[1]
Jacob, L.; Bleicher, L.; Kostev, K.; Kalder, M. Prevalence of depression, anxiety and their risk factors in German women with breast cancer in general and gynecological practices. J. Cancer Res. Clin. Oncol., 2016, 142(2), 447-452.
[2]
Al-Hajj, M.; Wicha, M.S.; Benito-Hernandez, A.; Morrison, S.J.; Clarke, M.F. Prospective identification of tumorigenic breast cancer cells. Proc. Natl. Acad. Sci. USA, 2003, 100(7), 3983-3988.
[3]
Glazier, A.M.; Nadeau, J.H.; Aitman, T.J. Finding genes that underlie complex traits. Science, 2002, 298(5602), 2345-2349.
[4]
Yuan, P.; Liu, D.; Deng, M.; Liu, J.; Wang, J.; Zhang, L.; Liu, Q.; Zhang, T.; Chen, Y.; Jin, G. Identification of differently expressed genes with specific SNP loci for breast cancer by the integration of SNP and gene expression profiling analyses. Pathol. Oncol. Res., 2015, 21(2), 469-475.
[5]
Nacht, M.; Ferguson, A.T.; Zhang, W.; Petroziello, J.M.; Cook, B.P.; Gao, Y.H.; Maguire, S.; Riley, D.; Coppola, G.; Landes, G.M.; Madden, S.L.; Sukumar, S. Combining serial analysis of gene expression and array technologies to identify genes differentially expressed in breast cancer. Cancer Res., 1999, 59(21), 5464-5470.
[6]
Silva, G.O.; He, X.; Parker, J.S.; Gatza, M.L.; Carey, L.A.; Hou, J.P.; Moulder, S.L.; Marcom, P.K.; Ma, J.; Rosen, J.M.; Perou, C.M. Cross-species DNA copy number analyses identifies multiple 1q21-q23 subtype-specific driver genes for breast cancer. Breast Cancer Res. Treat., 2015, 152(2), 347-356.
[7]
Erten, S.; Bebek, G.; Ewing, R.M.; Koyuturk, M. DADA: degree-aware algorithms for network-based disease gene prioritization. BioData Min., 2011, 4, 19.
[8]
Ramadan, E.; Alinsaif, S.; Hassan, M.R. Network topology measures for identifying disease-gene association in breast cancer. BMC Bioinformatics, 2016, 17(7), 274.
[9]
Liu, R.; Guo, C.X.; Zhou, H.H. Network-based approach to identify prognostic biomarkers for estrogen receptor-positive breast cancer treatment with tamoxifen. Cancer Biol. Ther., 2015, 16(2), 317-324.
[10]
Srihari, S.; Kalimutho, M.; Lal, S.; Singla, J.; Patel, D.; Simpson, P.T.; Khanna, K.K.; Ragan, M.A. Understanding the functional impact of copy number alterations in breast cancer using a network modeling approach. Mol. Biosyst., 2016, 12, 963-972.
[11]
Chai, F.; Liang, Y.; Zhang, F.; Wang, M.; Zhong, L.; Jiang, J. Systematically identify key genes in inflammatory and non-inflammatory breast cancer. Gene, 2016, 575(2 Pt 3), 600-614.
[12]
Ma, X.; Beeghly-Fadiel, A.; Lu, W.; Shi, J.; Xiang, Y.B.; Cai, Q.; Shen, H.; Shen, C.Y.; Ren, Z.; Matsuo, K.; Khoo, U.S.; Iwasaki, M.; Long, J.; Zhang, B.; Ji, B.T.; Zheng, Y.; Wang, W.; Hu, Z.; Liu, Y.; Wu, P.E.; Shieh, Y.L.; Wang, S.; Xie, X.; Ito, H.; Kasuga, Y.; Chan, K.Y.; Iwata, H.; Tsugane, S.; Gao, Y.T.; Shu, X.O.; Moses, H.L.; Zheng, W. Pathway analyses identify TGFBR2 as potential breast cancer susceptibility gene: results from a consortium study among Asians. Cancer Epidemiol. Biomarkers Prev., 2012, 21(7), 1176-1184.
[13]
Pang, H.; Zhao, H. Stratified pathway analysis to identify gene sets associated with oral contraceptive use and breast cancer. Cancer Inform., 2014, 13(Suppl. 4), 73-78.
[14]
Xun, L.; Mitra-Behura, S.; Alston, B.; Zong, Z.; Sun, S. Identifying DNA methylation variation patterns to obtain potential breast cancer biomarker genes. Int. J. Biomed. Data Min., 2015, 4(1), 115.
[15]
D’Alesio, C.; Punzi, S.; Cicalese, A.; Fornasari, L.; Furia, L.; Riva, L.; Carugo, A.; Curigliano, G.; Criscitiello, C.; Pruneri, G. RNAi screens identify CHD4 as an essential gene in breast cancer growth. Oncotarget, 2016, 7(49), 80901-80915.
[16]
Min, W.; Liu, J.; Luo, F.; Zhang, S. A novel two-stage method for identifying microRNA-gene regulatory modules in breast cancer. IEEE Int. Conf. Bioinform. Biomed. Washington, DC, USA, 2015, pp. 151-156.
[17]
Rafiul, H.; Ul Haq, I.; Ramadan, E.; Kamruzzaman, J.; Ahmed, A. Distinctive phenotype identification for breast cancer genotypes among hereditary breast cancer mutated genes. Curr. Bioinform., 2015, 10(1), 5-15.
[18]
Sotiriou, C.; Neo, S.Y.; McShane, L.M.; Korn, E.L.; Long, P.M.; Jazaeri, A.; Martiat, P.; Fox, S.B.; Harris, A.L.; Liu, E.T. Breast cancer classification and prognosis based on gene expression profiles from a population-based study. Proc. Natl. Acad. Sci. USA, 2003, 100(18), 10393-10398.
[19]
Barrenas, F.; Chavali, S.; Holme, P.; Mobini, R.; Benson, M. Network properties of complex human disease genes identified through genome-wide association studies. PLoS One, 2009, 4(11)e8090
[20]
Oti, M.; Snel, B.; Huynen, M.A.; Brunner, H.G. Predicting disease genes using protein-protein interactions. J. Med. Genet., 2006, 43(8), 691-698.
[21]
Chen, J.; Aronow, B.J.; Jegga, A.G. Disease candidate gene identification and prioritization using protein interaction networks. BMC Bioinformatics, 2009, 10, 73.
[22]
Kohler, S.; Bauer, S.; Horn, D.; Robinson, P.N. Walking the interactome for prioritization of candidate disease genes. Am. J. Hum. Genet., 2008, 82(4), 949-958.
[23]
Navlakha, S.; Kingsford, C. The power of protein interaction networks for associating genes with diseases. Bioinformatics, 2010, 26(8), 1057-1063.
[24]
Nabieva, E.; Jim, K.; Agarwal, A.; Chazelle, B.; Singh, M. Whole-proteome prediction of protein function via graph-theoretic analysis of interaction maps. Bioinformatics, 2005, 21(Suppl. 1), i302-i310.
[25]
Jiang, M.; Chen, Y.; Zhang, Y.; Chen, L.; Zhang, N.; Huang, T.; Cai, Y.D.; Kong, X. Identification of hepatocellular carcinoma related genes with k-th shortest paths in a protein-protein interaction network. Mol. Biosyst., 2013, 9(11), 2720-2728.
[26]
Li, B.Q.; Zhang, J.; Huang, T.; Zhang, L.; Cai, Y.D. Identification of retinoblastoma related genes with shortest path in a protein-protein interaction network. Biochimie, 2012, 94(9), 1910-1917.
[27]
Li, B.Q.; You, J.; Chen, L.; Zhang, J.; Zhang, N.; Li, H.P.; Huang, T.; Kong, X.Y.; Cai, Y.D. Identification of lung-cancer-related genes with the shortest path approach in a protein-protein interaction network. BioMed Res. Int., 2013, 2013267375
[28]
Barrett, T.; Suzek, T.O.; Troup, D.B.; Wilhite, S.E.; Ngau, W.C.; Ledoux, P.; Rudnev, D.; Lash, A.E.; Fujibuchi, W.; Edgar, R. NCBI GEO: mining millions of expression profiles--database and tools. Nucleic Acids Res., 2005, 33(Database issue), D562-D566.
[29]
Peng, H.; Long, F.; Ding, C. Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell., 2005, 27(8), 1226-1238.
[30]
Alshamlan, H.; Badr, G.; Alohali, Y. mRMR-ABC: a hybrid gene selection algorithm for cancer classification using microarray gene expression profiling. BioMed Res. Int., 2015, 2015(4), 1-15.
[31]
Franceschini, A.; Szklarczyk, D.; Frankild, S.; Kuhn, M.; Simonovic, M.; Roth, A.; Lin, J.; Minguez, P.; Bork, P.; von Mering, C.; Jensen, L.J. STRING v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res., 2013, 41(Database issue), D808-D815.
[32]
Benjamini, Y.; Yekutieli, D. The control of the false discovery rate in multiple testing under dependency. Ann. Stat., 2001, 29(4), 1165-1188.
[33]
Yang, X.; Zhang, J.; Huang, K. Mining the tissue-tissue gene coexpression
network for tumor microenvironment study and biomarker
prediction. BMC Genomics., 2013, 14 Suppl 5(5), S4.
[34]
Peng, Z.; Wang, H.; Shan, C. Expression of ubiquitin and cullin-1 and its clinicopathological significance in benign and malignant lesions of the lung. Zhong Nan Da Xue Xue Bao Yi Xue Ban, 2009, 34(3), 204-209.
[35]
Chen, D.; Dou, Q.P. The ubiquitin-proteasome system as a prospective molecular target for cancer treatment and prevention. Curr. Protein Pept. Sci., 2010, 11(6), 459-470.
[36]
Matlashewski, G.; Lamb, P.; Pim, D.; Peacock, J.; Crawford, L.; Benchimol, S. Isolation and characterization of a human p53 cDNA clone: expression of the human p53 gene. The EMBO J., 1984, 3(13), 3257-3262.
[37]
Walsh, T.; Casadei, S.; Coats, K.H.; Swisher, E.; Stray, S.M.; Higgins, J.; Roach, K.C.; Mandell, J.; Lee, M.K.; Ciernikova, S.; Foretova, L.; Soucek, P.; King, M.C. Spectrum of mutations in BRCA1, BRCA2, CHEK2, and TP53 in families at high risk of breast cancer. JAMA, 2006, 295(12), 1379-1388.
[38]
Berns, E.M.; Foekens, J.A.; Vossen, R.; Look, M.P.; Devilee, P.; Henzen-Logmans, S.C.; van Staveren, I.L.; van Putten, W.L.; Inganas, M.; Meijer-van Gelder, M.E.; Cornelisse, C.; Claassen, C.J.; Portengen, H.; Bakker, B.; Klijn, J.G. Complete sequencing of TP53 predicts poor response to systemic therapy of advanced breast cancer. Cancer Res., 2000, 60(8), 2155-2162.
[39]
Patocs, A.; Zhang, L.; Xu, Y.; Weber, F.; Caldes, T.; Mutter, G.L.; Platzer, P.; Eng, C. Breast-cancer stromal cells with TP53 mutations and nodal metastases. The New . Engl. J. Med., 2007, 357(25), 2543-2551.
[40]
Spizzo, R.; Nicoloso, M.S.; Lupini, L.; Lu, Y.; Fogarty, J.; Rossi, S.; Zagatti, B.; Fabbri, M.; Veronese, A.; Liu, X.; Davuluri, R.; Croce, C.M.; Mills, G.; Negrini, M.; Calin, G.A. miR-145 participates with TP53 in a death-promoting regulatory loop and targets estrogen receptor-alpha in human breast cancer cells. Cell Death Differ., 2010, 17(2), 246-254.
[41]
Vleugel, M.M.; Greijer, A.E.; Bos, R.; van der Wall, E.; van Diest, P.J. c-Jun activation is associated with proliferation and angiogenesis in invasive breast cancer. Hum. Pathol., 2006, 37(6), 668-674.
[42]
Cui, X.; Kim, H.J.; Kuiatse, I.; Kim, H.; Brown, P.H.; Lee, A.V. Epidermal growth factor induces insulin receptor substrate-2 in breast cancer cells via c-Jun NH(2)-terminal kinase/activator protein-1 signaling to regulate cell migration. Cancer Res., 2006, 66(10), 5304-5313.
[43]
Langer, S.; Singer, C.F.; Hudelist, G.; Dampier, B.; Kaserer, K.; Vinatzer, U.; Pehamberger, H.; Zielinski, C.; Kubista, E.; Schreibner, M. Jun and Fos family protein expression in human breast cancer: correlation of protein expression and clinicopathological parameters. Eur. J. Gynaecol. Oncol., 2006, 27(4), 345-352.
[44]
Bu, X.; Avraham, H.K.; Li, X.; Lim, B.; Jiang, S.; Fu, Y.; Pestell, R.G.; Avraham, S. Mayven induces c-Jun expression and cyclin D1 activation in breast cancer cells. Oncogene, 2005, 24(14), 2398-2409.
[45]
Ju, X.; Katiyar, S.; Wang, C.; Liu, M.; Jiao, X.; Li, S.; Zhou, J.; Turner, J.; Lisanti, M.P.; Russell, R.G.; Mueller, S.C.; Ojeifo, J.; Chen, W.S.; Hay, N.; Pestell, R.G. Akt1 governs breast cancer progression in vivo. Proc. Natl. Acad. Sci. USA, 2007, 104(18), 7438-7443.
[46]
Liu, H.; Radisky, D.C.; Nelson, C.M.; Zhang, H.; Fata, J.E.; Roth, R.A.; Bissell, M.J. Mechanism of Akt1 inhibition of breast cancer cell invasion reveals a protumorigenic role for TSC2. Proc. Natl. Acad. Sci. USA, 2006, 103(11), 4134-4139.
[47]
Chin, Y.R.; Toker, A. The actin-bundling protein palladin is an Akt1-specific substrate that regulates breast cancer cell migration. Mol. Cell, 2010, 38(3), 333-344.
[48]
Liang, K.; Lu, Y.; Li, X.; Zeng, X.; Glazer, R.I.; Mills, G.B.; Fan, Z. Differential roles of phosphoinositide-dependent protein kinase-1 and akt1 expression and phosphorylation in breast cancer cell resistance to Paclitaxel, Doxorubicin, and gemcitabine. Mol. Pharmacol., 2006, 70(3), 1045-1052.
[49]
Meisner, H.; Daga, A.; Buxton, J.; Fernandez, B.; Chawla, A.; Banerjee, U.; Czech, M.P. Interactions of Drosophila Cbl with epidermal growth factor receptors and role of Cbl in R7 photoreceptor cell development. Mol. Cell. Biol., 1997, 17(4), 2217-2225.
[50]
Truitt, L.; Freywald, T.; DeCoteau, J.; Sharfe, N.; Freywald, A. The EphB6 receptor cooperates with c-Cbl to regulate the behavior of breast cancer cells. Cancer Res., 2010, 70(3), 1141-1153.
[51]
Vennin, C.; Spruyt, N.; Dahmani, F.; Julien, S.; Bertucci, F.; Finetti, P.; Chassat, T.; Bourette, R.P.; Le Bourhis, X.; Adriaenssens, E. H19 non coding RNA-derived miR-675 enhances tumorigenesis and metastasis of breast cancer cells by downregulating c-Cbl and Cbl-b. Oncotarget, 2015, 6(30), 29209-29223.
[52]
Wang, Y.; Chen, L.; Wu, Z.; Wang, M.; Jin, F.; Wang, N.; Hu, X.; Liu, Z.; Zhang, C.Y.; Zen, K.; Chen, J.; Liang, H.; Zhang, Y.; Chen, X. miR-124-3p functions as a tumor suppressor in breast cancer by targeting CBL. BMC Cancer, 2016, 16(1), 826.
[53]
Nicholson, S.; Richard, J.; Sainsbury, C.; Halcrow, P.; Kelly, P.; Angus, B.; Wright, C.; Henry, J.; Farndon, J.R.; Harris, A.L. Epidermal Growth Factor Receptor (EGFr); results of a 6 year follow-up study in operable breast cancer with emphasis on the node negative subgroup. Br. Cancer, 1991, 63(1), 146-150.
[54]
Cao, X.X.; Xu, J.D.; Liu, X.L.; Xu, J.W.; Wang, W.J.; Li, Q.Q.; Chen, Q.; Xu, Z.D.; Liu, X.P. RACK1: a superior independent predictor for poor clinical outcome in breast cancer. Int. J. Cancer, 2010, 127(5), 1172-1179.
[55]
Cao, X.X.; Xu, J.D.; Xu, J.W.; Liu, X.L.; Cheng, Y.Y.; Li, Q.Q.; Xu, Z.D.; Liu, X.P. RACK1 promotes breast carcinoma migration/metastasis via activation of the RhoA/Rho kinase pathway. Breast Cancer Res. Treat., 2011, 126(3), 555-563.
[56]
Kawai, H.; Li, H.; Avraham, S.; Jiang, S.; Avraham, H.K. Overexpression of histone deacetylase HDAC1 modulates breast cancer progression by negative regulation of estrogen receptor alpha. Int. J. Cancer, 2003, 107(3), 353-358.
[57]
Wu, M.Y.; Fu, J.; Xiao, X.; Wu, J.; Wu, R.C. MiR-34a regulates therapy resistance by targeting HDAC1 and HDAC7 in breast cancer. Cancer Lett., 2014, 354(2), 311-319.
[58]
Arabsolghar, R.; Azimi, T.; Rasti, M. Mutant p53 binds to estrogen receptor negative promoter via DNMT1 and HDAC1 in MDA-MB-468 breast cancer cells. Mol. Biol. Rep., 2013, 40(3), 2617-2625.
[59]
Contino, F.; Mazzarella, C.; Ferro, A.; Lo Presti, M.; Roz, E.; Lupo, C.; Perconti, G.; Giallongo, A.; Feo, S. Negative transcriptional control of ERBB2 gene by MBP-1 and HDAC1: diagnostic implications in breast cancer. BMC Cancer, 2013, 13, 81.
[60]
Graham, T.R.; Yacoub, R.; Taliaferro-Smith, L.; Osunkoya, A.O.; Odero-Marah, V.A.; Liu, T.; Kimbro, K.S.; Sharma, D.; O’Regan, R.M. Reciprocal regulation of ZEB1 and AR in triple negative breast cancer cells. Breast Cancer Res. Treat., 2010, 123(1), 139-147.
[61]
Chen, W.; Wang, W.; Zhu, B.; Guo, H.; Sun, Y.; Ming, J.; Shen, N.; Li, Z.; Wang, Z.; Liu, L.; Cai, B.; Duan, J.; Li, J.; Liu, C.; Zhong, R.; Hu, W.; Huang, T.; Miao, X. A functional variant rs1820453 in YAP1 and breast cancer risk in Chinese population. PLoS One, 2013, 8(11)e79056
[62]
Farnie, G.; Clarke, R.B. Mammary stem cells and breast cancer--role of Notch signalling. Stem Cell Rev., 2007, 3(2), 169-175.
[63]
Rizzo, P.; Miao, H.; D’Souza, G.; Osipo, C.; Song, L.L.; Yun, J.; Zhao, H.; Mascarenhas, J.; Wyatt, D.; Antico, G.; Hao, L.; Yao, K.; Rajan, P.; Hicks, C.; Siziopikou, K.; Selvaggi, S.; Bashir, A.; Bhandari, D.; Marchese, A.; Lendahl, U.; Qin, J.Z.; Tonetti, D.A.; Albain, K.; Nickoloff, B.J.; Miele, L. Cross-talk between notch and the estrogen receptor in breast cancer suggests novel therapeutic approaches. Cancer Res., 2008, 68(13), 5226-5235.
[64]
Sethi, N.; Dai, X.; Winter, C.G.; Kang, Y. Tumor-derived JAGGED1 promotes osteolytic bone metastasis of breast cancer by engaging notch signaling in bone cells. Cancer Cell, 2011, 19(2), 192-205.
[65]
Robinson, D.R.; Kalyana-Sundaram, S.; Wu, Y.M.; Shankar, S.; Cao, X.; Ateeq, B.; Asangani, I.A.; Iyer, M.; Maher, C.A.; Grasso, C.S.; Lonigro, R.J.; Quist, M.; Siddiqui, J.; Mehra, R.; Jing, X.; Giordano, T.J.; Sabel, M.S.; Kleer, C.G.; Palanisamy, N.; Natrajan, R.; Lambros, M.B.; Reis-Filho, J.S.; Kumar-Sinha, C.; Chinnaiyan, A.M. Functionally recurrent rearrangements of the MAST kinase and Notch gene families in breast cancer. Nat. Med., 2011, 17(12), 1646-1651.
[66]
Yin, X.; Wolford, C.C.; Chang, Y.S.; McConoughey, S.J.; Ramsey, S.A.; Aderem, A.; Hai, T. ATF3, an adaptive-response gene, enhances TGFbeta signaling and cancer-initiating cell features in breast cancer cells. J. Cell Sci., 2010, 123(Pt 20), 3558-3565.
[67]
Wolford, C.C.; McConoughey, S.J.; Jalgaonkar, S.P.; Leon, M.; Merchant, A.S.; Dominick, J.L.; Yin, X.; Chang, Y.; Zmuda, E.J.; O’Toole, S.A.; Millar, E.K.; Roller, S.L.; Shapiro, C.L.; Ostrowski, M.C.; Sutherland, R.L.; Hai, T. Transcription factor ATF3 links host adaptive response to breast cancer metastasis. The J. Clin. Invest., 2013, 123(7), 2893-2906.
[68]
Puvirajesinghe, T.M.; Bertucci, F.; Jain, A.; Scerbo, P.; Belotti, E.; Audebert, S.; Sebbagh, M.; Lopez, M. Identification of
p62/SQSTM1 as a component of non-canonical Wnt VANGL2-
JNK signalling in breast cancer. 2016, 7, 10318.
[69]
Xu, L.Z.; Li, S.S.; Zhou, W.; Kang, Z.J.; Zhang, Q.X.; Kamran, M.; Xu, J.; Liang, D.P.; Wang, C.L.; Hou, Z.J.; Wan, X.B.; Wang, H.J.; Lam, E.W.; Zhao, Z.W.; Liu, Q. p62/SQSTM1 enhances breast cancer stem-like properties by stabilizing MYC mRNA. Oncogene, 2017, 36(3), 304-317.
[70]
Hockel, M.; Vaupel, P. Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects. J. Natl. Cancer Inst., 2001, 93(4), 266-276.
[71]
Sonveaux, P.; Vegran, F.; Schroeder, T.; Wergin, M.C.; Verrax, J.; Rabbani, Z.N.; De Saedeleer, C.J.; Kennedy, K.M.; Diepart, C.; Jordan, B.F.; Kelley, M.J.; Gallez, B.; Wahl, M.L.; Feron, O.; Dewhirst, M.W. Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. The J. Clin. Invest., 2008, 118(12), 3930-3942.
[72]
Chao, K.S.; Bosch, W.R.; Mutic, S.; Lewis, J.S.; Dehdashti, F.; Mintun, M.A.; Dempsey, J.F.; Perez, C.A.; Purdy, J.A.; Welch, M.J. A novel approach to overcome hypoxic tumor resistance: cu-ATSM-guided intensity-modulated radiation therapy. Int. J. Radiat. Oncol. Biol. Phys., 2001, 49(4), 1171-1182.
[73]
Teicher, B.A.; Lazo, J.S.; Sartorelli, A.C. Classification of antineoplastic agents by their selective toxicities toward oxygenated and hypoxic tumor cells. Cancer Res., 1981, 41(1), 73-81.
[74]
Bataineh, Z.M.; Habbal, O. Immunoreactivity of ubiquitin in human prostate gland. Neuroendocrinol. Lett., 2006, 27(4), 517.
[75]
Clarke, R.; Tyson, J.J.; Dixon, J.M. Endocrine resistance in breast cancer--an overview and update. Mol. Cell. Endocrinol., 2015, 418(Pt 3), 220-234.
[76]
Loeser, A.A. A new therapy for prevention of post-operative recurrences in genital and breast cancer; a six-years study of prophylactic thyroid treatment. Br. Med. J., 1954, 2(4901), 1380-1383.
[77]
Luo, M.; Guan, J.L. Focal adhesion kinase: a prominent determinant in breast cancer initiation, progression and metastasis. Cancer Lett., 2010, 289(2), 127-139.
[78]
Arbach, H.; Viglasky, V.; Lefeu, F.; Guinebretiere, J.M.; Ramirez, V.; Bride, N.; Boualaga, N.; Bauchet, T.; Peyrat, J.P.; Mathieu, M.C.; Mourah, S.; Podgorniak, M.P.; Seignerin, J.M.; Takada, K.; Joab, I. Epstein-Barr virus (EBV) genome and expression in breast cancer tissue: effect of EBV infection of breast cancer cells on resistance to paclitaxel (Taxol). J. Virol., 2006, 80(2), 845-853.
[79]
Theocharis, A.D.; Skandalis, S.S.; Neill, T.; Multhaupt, H.A.; Hubo, M.; Frey, H.; Gopal, S.; Gomes, A.; Afratis, N.; Lim, H.C.; Couchman, J.R.; Filmus, J.; Sanderson, R.D.; Schaefer, L.; Iozzo, R.V.; Karamanos, N.K. Insights into the key roles of proteoglycans in breast cancer biology and translational medicine. Biochim. et Biophys. Acta, 2015, 1855(2), 276-300.
[80]
Yeo, W.; Chan, P.K.; Chan, H.L.; Mo, F.K.; Johnson, P.J. Hepatitis B virus reactivation during cytotoxic chemotherapy-enhanced viral replication precedes overt hepatitis. J. Med. Virol., 2001, 65(3), 473-477.
[81]
Yeo, W.; Chan, P.K.; Hui, P.; Ho, W.M.; Lam, K.C.; Kwan, W.H.; Zhong, S.; Johnson, P.J. Hepatitis B virus reactivation in breast cancer patients receiving cytotoxic chemotherapy: a prospective study. J. Med. Virol., 2003, 70(4), 553-561.
[82]
Elloul, S.; Kedrin, D.; Knoblauch, N.W.; Beck, A.H.; Toker, A. The adherens junction protein afadin is an AKT substrate that regulates breast cancer cell migration. Mol. Cancer Res., 2014, 12(3), 464-476.
[83]
Normanno, N.; De Luca, A.; Maiello, M.R.; Campiglio, M.; Napolitano, M.; Mancino, M.; Carotenuto, A.; Viglietto, G.; Menard, S. The MEK/MAPK pathway is involved in the resistance of breast cancer cells to the EGFR tyrosine kinase inhibitor gefitinib. J. Cell. Physiol., 2006, 207(2), 420-427.
[84]
Jin, Q.; Esteva, F.J. Cross-talk between the ErbB/HER family and the type I insulin-like growth factor receptor signaling pathway in breast cancer. J. Mammary Gland Boil. Neoplasia, 2008, 13(4), 485-498.