Generic placeholder image

Cardiovascular & Hematological Disorders-Drug Targets

Editor-in-Chief

ISSN (Print): 1871-529X
ISSN (Online): 2212-4063

Review Article

Protective Effects of Curcumin Against Nephrotoxic Agents

Author(s): Tahereh Farkhondeh, Saeed Samarghandian*, Mohsen Azimi-Nezhad and Ali M.P. Shahri

Volume 19, Issue 3, 2019

Page: [176 - 182] Pages: 7

DOI: 10.2174/1871529X18666180905160830

Price: $65

Abstract

Background: Curcumin is the one of the main phenolic ingredients in curcuma species rhizome. Curcuma species have traditionally been used for the treatment of diabetes, cardiovascular, and renal diseases.

Methods: The present study was designed to review the scientific literature on the protective effects of curcumin against nephrotoxic agents.

Results: Studies have shown the protective effects of curcumin against nephrotoxic agents such as gallic acid, glucose, tartrazine, streptozotocin, lead, cadmium, fluoride, maleate, malathion, nicotine, cisplatin, gentamicin, and methotrexate. However, further investigations are needed to determine the efficacy of curcumin as an antidote agent due to the lack of clinical trial studies. Therefore, it is recommended to conduct clinical trials in humans to confirm these effects.

Conclusion: The current review indicated that curcumin may be effective against nephrotoxicity by modulating oxidative stress and inflammatory responses.

Keywords: Curcumin, toxic agents, antioxidant, kidneys, diabetes, nephrotoxicity.

Graphical Abstract

[1]
Abdel-Raheem, I.T.; Abdel-Ghany, A.A.; Mohamed, G.A. Protective effect of quercetin against gentamicin-induced nephrotoxicity in rats. Biol. Pharm. Bull., 2009, 32, 61-67.
[2]
Akcay, A.; Nguyen, Q.; Edelstein, C.L. Mediators of inflammation in acute kidney injury. Mediators Inflamm., 2009, 2009137072
[3]
Lopez-Novoa, J.M.; Quiros, Y.; Vicente, L.; Morales, A.I.; Lopez-Hernandez, F.J. New insights into the mechanism of aminoglycoside nephrotoxicity: An integrative point of view. Kidney Int., 2011, 79, 33-45.
[4]
Hemmati, M.; Zohoori, E.; Mehrpour, O.; Karamian, M.; Asghari, S.; Zarban, A.; Nasouti, R. Anti-atherogenic potential of jujube, saffron and barberry: anti-diabetic and antioxidant actions. EXCLI J., 2015, 14, 908-915.
[5]
Samarghandian, S.; Azimi-Nezhad, M.; Farkhondeh, T. Crocin attenuate Tumor Necrosis Factor-alpha (TNF-α) and interleukin-6 (IL-6) in streptozotocin-induced diabetic rat aorta. Cytokine, 2016, 88, 20-28.
[6]
Mehmood, A.; Shah, M. Assessment of phenolic contents, essential/toxic metals and antioxidant capacity of fruits of Viburnum foetens decne. Biointerface. Res. App. Chem, 2018, 8(3), 3178-3186.
[7]
Samarghandian, S.; Azimi-Nezhad, M.; Borji, A.; Farkhondeh, T. Effect of crocin on aged rat kidney through inhibition of oxidative stress and proinflammatory state. Phytother. Res., 2016, 30(8), 1345-1353.
[8]
Samarghandian, S.; Azimi-Nezhad, M.; Borji, A.; Hasanzadeh, M.; Jabbari, F.; Farkhondeh, T.; Samini, M. Inhibitory and cytotoxic activities of chrysin on human breast adenocarcinoma cells by induction of apoptosis. Pharmacogn. Mag., 2016, 12, S436.
[9]
Smarghandian, S.; Azimi-Nezhad, M.; Samini, F.; Farkhondeh, T. Chrysin treatment improves diabetes and its complications in liver, brain, and pancreas in streptozotocin-induced diabetic rats. Can. J. Physiol. Pharmacol., 2016, 94(4), 388-393.
[10]
Kharat, M.; McClements, D.J. Recent advances in colloidal delivery systems for nutraceuticals: A case study - Delivery by Design of curcumin. J. Colloid Interface Sci., 2019, 557, 506-518.
[11]
Farkhondeh, T.; Samarghandian, S. Antidotal effects of curcumin against agents-induced cardiovascular toxicity. Cardiovasc. Hematol. Disord. Drug Targets, 2016, 16(1), 30-37.
[12]
Radomska-Leśniewska, D.M.; Osiecka-Iwan, A.; Hyc, A.; Góźdź, A.; Dąbrowska, A.M.; Skopiński, P. Therapeutic potential of curcumin in eye diseases. Cent. Eur. J. Immunol., 2019, 44(2), 181-189.
[13]
Zhang, B.; Swamy, S.; Balijepalli, S.; Panicker, S.; Mooliyil, J.; Sherman, M.A.; Parkkinen, J.; Raghavendran, K.; Suresh, MV. Direct pulmonary delivery of solubilized curcumin reduces severity of lethal pneumonia. FASEB J., 2019. fj201901047RR
[14]
Mohajeri, M.; Sahebkar, A. Protective effects of curcumin against doxorubicin-induced toxicity and resistance: A review. Crit. Rev. Oncol. Hematol., 2018, 122, 30-51.
[15]
Thayyullathil, F.; Chathoth, S.; Hago, A.; Patel, M.; Galadari, S. Rapid reactive oxygen species (ROS) generation induced by curcumin leads to caspase-dependent and-independent apoptosis in L929 cells. Free Radic. Biol. Med., 2008, 45, 1403-1412.
[16]
Garcea, G.; Berry, D.P.; Jones, D.J.; Singh, R.; Dennison, A.R.; Farmer, P.B.; Sharma, R.A.; Steward, W.P.; Gescher, A.J. Consumption of the putative chemopreventive agent curcumin by cancer patients: assessment of curcumin levels in the colorectum and their pharmacodynamic consequences. Cancer Epidemiol. Biomarkers Prev., 2005, 14, 120-125.
[17]
Iqbal, M.; Sharma, S.D.; Okazaki, Y.; Fujisawa, M.; Okada, S. Dietary supplementation of curcumin enhances antioxidant and phase II metabolizing enzymes in ddY male mice: Possible role in protection against chemical carcinogenesis and toxicity. Pharmacol. Toxicol., 2003, 92, 33-38.
[18]
Surov, A.O.; Churakov, A.V.; Proshin, A.N.; Dai, X.L.; Lu, T.; Perlovich, G.L. Cocrystals of a 1,2,4-thiadiazole-based potent neuroprotector with gallic acid: solubility, thermodynamic stability relationships and formation pathways. Phys. Chem. Chem. Phys., 2018, 20(21), 14469-14481.
[19]
Choubey, S.; Varughese, L.R.; Kumar, V.; Beniwal, V. Medicinal importance of gallic acid and its ester derivatives: A patent review. Pharm. Pat. Anal., 2015, 4(4), 305-315.
[20]
Abarikwu, S.O.; Durojaiye, M.; Alabi, A.; Asonye, B.; Akiri, O. Curcumin protects against gallic acid-induced oxidative stress, suppression of glutathione antioxidant defenses, hepatic and renal damage in rats. Ren. Fail., 2016, 38, 321-329.
[21]
Bomsztyk, K.; Denisenko, O.; Wang, Y. DNA methylation yields epigenetic clues into the diabetic nephropathy of Pima Indians. Kidney Int., 2018, 93(6), 1272-1275.
[22]
Sun, L-N.; Liu, X-C.; Chen, X-J.; Guan, G-J.; Liu, G. Curcumin attenuates high glucose-induced podocyte apoptosis by regulating functional connections between caveolin-1 phosphorylation and ROS. Acta Pharmacol. Sin., 2016, 37, 645-655.
[23]
Vidal, M.; Garcia-Arrona, R.; Bordagaray, A.; Ostra, M.; Albizu, G. Simultaneous determination of color additives tartrazine and allura red in food products by digital image analysis. Talanta, 2018, 184, 58-64.
[24]
Tsuda, S.; Murakami, M.; Matsusaka, N.; Kano, K.; Taniguchi, K.; Sasaki, Y.F. DNA damage induced by red food dyes orally administered to pregnant and male mice. Toxicol. Sci., 2001, 61(1), 92-99.
[25]
El-Desoky, G.; Abdel-Ghaffar, A.; Al-Othman, Z.; Habila, M.; Al-Sheikh, Y.; Ghneim, H.; Giesy, J.P.; Aboul-Soud, M.A. Curcumin protects against tartrazine-mediated oxidative stress and hepatotoxicity in male rats. Eur. Rev. Med. Pharmacol. Sci., 2017, 21, 635-645.
[26]
Zaidun, N.H.; Sahema, Z.C.T.; Mardiana, A.A.; Santhana, R.L.; Latiff, A.A.; Syed Ahmad , F.S.B. Effects of naringenin on vascular changes in prolonged hyperglycaemia in fructose-STZ diabetic rat model. Drug Discov. Ther., 2019, 13(4), 212-221.
[27]
Hajzadeh, M.A.R.; Rajaei, Z.; Shafiee, S.; Alavinejhad, A.; Samarghandian, S.; Ahmadi, M. Effect of barberry fruit (Berberis Vulgaris) on serum glucose and lipids in streptozotocin-diabetic rats. Pharmacologyonline, 2011, 1, 809-817.
[28]
Szkudelski, T. The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. Physiol. Res., 2001, 50, 537-546.
[29]
Abd Allah, E.S.; Gomaa, A.M. Effects of curcumin and captopril on the functions of kidney and nerve in streptozotocin-induced diabetic rats: Role of angiotensin converting enzyme 1. Appl. Physiol. Nutr. Metab., 2015, 40, 1061-1067.
[30]
Lu, M.; Yin, N.; Liu, W.; Cui, X.; Chen, S.; Wang, E. Curcumin ameliorates diabetic nephropathy by suppressing NLRP3 inflammasome signaling. BioMed Res. Int., 2017, 20171516985
[31]
Boskabady, M.H.; Karimi, G.R.; Samarghandian, S.; Farkhondeh, T. Tracheal responsiveness to methacholine and ovalbumin; and lung inflammation in guinea pigs exposed to inhaled lead after sensitization. Ecotoxicol. Environ. Saf., 2012, 86, 233-238.
[32]
Farkhondeh, T.; Samarghandian, S.; Sadighara, P. Lead exposure and asthma: An overview of observational and experimental studies. Toxin Rev., 2015, 34(1), 6-10.
[33]
Abdel-Moneim, A.M.; El-Toweissy, M.Y.; Ali, A.M.; Allah, A.A.M.A.; Darwish, H.S.; Sadek, I.A. Curcumin ameliorates lead (pb2+)-induced hemato-biochemical alterations and renal oxidative damage in a rat model. Biol. Trace Elem. Res., 2015, 168, 206-220.
[34]
Samarghandian, S.; Azimi-Nezhad, M.; Shabestari, M.M.; Azad, F.J.; Farkhondeh, T.; Bafandeh, F. Effect of chronic exposure to cadmium on serum lipid, lipoprotein and oxidative stress indices in male rats. Interdiscip. Toxicol., 2015, 8(3), 151-154.
[35]
Tarasub, N.; Tarasub, C.; Ayutthaya, W.D.N. Protective role of curcumin on cadmium-induced nephrotoxicity in rats. J. Environ. Chem. Ecotoxicol, 2011, 3(2), 17-24.
[36]
Cho, Y.K.; Shin, E.Y.; Uehara, H.; Ambati, B. The effect of 0.5% timolol maleate on corneal(lymph)angiogenesis in a murine suture model. J. Ocul. Pharmacol. Ther., 2018, 34(5), 403-409.
[37]
Tapia, E.; Sanchez-Lozada, L.; Garcia-Nino, W.; García, E.; Cerecedo, A.; García-Arroyo, F.; Osorio, H.; Arellano, A.; Cristóbal-García, M.; Loredo, M.L.; Molina-Jijón, E.; Hernández-Damián, J.; Negrette-Guzmán, M.; Zazueta, C.; Huerta-Yepez, S.; Reyes, J.L.; Madero, M.; Pedraza-Chaverrí, J. Curcumin prevents maleate-induced nephrotoxicity: Relation to hemodynamic alterations, oxidative stress, mitochondrial oxygen consumption and activity of respiratory complex I. Free Radic. Res., 2014, 48, 1342-1354.
[38]
Poorbagher, H.; Ghaffari Farsani, H.; Farahmand, H. A method to quantify genotoxicity of malathion in rainbow trout using the weighted averaging. Toxicol. Mech. Methods, 2018, 24, 1-22.
[39]
Mişe, Y.S.; Yonar, M.; Ural, M. Antioxidant effect of curcumin against exposure to malathion in Cyprinus carpio. Cell. Mol. Biol., (Noisy-le-grand). 2017, 63, 68.
[40]
Ayoob, S.; Gupta, A.K. Fluoride in drinking water: a review on the status and stress effects. Crit. Rev. Environ. Sci. Technol., 36(6) 2006, , 433-487.
[41]
Inkielewicz, I.; Krechniak, J. Fluoride content in soft tissues and urine of rats exposed to sodium fluoride in drinking water. Fluoride, 2003, 36(4), 263-266.
[42]
Nabavi, S.F.; Moghaddam, A.H.; Eslami, S.; Nabavi, S.M. Protective effects of curcumin against sodium fluoride-induced toxicity in rat kidneys. Biol. Trace Elem. Res., 2012, 145(3), 369-374.
[43]
Rabara, R.C.; Tripathi, P.; Reese, R.N.; Rushton, D.L.; Alexander, D.; Timko, M.P.; Shen, Q.J.; Rushton, P.J. Tobacco drought stress responses reveal new targets for Solanaceae crop improvement. BMC Genomics, 2015, 16, 484.
[44]
Ibrahim, Z.S.; Alkafafy, M.E.; Ahmed, M.M.; Soliman, M.M. Renoprotective effect of curcumin against the combined oxidative stress of diabetes and nicotine in rats. Mol. Med. Rep., 2016, 13, 3017-3026.
[45]
Polat, A.; Parlakpinar, H.; Tasdemir, S.; Colak, C.; Vardi, N.; Ucar, M.; Emre, M.H.; Acet, A. Protective role of aminoguanidine on gentamicin-induced acute renal failure in rats. Acta Histochem., 2006, 108, 365-371.
[46]
Mahmoud, A.M.; Ahmed, O.M.; Galaly, S.R. Thymoquinone and curcumin attenuate gentamicin-induced renal oxidative stress, inflammation and apoptosis in rats. EXCLI J., 2014, 13, 98.
[47]
Azab, E.; Fetouh, F.A.; Albasha, M.O. Nephro-protective effects of curcumin, rosemary and propolis against gentamicin induced toxicity in guinea pigs: morphological and biochemical study. Am. J. Clin. Exp. Med, 2014, 2(2), 28-35.
[48]
El-Zawahry, B.H.; El Kheir, E.M.A.; Effat, M. The protective effect of curcumin against gentamicin-induced renal dysfunction and oxidative stress in male albino rats, Egypt. J. Hosp. Med., 2007, 29, 546-556.
[49]
He, L.; Peng, X.; Zhu, J.; Liu, G.; Chen, X.; Tang, C.; Liu, H.; Liu, F.; Peng, Y. Protective effects of curcumin on acute gentamicin-induced nephrotoxicity in rats. Can. J. Physiol. Pharmacol., 2015, 93(4), 275-282.
[50]
Sahin, K.; Orhan, C.; Tuzcu, M.; Muqbil, I.; Sahin, N.; Gencoglu, H.; Guler, O.; Padhye, S.B.; Sarkar, F.H.; Mohammad, R.M. Comparative in vivo evaluations of curcumin and its analog difluorinated curcumin against cisplatin-induced nephrotoxicity. Biol. Trace Elem. Res., 2014, 157, 156-163.
[51]
Kumar, P.; Barua, C.C.; Sulakhiya, K.; Sharma, R.K. Curcumin ameliorates cisplatin-induced nephrotoxicity and potentiates its anticancer activity in SD rats: Potential role of curcumin in breast cancer chemotherapy. Front. Pharmacol., 2017, 8, 132.
[52]
Salem, N.I.S.; Noshy, M.M.; Said, A.A. Modulatory effect of curcumin against genotoxicity and oxidative stress induced by cisplatin and methotrexate in male mice. Food Chem. Toxicol., 2017, 105, 370-376.
[53]
Trujillo, J.; Molina-Jijón, E.; Medina-Campos, O.N.; Rodríguez-Muñoz, R.; Reyes, J.L.; Loredo, M.L.; Barrera-Oviedo, D.; Pinzón, E.; Rodríguez-Rangel, D.S.; Pedraza-Chaverri, J. Curcumin prevents cisplatin-induced decrease in the tight and adherens junctions: relation to oxidative stress. Food Funct., 2016, 7, 279-293.
[54]
Ugur, S.; Ulu, R.; Dogukan, A.; Gurel, A.; Yigit, I.P.; Gozel, N. The renoprotective effect of curcumin in cisplatin-induced nephrotoxicity. Ren. Fail., 2015, 37, 332-336.
[55]
Revollo, J.R.; Grimm, A.A.; Imai, S-I. The regulation of nicotinamide adenine dinucleotide biosynthesis by Nampt/PBEF/visfatin in mammals. Curr. Opin. Gastroenterol., 2007, 23, 164-170.
[56]
Luk, T.; Malam, Z.; Marshall, J.C. Pre-B cell colony-enhancing factor (PBEF)/visfatin: a novel mediator of innate immunity. J. Leuko c. Biol., 2008, 83, 804-816.
[57]
Svanström, H.; Lund, M.; Melbye, M.; Pasternak, B. Concomitant use of low-dose methotrexate and NSAIDs and the risk of serious adverse events among patients with rheumatoid arthritis. Pharmacoepidemiol. Drug Saf., 2018.
[http://dx.doi.org/10.1002/pds.4555]
[58]
Morsy, M.A.; Ibrahim, S.A.; Amin, E.F.; Kamel, M.Y.; Rifaai, R.A.; Hassan, M.K. Curcumin ameliorates methotrexate-induced nephrotoxicity in rats. Adv. Pharmacol. Sci., 2013, 2013387071

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy