.Y.; Yang, Y.Q.; Qiu, X.B. Prevalence and spectrum of Nkx2.6 mutations in patients with congenital heart disease. Eur. J. Med. Genet., 2014, 57, 579-586.
[109]
Wang, J.; Zhang, D.F.; Sun, Y.M.; Li, R.G.; Qiu, X.B.; Qu, X.K.; Liu, X.; Fang, W.Y.; Yang, Y.Q. NKX2-6 mutation predisposes to familial atrial fibrillation. Int. J. Mol. Med., 2014, 34, 1581-1590.
[110]
Ta-Shma, A.; El-lahham, N.; Edvardson, S.; Stepensky, P.; Nir, A.; Perles, Z.; Gavri, S.; Golender, J.; Yaakobi-Simhayoff, N.; Shaag, A.; Rein, A.J.; Elpeleg, O. Conotruncal malformations and absent thymus due to a deleterious NKX2-6 mutation. J. Med. Genet., 2014, 51, 268-270.
[111]
Heathcote, K.; Braybrook, C.; Abushaban, L.; Guy, M.; Khetyar, M.E.; Patton, M.A.; Carter, N.D.; Scambler, P.J.; Syrris, P. Common arterial trunk associated with a homeodomain mutation of NKX2.6. Hum. Mol. Genet., 2005, 14, 585-593.
[112]
Smith, J.G.; Magnani, J.W.; Palmer, C.; Meng, Y.A.; Soliman, E.Z.; Musani, S.K.; Kerr, K.F.; Schnabel, R.B.; Lubitz, S.A.; Sotoodehnia, N.; Redline, S.; Pfeufer, A.; Müller, M.; Evans, D.S.; Nalls, M.A.; Liu, Y.; Newman, A.B.; Zonderman, A.B.; Evans, M.K.; Deo, R.; Ellinor, P.T.; Paltoo, D.N.; Newton-Cheh, C.; Benjamin, E.J.; Mehra, R.; Alonso, A.; Heckbert, S.R.; Fox, E.R. Candidate-gene Association Resource (CARe) Consortium. Genome-wide association studies of the PR interval in African Americans. PLoS Genet., 2011, 7e1001304
[113]
den Hoed, M.; Eijgelsheim, M.; Esko, T. Identification of heart rate-associated loci and their effects on cardiac conduction and rhythm disorders. Nat. Genet., 2013, 45, 621-631.
[114]
Mohanty, S.; Santangeli, P.; Bai, R.; Mohanty, P.; Pump, A.; Natale, A. Variant rs2200733 on chromosome 4q25 confers increased risk of atrial fibrillation: evidence from a meta-analysis. J. Cardiovasc. Electrophysiol., 2013, 24, 155-161.
[115]
Olesen, M.S.; Holst, A.G.; Jabbari, J.; Nielsen, J.B.; Christophersen, I.E.; Sajadieh, A.; Haunsø, S.; Svendsen, J.H. Genetic loci on chromosomes 4q25, 7p31, and 12p12 are associated with onset of lone atrial fibrillation before the age of 40 years. Can. J. Cardiol., 2012, 28, 191-195.
[116]
Henningsen, K.M.; Olesen, M.S.; Haunsoe, S.; Svendsen, J.H. Association of rs2200733 at 4q25 with early onset of lone atrial fibrillation in young patients. Scand. Cardiovasc. J., 2011, 45, 324-326.
[117]
Kiliszek, M.; Franaszczyk, M.; Kozluk, E.; Lodzinski, P.; Piatkowska, A.; Broda, G.; Ploski, R.; Opolski, G. Association between variants on chromosome 4q25, 16q22 and 1q21 and atrial fibrillation in the Polish population. PLoS One, 2011, 6(7)e21790
[118]
Chinchilla, A.; Daimi, H.; Lozano-Velasco, E.; Dominguez, J.N.; Caballero, R.; Delpón, E.; Tamargo, J.; Cinca, J.; Hove-Madsen, L.; Aranega, A.E.; Franco, D. PITX2 insufficiency leads to atrial electrical and structural remodeling linked to arrhythmogenesis. Circ Cardiovasc Genet, 2011, 4, 269-279.
[119]
Wang, J.; Klysik, E.; Sood, S.; Johnson, R.L.; Wehrens, X.H.; Martin, J.F. Pitx2 prevents susceptibility to atrial arrhythmias by inhibiting left-sided pacemaker specification. Proc. Natl. Acad. Sci. USA, 2010, 107, 9753-9758.
[120]
Kirchhof, P.; Kahr, P.C.; Kaese, S.; Piccini, I.; Vokshi, I.; Scheld, H.H.; Rotering, H.; Fortmueller, L.; Laakmann, S.; Verheule, S.; Schotten, U.; Fabritz, L.; Brown, N.A. PITX2c is expressed in the adult left atrium, and reducing Pitx2c expression promotes atrial fibrillation inducibility and complex changes in gene expression. Circ Cardiovasc Genet, 2011, 4, 123-133.
[121]
Semina, E.V.; Reiter, R.; Leysens, N.J. Cloning and characterization of a novel bicoid-related homeobox transcription factor gene, RIEG, involved in Rieger syndrome. Nat. Genet., 1996, 14, 392-399.
[122]
Gage, P.J.; Camper, S.A. Pituitary homeobox 2, a novel member of the bicoid-related family of homeobox genes, is a potential regulator of anterior structure formation. Hum. Mol. Genet., 1997, 6, 457-464.
[123]
St Amand, T.R.; Ra, J.; Zhang, Y. Cloning and expression pattern of chicken PITX2: A new component in the SHH signaling pathway controlling embryonic heart looping. Biochem. Biophys. Res. Commun., 1998, 247, 100-105.
[124]
Campione, M.; Steinbeisser, H.; Schweickert, A. The homeobox gene PITX2: mediator of asymmetric left-right signaling in vertebrate heart and gut looping. Development, 1999, 126, 1225-1234.
[125]
Tümer, Z.; Bach-Holm, D. Axenfeld-Rieger syndrome and spectrum of PITX2 and FOXC1 mutations. Eur. J. Hum. Genet., 2009, 17, 1527-1539.
[126]
Cox, C.J.; Espinoza, H.M.; McWilliams, B. Differential regulation of gene expression by PITX2 isoforms. J. Biol. Chem., 2002, 77, 25001-25010.
[127]
Logan, M.; Pagan-Westphal, S.M.; Smith, D.M.; Paganessi, L.; Tabin, C.J. The transcription factor PITX2 mediates situs-specific morphogenesis in response to left-right asymmetric signals. Cell, 1998, 94, 307-317.
[128]
Piedra, M.E.; Icardo, J.M.; Albajar, M.; Rodriguez-Rey, J.C.; Ros, M.A. PITX2 participates in the late phase of the pathway controlling left-right asymmetry. Cell, 1998, 94, 319-324.
[129]
Long, S.; Ahmad, N.; Rebagliati, M. The zebrafish nodal-related gene southpaw is required for visceral and diencephalic left-right asymmetry. Development, 2003, 130, 2303-2316.
[130]
Bisgrove, B.W.; Essner, J.J.; Yost, H.J. Multiple pathways in the midline regulate concordant brain, heart and gut left-right asymmetry. Development, 2000, 127, 3567-3579.
[131]
Guioli, S.; Lovell-Badge, R. PITX2 controls asymmetric gonadal development in both sexes of the chick and can rescue the degeneration of the right ovary. Development, 2007, 134, 4199-4208.
[132]
Lin, C.R.; Kioussi, C.; O’Connell, S.; Briata, P.; Szeto, D.; Liu, F.; Izpisúa-Belmonte, J.C.; Rosenfeld, M.G. PITX2 regulates lung asymmetry, cardiac positioning and pituitary and tooth morphogenesis. Nature, 1999, 401, 279-282.
[133]
Lu, M.F.; Pressman, C.; Dyer, R.; Johnson, R.L.; Martin, J.F. Function of Rieger syndrome gene in left-right asymmetry and craniofacial development. Nature, 1999, 401, 276-278.
[134]
Mommersteeg, M.T.; Brown, N.A.; Prall, O.W.J.; de Gier-de Vries, C.; Harvey, R.P.; Moorman, A.F.; Christoffels, V.M. PITX2c and Nkx2-5 are required for the formation and identity of the pulmonary myocardium. Circ. Res., 2007, 101, 902-909.
[135]
Aguirre, L.A.; Alonso, M.E.; Badía-Careaga, C.; Rollán, I.; Arias, C.; Fernández-Miñán, A.; López-Jiménez, E.; Aránega, A.; Gómez-Skarmeta, J.L.; Franco, D. Long-range regulatory interactions at the 4q25 atrial fibrillation risk locus involve PITX2c and ENPEP. BMC Biol., 2015, 13, 26.
[136]
Ye, J.; Tucker, N.R.; Weng, L.C.; Clauss, S.; Lubitz, S.A.; Ellinor, P.T. A functional variant associated with atrial fibrillation Regulates PITX2c expression through TFAP2a. Am. J. Hum. Genet., 2016, 99, 1281-1291.
[137]
Tao, Y.; Zhang, M.; Li, L.; Bai, Y.; Zhou, Y.; Moon, A.M.; Kaminski, H.J.; Martin, J.F. Pitx2, an atrial fibrillation predisposition gene, directly regulates ion transport and intercalated disc genes. Circ Cardiovasc Genet, 2014, 7, 23-32.
[138]
Lozano-Velasco, E.; Hernández-Torres, F.; Daimi, H.; Serra, S.A.; Herraiz, A.; Hove-Madsen, L.; Aránega, A.; Franco, D. Pitx2 impairs calcium handling in a dose-dependent manner by modulating Wnt signalling. Cardiovasc. Res., 2016, 109, 55-66.
[139]
Pérez-Hernández, M.; Matamoros, M.; Barana, A.; Amorós, I.; Gómez, R.; Núñez, M.; Sacristán, S.; Pinto, Á.; Fernández-Avilés, F.; Tamargo, J.; Delpón, E.; Caballero, R. Pitx2c increases in atrial myocytes from chronic atrial fibrillation patients enhancing IKs and decreasing ICa,L. Cardiovasc. Res., 2016, 109, 431-441.
[140]
Syeda, F.; Holmes, A.P.; Yu, T.Y.; Tull, S.; Kuhlmann, S.M.; Pavlovic, D.; Betney, D.; Riley, G.; Kucera, J.P.; Jousset, F.; de Groot, J.R.; Rohr, S.; Brown, N.A.; Fabritz, L.; Kirchhof, P. Pitx2 modulates atrial membrane potential and the antiarrhythmic effects of sodium-channel blockers. J. Am. Coll. Cardiol., 2016, 68, 1881-1894.
[141]
Nadadur, R.D.; Broman, M.T.; Boukens, B.; Mazurek, S.R.; Yang, X.; van den Boogaard, M.; Bekeny, J.; Gadek, M.; Ward, T.; Zhang, M.; Qiao, Y.; Martin, J.F.; Seidman, C.E.; Seidman, J.; Christoffels, V.; Efimov, I.R.; McNally, E.M.; Weber, C.R.; Moskowitz, I.P. Pitx2 modulates a Tbx5-dependent gene regulatory network to maintain atrial rhythm. Sci. Transl. Med., 2016, 8(354)354ra115
[142]
Franco & Aranega AE PITX2 (Pituitary Homeobox Gene 2). Encyclopedia of Signalling Molecules, Springer Nature. , 4024-4032.
[143]
Franco, D.; Chinchilla, A.; Aránega, A.E. Transgenic insights linking Pitx2 and atrial arrhythmias. Front. Physiol., 2012, 3, 206.
[144]
Lee, J.Y.; Kim, T.H.; Yang, P.S.; Lim, H.E.; Choi, E.K.; Shim, J.; Shin, E.; Uhm, J.S.; Kim, J.S.; Joung, B.; Oh, S.; Lee, M.H.; Kim, Y.H.; Pak, H.N. Korean atrial fibrillation network genome-wide association study for early-onset atrial fibrillation identifies novel susceptibility loci. Eur. Heart J., 2017, 38, 2586-2594.
[145]
Thorolfsdottir, R.B.; Sveinbjornsson, G.; Sulem, P.; Helgadottir, A.; Gretarsdottir, S.; Benonisdottir, S.; Magnusdottir, A.; Davidsson, O.B.; Rajamani, S.; Roden, D.M.; Darbar, D.; Pedersen, T.R.; Sabatine, M.S.; Jonsdottir, I.; Arnar, D.O.; Thorsteinsdottir, U.; Gudbjartsson, D.F.; Holm, H.; Stefansson, K. A missense variant in plec increases risk of atrial fibrillation. J. Am. Coll. Cardiol., 2017, 70, 2157-2168.
[146]
Nielsen, J.B.; Fritsche, L.G.; Zhou, W.; Teslovich, T.M.; Holmen, O.L.; Gustafsson, S.; Gabrielsen, M.E.; Schmidt, E.M.; Beaumont, R.; Wolford, B.N.; Lin, M.; Brummett, C.M.; Preuss, M.H.; Refsgaard, L.; Bottinger, E.P.; Graham, S.E.; Surakka, I. 1.; Chu, Y.; Skogholt, A.H.; Dalen, H.; Boyle, A.P.; Oral, H.; Herron, T.J.; Kitzman, J.; Jalife, J.; Svendsen, J.H.; Olesen, M.S.; Njølstad, I.; Løchen, M.L.; Baras, A.; Gottesman, O.; Marcketta, A.; O’Dushlaine, C.; Ritchie, M.D.; Wilsgaard, T.; Loos, R.J.F.; Frayling, T.M.; Boehnke, M.; Ingelsson, E.; Carey, D.J; Dewey, F.E.; Kang, H.M.; Abecasis, G.R.; Hveem, K.; Willer, C.J. Genome-wide study of atrial fibrillation identifies seven risk loci and highlights biological pathways and regulatory elements involved in cardiac development. Am. J. Hum. Genet., 2018, 102, 103-115.
[147]
Milan, D. The com-PLEC-sity of atrial fibrillation genetics. J. Am. Coll. Cardiol., 2017, 70, 2169-2170.
[148]
Bapat, A.; Anderson, C.D.; Ellinor, P.T.; Lubitz, S.A. Genomic basis of atrial fibrillation. Heart, 2018, 104, 201-206.
[149]
Tsai, C.T.; Hsieh, C.S.; Chang, S.N.; Chuang, E.Y.; Juang, J.M.; Lin, L.Y.; Lai, L.P.; Hwang, J.J.; Chiang, F.T.; Lin, J.L. Next-generation sequencing of nine atrial fibrillation candidate genes identified novel de novo mutations in patients with extreme trait of atrial fibrillation. J. Med. Genet., 2015, 52, 28-36.
[150]
Huang, Y.; Wang, C.; Yao, Y.; Zuo, X.; Chen, S.; Xu, C.; Zhang, H.; Lu, Q.; Chang, L.; Wang, F.; Wang, P.; Zhang, R.; Hu, Z.; Song, Q.; Yang, X.; Li, C.; Li, S.; Zhao, Y.; Yang, Q.; Yin, D.; Wang, X.; Si, W.; Li, X.; Xiong, X.; Wang, D.; Huang, Y.; Luo, C.; Li, J.; Wang, J.; Chen, J.; Wang, L.; Wang, L.; Han, M.; Ye, J.; Chen, F.; Liu, J.; Liu, Y.; Wu, G.; Yang, B.; Cheng, X.; Liao, Y.; Wu, Y.; Ke, T.; Chen, Q.; Tu, X.; Elston, R.; Rao, S.; Yang, Y.; Xia, Y.; Wang, Q.K. Molecular basis of gene-gene interaction: Cyclic cross-regulation of gene expression and post-gwas gene-gene interaction involved in atrial fibrillation. PLoS Genet., 2015, 11 e1005393
[151]
Kääb, S.; Darbar, D.; van Noord, C.; Dupuis, J.; Pfeufer, A.; Newton-Cheh, C.; Schnabel, R.; Makino, S.; Sinner, M.F.; Kannankeril, P.J.; Beckmann, B.M.; Choudry, S.; Donahue, B.S.; Heeringa, J.; Perz, S.; Lunetta, K.L.; Larson, M.G.; Levy, D.; MacRae, C.A.; Ruskin, J.N.; Wacker, A.; Schömig, A.; Wichmann, H.E.; Steinbeck, G.; Meitinger, T.; Uitterlinden, A.G.; Witteman, J.C.; Roden, D.M.; Benjamin, E.J.; Ellinor, P.T. Large scale replication and meta-analysis of variants on chromosome 4q25 associated with atrial fibrillation. Eur. Heart J., 2009, 30, 813-819.
[152]
Li, G.; Zhang, R.; Gao, L.; Zhang, S.; Dong, Y.; Yin, X.; Chang, D.; Yang, Y.; Xia, Y. Lack of association between rs3807989 in cav1 and atrial fibrillation. Int. J. Clin. Exp. Pathol., 2014, 7, 4339-4344.
[153]
Tada, H.; Shiffman, D.; Smith, J.G.; Sjögren, M.; Lubitz, S.A.; Ellinor, P.T.; Louie, J.Z.; Catanese, J.J.; Engström, G.; Devlin, J.J.; Kathiresan, S.; Melander, O. Twelve-single nucleotide polymorphism genetic risk score identifies individuals at increased risk for future atrial fibrillation and stroke. Stroke, 2014, 45, 2856-2862.
[154]
Mahida, S.; Mills, R.W.; Tucker, N.R.; Simonson, B.; Macri, V.; Lemoine, M.D.; Das, S.; Milan, D.J.; Ellinor, P.T. Overexpression of KCNN3 results in sudden cardiac death. Cardiovasc. Res., 2014, 101, 326-334.
[155]
Jiang, Q.; Ni, B.; Shi, J.; Han, Z.; Qi, R.; Xu, W.; Wang, D.; Wang, D.W.; Chen, M. Down-regulation of ATBF1 activates STAT3 signaling via PIAS3 in pacing-induced HL-1 atrial myocytes. Biochem. Biophys. Res. Commun., 2014, 449, 278-283.
[156]
Tucker, N.R.; Dolmatova, E.V.; Lin, H.; Cooper, R.R.; Ye, J.; Hucker, W.J.; Jameson, H.S.; Parsons, V.A.; Weng, L.C.; Mills, R.W.; Sinner, M.F.; Imakaev, M.1.; Leyton-Mange, J.; Vlahakes, G.; Benjamin, E.J.; Lunetta, K.L.; Lubitz, S.A.; Mirny, L.; Milan, D.J.; Ellinor, P.T. Diminished PRRX1 expression is associated with increased risk of atrial fibrillation and shortening of the cardiac action potential. Circ Cardiovasc Genet, 2017, 10 pii: e001902
[157]
Seid, M.D.; Stein, J.; Hamer, S.; Pluteanu, F.; Scholz, B.; Wardelmann, E.; Huge, A.; Witten, A.; Stoll, M.; Hammer, E.; Völker, U.; Müller, F.U. Characterization of the genetic program linked to the development of atrial fibrillation in CREM-IbΔC-X mice. Circ Arrhythm Electrophysiol, 2017, 10 pii: e005075
[158]
Franco, D.; Lozano-Velasco, E.; Aranega, A. Gene regulatory networks in atrial fibrillation. World J. Med. Genet., 2016, 6, 1-16.
[159]
Nagy, I.I.; Railo, A.; Rapila, R.; Hast, T.; Sormunen, R.; Tavi, P.; Räsänen, J.; Vainio, S.J. Wnt-11 signalling controls ventricular myocardium development by patterning N-cadherin and beta-catenin expression. Cardiovasc. Res., 2010, 85, 100-109.
[160]
Pandur, P.; Läsche, M.; Eisenberg, L.M.; Kühl, M. Wnt-11 activation of a non-canonical Wnt signalling pathway is required for cardiogenesis. Nature, 2002, 418, 636-641.
[161]
Martin, A.; Maher, S.; Summerhurst, K.; Davidson, D.; Murphy, P. Differential deployment of paralogous Wnt genes in the mouse and chick embryo during development. Evol. Dev., 2012, 14, 178-195.
[162]
Espinoza-Lewis, R.A.; Wang, D.Z. MicroRNAs in heart development. Curr. Top. Dev. Biol., 2012, 100, 279-317.
[163]
Franco, D.; Aranega, A. Post-transcriptional regulatory mechanisms.
In: Clinic, Genetics and Molecular Pathways of Congenital
Heart Diseases Eds Sperling S, Driscoll D, Kelly R. Springer. 2015.
[164]
Zhou, J.; Dong, X.; Zhou, Q.; Wang, H.; Qian, Y.; Tian, W.; Ma, D.; Li, X. microRNA expression profiling of heart tissue during fetal development. Int. J. Mol. Med., 2014, 33, 1250-1260.
[165]
Hu, D.L.; Liu, Y.Q.; Chen, F.K.; Sheng, Y.H.; Yang, R.; Kong, X.Q.; Cao, K.J.; Zhang, J.S.; Qian, L.M. Differential expression of microRNAs in cardiac myocytes compared to undifferentiated P19 cells. Int. J. Mol. Med., 2011, 28, 59-64.
[166]
Synnergren, J.; Améen, C.; Lindahl, A.; Olsson, B.; Sartipy, P. Expression of microRNAs and their target mRNAs in human stem cell-derived cardiomyocyte clusters and in heart tissue. Physiol. Genomics, 2011, 43, 581-594.
[167]
Nishi, H.; Sakaguchi, T.; Miyagawa, S.; Yoshikawa, Y.; Fukushima, S.; Saito, S.; Ueno, T.; Kuratani, T.; Sawa, Y. Impact of microRNA expression in human atrial tissue in patients with atrial fibrillation undergoing cardiac surgery. PLoS One, 2013, 8e73397
[168]
Wang, J.; Wang, Y.; Han, J.; Li, Y.; Xie, C.; Xie, L.; Shi, J.; Zhang, J.; Yang, B.; Chen, D.; Meng, X. Integrated analysis of microRNA and mRNA expression profiles in the left atrium of patients with nonvalvular paroxysmal atrial fibrillation: Role of miR-146b-5p in atrial fibrosis. Heart Rhythm, 2015, 12, 1018-1026.
[169]
Li, M.; Zhang, J. Circulating MicroRNAs: Potential and emerging biomarkers for diagnosis of cardiovascular and cerebrovascular diseases. BioMed Res. Int., 2015, 2015730535
[170]
Orenes-Piñero, E.; Montoro-García, S.; Patel, J.V.; Valdés, M.; Marín, F.; Lip, G.Y. Role of microRNAs in cardiac remodelling: new insights and future perspectives. Int. J. Cardiol., 2013, 167, 1651-1659.
[171]
Poudel, P.; Xu, Y.; Cui, Z.; Sharma, D.; Tian, B.; Paudel, S. Atrial fibrillation: recent advances in understanding the role of microRNAs in atrial remodeling with an electrophysiological overview. Cardiology, 2015, 131, 58-67.
[172]
Gomes da Silva, A.M.; Silbiger, V.N. miRNAs as biomarkers of atrial fibrillation. Biomarkers, 2014, 19, 631-636.
[173]
Liu, Z.; Zhou, C.; Liu, Y.; Wang, S.; Ye, P.; Miao, X.; Xia, J. The expression levels of plasma microRNAs in atrial fibrillation patients. PLoS One, 2012, 7e44906
[174]
Huang, Y.; Wang, C.; Yao, Y.; Zuo, X.; Chen, S.; Xu, C.; Zhang, H.; Lu, Q.; Chang, L.; Wang, F.; Wang, P.; Zhang, R.; Hu, Z.; Song, Q.; Yang, X.; Li, C.; Li, S.; Zhao, Y.; Yang, Q.; Yin, D.; Wang, X.; Si, W.; Li, X.; Xiong, X.; Wang, D.; Huang, Y.; Luo, C.; Li, J.; Wang, J.; Chen, J.; Wang, L.; Wang, L.; Han, M.; Ye, J.; Chen, F.; Liu, J.; Liu, Y.; Wu, G.; Yang, B.; Cheng, X.; Liao, Y.; Wu, Y.; Ke, T.; Chen, Q.; Tu, X.; Elston, R.; Rao, S.; Yang, Y.; Xia, Y.; Wang, Q.K. Molecular basis of gene-gene interaction: Cyclic cross-regulation of gene expression and post-gwas gene-gene interaction involved in atrial fibrillation. PLoS Genet., 2015, 11e1005393
[175]
Wang, J.; Bai, Y.; Li, N.; Ye, W.; Zhang, M.; Greene, S.B.; Tao, Y.; Chen, Y.; Wehrens, X.H.; Martin, J.F. Pitx2-microRNA pathway that delimits sinoatrial node development and inhibits predisposition to atrial fibrillation. Proc. Natl. Acad. Sci. USA, 2014, 111, 9181-9186.
[176]
Chiang, D.Y.; Kongchan, N.; Beavers, D.L.; Alsina, K.M.; Voigt, N.; Neilson, J.R.; Jakob, H.; Martin, J.F.; Dobrev, D.; Wehrens, X.H.; Li, N. Loss of microRNA-106b-25 cluster promotes atrial fibrillation by enhancing ryanodine receptor type-2 expression and calcium release. Circ Arrhythm Electrophysiol, 2014, 7, 1214-1222.
[177]
Barana, A.; Matamoros, M.; Dolz-Gaitón, P.; Pérez-Hernández, M.; Amorós, I.; Núñez, M.; Sacristán, S.; Pedraz, Á.; Pinto, Á.; Fernández-Avilés, F.; Tamargo, J.; Delpón, E.; Caballero, R. Chronic atrial fibrillation increases microRNA-21 in human atrial myocytes decreasing L-type calcium current. Circ Arrhythm Electrophysiol, 2014, 7, 861-868.
[178]
Daimi, H.; Lozano-Velasco, E.; Haj Khelil, A.; Chibani, J.B.; Barana, A.; Amorós, I.; González de la Fuente, M.; Caballero, R.; Aranega, A.; Franco, D. Regulation of SCN5A by microRNAs: miR-219 modulates SCN5A transcript expression and the effects of flecainide intoxication in mice. Heart Rhythm, 2015, 12, 1333-1342.
[179]
Luo, X.; Pan, Z.; Shan, H.; Xiao, J.; Sun, X.; Wang, N.; Lin, H.; Xiao, L.; Maguy, A.; Qi, X.Y.; Li, Y.; Gao, X.; Dong, D.; Zhang, Y.; Bai, Y.; Ai, J.; Sun, L.; Lu, H.; Luo, X.Y.; Wang, Z.; Lu, Y.; Yang, B.; Nattel, S. MicroRNA-26 governs profibrillatory inward-rectifier potassium current changes in atrial fibrillation. J. Clin. Invest., 2013, 123, 1939-1951.
[180]
Jia, X.; Zheng, S.; Xie, X.; Zhang, Y.; Wang, W.; Wang, Z.; Zhang, Y.; Wang, J.; Gao, M.; Hou, Y. MicroRNA-1 accelerates the shortening of atrial effective refractory period by regulating KCNE1 and KCNB2 expression: an atrial tachypacing rabbit model. PLoS One, 2013, 8e85639
[181]
Li, Y.D.; Hong, Y.F.; Yusufuaji, Y.; Tang, B.P.; Zhou, X.H.; Xu, G.J.; Li, J.X.; Sun, L.; Zhang, J.H.; Xin, Q.; Xiong, J.; Ji, Y.T.; Zhang, Y. Altered expression of hyperpolarization-activated cyclic nucleotide-gated channels and microRNA-1 and -133 in patients with age-associated atrial fibrillation. Mol. Med. Rep., 2015, 12, 3243-3248.
[182]
Schmitz, S.U.; Grote, P.; Herrmann, B.G. Mechanisms of long noncoding RNA function in development and disease. Cell. Mol. Life Sci., 2016, 73(13), 2491-2509.
[183]
Rosa, A.; Ballarino, M. Long noncoding RNA regulation of pluripotency; Stem Cells Intern, 2015.
[184]
Wapinski, O.; Chang, H.Y. Long noncoding RNAs and human disease. Trends Cell Biol., 2011, 21(6), 354-361.
[185]
Rackham, O.; Shearwood, A.M.J.; Mercer, T.R.; Davies, S.M.; Mattick, J.S.; Filipovska, A. Long noncoding RNAs are generated from the mitochondrial genome and regulated by nuclear-encoded proteins. RNA, 2011, 17(12), 2085-2093.
[186]
St Ecedil Pien, E.; Costa, M.C.; Kurc, S.; Drożdż, A.; Cortez-Dias, N.; Enguita, F.J. The circulating non-coding RNA landscape for biomarker research: lessons and prospects from cardiovascular diseases. Acta Pharmacol. Sin., 2018, 39(7), 1085-1099.
[187]
Su, Y.; Li, L.; Zhao, S.; Yue, Y.; Yang, S. The long noncoding RNA expression profiles of paroxysmal atrial fibrillation identified by microarray analysis. Gene, 2018, 642, 125-134.
[188]
Yu, X.J.; Zou, L.H.; Jin, J.H.; Xiao, F.; Li, L.; Liu, N.; Yang, J.F.; Zou, T. Long noncoding RNAs and novel inflammatory genes determined by RNA sequencing in human lymphocytes are up-regulated in permanent atrial fibrillation. Am. J. Transl. Res., 2017, 9(5), 2314-2326.
[189]
Ruan, Z.; Sun, X.; Sheng, H.; Zhu, L. Long non-coding RNA expression profile in atrial fibrillation. Int. J. Clin. Exp. Pathol., 2015, 8(7), 8402-8410.
[190]
Xu, Y.; Huang, R.; Gu, J.; Jiang, W. Identification of long non-coding RNAs as novel biomarker and potential therapeutic target for atrial fibrillation in old adults. Oncotarget, 2016, 7(10), 10803-10811.
[191]
Wang, W.; Wang, X.; Zhang, Y.; Li, Z.; Xie, X.; Wang, J.; Gao, M.; Zhang, S.; Hou, Y. Transcriptome analysis of canine cardiac fat pads: involvement of two novel long non-coding RNAs in atrial fibrillation neural remodeling. J. Cell. Biochem., 2015, 116(5), 809-821.
[192]
Gore-Panter, S.R.; Hsu, J.; Barnard, J.; Moravec, C.S.; Van Wagoner, D.R.; Chung, M.K.; Smith, J.D. PANCR, the PITX2 adjacent noncoding rna, is expressed in human left atria and regulates PITX2c expression. Circ Arrhythm Electrophysiol, 2016, 9(1)e003197
[193]
Holmes, A.P.; Kirchhof, P. Pitx2 Adjacent Noncoding RNA: A New, Long, Noncoding Kid on the 4q25 Block. Circ Arrhythm Electrophysiol, 2016, 9e003808
[194]
Li, Z.; Wang, X.; Wang, W.; Du, J.; Wei, J.; Zhang, Y.; Wang, J.; Hou, Y. Altered long non-coding RNA expression profile in rabbit atria with atrial fibrillation: TCONS_00075467 modulates atrial electrical remodeling by sponging miR-328 to regulate CACNA1C. J. Mol. Cell. Cardiol., 2017, 108, 73-85.
[195]
Scridon, A.; Fouilloux-Meugnier, E.; Loizon, E.; Rome, S.; Julien, C.; Barrès, C.; Chevalier, P. Long-standing arterial hypertension is associated with Pitx2 down-regulation in a rat model of spontaneous atrial tachyarrhythmias. Europace, 2015, 17, 160-165.
[196]
Lozano-Velasco, E.; Wangensteen, R.; Quesada, A.; Garcia-Padilla, C.; Osorio, J.A.; Ruiz-Torres, M.D.; Aranega, A.; Franco, D. Hyperthyroidism, but not hypertension, impairs PITX2 expression leading to Wnt-microRNA-ion channel remodeling. PLoS One, 2017, 12e0188473
[197]
Torrado, M.; Franco, D.; Hernández-Torres, F.; Crespo-Leiro, M.G.; Iglesias-Gil, C.; Castro-Beiras, A.; Mikhailov, A.T. Pitx2c is reactivated in the failing myocardium and stimulates myf5 expression in cultured cardiomyocytes. PLoS One, 2014, 9e90561
[198]
Jabbari, R.; Jabbari, J.; Glinge, C.; Risgaard, B.; Sattler, S.; Winkel, B.G.; Terkelsen, C.J.; Tilsted, H.H.; Jensen, L.O.; Hougaard, M.; Haunsø, S.; Engstrøm, T.; Albert, C.M.; Tfelt-Hansen, J. Association of common genetic variants related to atrial fibrillation and the risk of ventricular fibrillation in the setting of first ST-elevation myocardial infarction. BMC Med. Genet., 2017, 18, 138.
[200]
Weng, L.C.; Lunetta, K.L.; Müller-Nurasyid, M. Genetic Interactions with Age, Sex, Body Mass Index, and Hypertension in Relation to Atrial Fibrillation: The AFGen Consortium. Sci. Rep., 2017, 7, 11303.
[201]
Shoemaker, M.B.; Bollmann, A.; Lubitz, S.A.; Ueberham, L.; Saini, H.; Montgomery, J.; Edwards, T.; Yoneda, Z.; Sinner, M.F.; Arya, A.; Sommer, P.; Delaney, J.; Goyal, S.K.; Saavedra, P.; Kanagasundram, A.; Whalen, S.P.; Roden, D.M.; Hindricks, G.; Ellis, C.R.; Ellinor, P.T.; Darbar, D.; Husser, D. Common genetic variants and response to atrial fibrillation ablation. Circ Arrhythm Electrophysiol, 2015, 8, 296-302.
[202]
Kristjansson, R.P.; Benonisdottir, S.; Oddsson, A.; Galesloot, T.E.; Thorleifsson, G.; Aben, K.K.; Davidsson, O.B.; Jonsson, S.; Arnadottir, G.A.; Jensson, B.O.; Walters, G.B.; Sigurdsson, J.K.; Sigurdsson, S.; Holm, H.; Arnar, D.O.; Thorgeirsson, G.; Alexiusdottir, K.; Jonsdottir, I. Thorsteinsdottir, U.; Kiemeney, L.A.; Jonsson, T.; Gudbjartsson, D.F.; Rafnar, T.; Sulem, P.; Stefansson, K. Sequence variant at 4q25 near PITX2 associates with appendicitis. Sci. Rep., 2017, 7, 3119.
[203]
Mora, C.; Serzanti, M.; Giacomelli, A.; Beltramone, S.; Marchina, E.; Bertini, V.; Piovani, G.; Refsgaard, L.; Olesen, M.S.; Cortellini, V.; Dell’Era, P. Generation of induced pluripotent stem cells (iPSC) from an atrial fibrillation patient carrying a PITX2 p.M200V mutation. Stem Cell Res. , 2017, 24, 8-11.
[204]
Marczenke, M.; Fell, J.; Piccini, I.; Röpke, A.; Seebohm, G.; Greber, B. Generation and cardiac subtype-specific differentiation of PITX2-deficient human iPS cell lines for exploring familial atrial fibrillation. Stem Cell Res. , 2017, 21, 26-28.
[205]
Boutilier, J.K.; Taylor, R.L.; Mann, T.; McNamara, E.; Hoffman, G.J.; Kenny, J.; Dilley, R.J.; Henry, P.; Morahan, G.; Laing, N.G.; Nowak, K.J. Gene expression networks in the murine pulmonary myocardium provide insight into the pathobiology of atrial fibrillation. G3 (Bethesda), 2017, 7, 2999-3017.