[1]
O’CONNOR, R. The pharmacology of cancer resistance. Anticancer Res., 2007, 27(3A), 1267-1272.
[2]
Gottesman, M.M.; Fojo, T.; Bates, S.E. Multidrug resistance in cancer: Role of ATP–Dependent transporters. Nat. Rev. Cancer, 2002, 2, 48.
[3]
Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J. Nat. Prod., 2012, 75(3), 311-335.
[4]
Sun, H-D.; Huang, S-X.; Han, Q-B. Diterpenoids from isodon species and their biological activities. Nat. Prod. Rep., 2006, 23(5), 673-698.
[5]
Aoyagi, Y.; Adachi, Y.; Ozawa, K.; Yokomizo, C.; Gui, M.Y.; Jin, Y.R.; Li, X.W.; Ohno, N.; Takeya, K. Synthesis of rabdokunmin c analogues and their inhibitory effect on NF-KB activation. Bioorg. Med. Chem., 2011, 19(7), 2450-2457.
[6]
Fujita, E.; Fujita, T.; Shibuya, M. Diterpenoid constituents of isodon trichocarpus and isodon japonicus (Terpenoids IV). Tetrahedron Lett., 1966, 7(27), 3153-3162.
[7]
Santagata, S.; Xu, Y.; Wijeratne, E.M.K.; Kontnik, R.; Rooney, C.; Perley, C.C.; Kwon, H.; Clardy, J.; Kesari, S.; Whitesell, L.; Lindquist, S.; Gunatilaka, A.A.L. Using the heat-shock response to discover anticancer compounds that target protein homeostasis. ACS Chem. Biol., 2012, 7(2), 340-349.
[8]
Wijeratne, E.M.K.; Bashyal, B.P.; Liu, M.X.; Rocha, D.D.; Gunaherath, G.M.K.B. U’Ren, J.M.; Gunatilaka, M.K.; Arnold, A.E.; Whitesell, L.; Gunatilaka, A.A.L. Geopyxins A-E, ent-kaurane diterpenoids from endolichenic fungal strains geopyxis aff. majalis and geopyxis sp. az0066: Structure-activity relationships of geopyxins and their analogues. J. Nat. Prod., 2012, 75(3), 361-369.
[9]
Wang, S.; Yang, H.; Yu, L.; Jin, J.; Qian, L.; Zhao, H.; Xu, Y.; Zhu, X. Oridonin attenuates Aβ1-42-induced neuroinflammation and inhibits NF-KB pathway. PLoS One, 2014, 9(8), 1-7.
[10]
Xu, S.; Pei, L.; Li, D.; Yao, H.; Cai, H.; Yao, H.; Wu, X.; Xu, J. Synthesis and antimycobacterial evaluation of natural oridonin and its enmein-type derivatives. Fitoterapia, 2015, 99(1), 300-306.
[11]
Ku, C-M.; Lin, J-Y. Anti-Inflammatory effects of 27 selected terpenoid compounds tested through modulating TH1/TH2 cytokine secretion profiles using murine primary splenocytes. Food Chem., 2013, 141(2), 1104-1113.
[12]
Li, Y.; Wang, Y.; Wang, S.; Gao, Y.; Zhang, X.; Lu, C. Oridonin Phosphate-induced autophagy effectively enhances cell apoptosis of human breast cancer cells. Med. Oncol., 2014, 32(1), 365.
[13]
Bu, H.Q.; Liu, D.L.; Wei, W.T.; Chen, L.; Huang, H.; Li, Y.; Cui, J.H. Oridonin induces apoptosis in SW1990 pancreatic cancer cells via p53- and caspase-dependent induction of p38 MAPK. Oncol. Rep., 2014, 31(2), 975-982.
[14]
Bao, R.; Shu, Y.; Wu, X.; Weng, H.; Ding, Q.; Cao, Y.; Li, M.; Mu, J.; Wu, W.; Ding, Q.; Tan, Z.; Liu, T.; Jiang, L.; Hu, Y.; Gu, J.; Liu, Y. Oridonin induces apoptosis and cell cycle arrest of gallbladder cancer cells via the mitochondrial pathway. BMC Cancer, 2014, 14(1), 217.
[15]
Zhou, G-B.; Kang, H.; Wang, L.; Gao, L.; Liu, P.; Xie, J.; Zhang, F-X.; Weng, X-Q.; Shen, Z-X.; Chen, J.; Gu, L-J.; Yan, M.; Zhang, D-E.; Chen, S-J.; Wang, Z-Y.; Chen, Z. Oridonin, a Diterpenoid extracted from medicinal herbs, targets aml1-eto fusion protein and shows potent antitumor activity with low adverse effects on t(8;21) leukemia in vitro and in vivo. Blood, 2007, 109(8), 3441LP-3450.
[16]
Li, X.; Li, X.; Wang, J.; Ye, Z.; Li, J-C. Oridonin up-regulates expression of P21 and induces autophagy and apoptosis in human prostate cancer cells. Int. J. Biol. Sci., 2012, 8(6), 901-912.
[17]
Shi, M.; Lu, X-J.; Zhang, J.; Diao, H.; Li, G.; Xu, L.; Wang, T.; Wei, J.; Meng, W.; Ma, J-L.; Yu, H.; Wang, Y-G. Oridonin, a novel lysine acetyltransferases inhibitor, inhibits proliferation and induces apoptosis in gastric cancer cells through p53- and caspase-3-mediated mechanisms. Oncotarget, 2016, 7(16), 22623-22631.
[18]
Li, C.; Wang, E.; Cheng, Y.; Bao, J. Oridonin: An active diterpenoid targeting cell cycle arrest, apoptotic and autophagic pathways for cancer therapeutics. Int. J. Biochem. Cell Biol., 2011, 43(5), 701-704.
[19]
Cui, Q.; Tashiro, S.; Onodera, S.; Ikejima, T. Augmentation of oridonin-induced apoptosis observed with reduced autophagy. J. Pharmacol. Sci., 2006, 101(3), 230-239.
[20]
Cui, Q.; Tashiro, S.; Onodera, S.; Minami, M.; Ikejima, T. Oridonin Induced autophagy in human cervical carcinoma HeLa cells through ras, JNK, and P38 regulation. J. Pharmacol. Sci., 2007, 105(4), 317-325.
[21]
Gao, X.; Li, J.; Wang, M.; Xu, S.; Liu, W.; Zang, L.; Li, Z.; Hua, H.; Xu, J.; Li, D. Novel enmein-type diterpenoid hybrids coupled with nitrogen mustards: Synthesis of promising candidates for anticancer therapeutics. Eur. J. Med. Chem., 2018, 146, 588-598.
[22]
Ding, Y.; Ding, C.; Ye, N.; Liu, Z.; Wold, E.A.; Chen, H.; Wild, C.; Shen, Q.; Zhou, J. Discovery and development of natural product oridonin-inspired anticancer agents. Eur. J. Med. Chem., 2016, 122, 102-117.
[23]
Li, D.; Xu, S.; Cai, H.; Pei, L.; Zhang, H.; Wang, L.; Yao, H.; Wu, X.; Jiang, J.; Sun, Y.; Xu, J. Enmein-type diterpenoid analogs from natural kaurene-type oridonin: Synthesis and their antitumor biological evaluation. Eur. J. Med. Chem., 2013, 64, 215-221.
[24]
Xu, J.; Yang, J.; Ran, Q.; Wang, L.; Liu, J.; Wang, Z.; Wu, X.; Hua, W.; Yuan, S.; Zhang, L.; Shen, M.; Ding, Y. Synthesis and biological evaluation of novel 1-O- and 14-O-Derivatives of oridonin as potential anticancer drug candidates. Bioorg. Med. Chem. Lett., 2008, 18(16), 4741-4744.
[25]
Xu, S.; Li, D.; Pei, L.; Yao, H.; Wang, C.; Cai, H.; Yao, H.; Wu, X.; Xu, J. Design, synthesis and antimycobacterial activity evaluation of natural oridonin derivatives. Bioorg. Med. Chem. Lett., 2014, 24(13), 2811-2814.
[26]
Zhang, Y.; Xu, S.; Wang, G.; Lin, Y.; Zhang, Y.; Pei, L.; Yao, H.; Hu, M.; Qiu, Y.; Huang, Z.; Xu, J. Novel anticancer oridonin derivatives possessing a Diazen-1-Ium-1,2-Diolate nitric oxide donor moiety: Design, synthesis, biological evaluation and nitric oxide release studies. Bioorg. Med. Chem. Lett., 2016, 26(12), 2795-2800.
[27]
Ke, Y.; Liang, J-J.; Hou, R-J.; Li, M-M.; Zhao, L-F.; Wang, W.; Liu, Y.; Xie, H.; Yang, R-H.; Hu, T-X.; Wang, J-Y.; Liu, H-M. Synthesis and biological evaluation of novel jiyuan oridonin a-1,2,3-triazole-azole derivatives as antiproliferative agents. Eur. J. Med. Chem., 2018, 157, 1249-1263.
[28]
Wang, M.; Li, H.; Xu, F.; Gao, X.; Li, J.; Xu, S.; Zhang, D.; Wu, X.; Xu, J.; Hua, H.; Li, D. Diterpenoid lead stevioside and its hydrolysis products steviol and isosteviol: Biological activity and structural modification. Eur. J. Med. Chem., 2018, 156, 885-906.
[29]
Xu, S.; Yao, H.; Pei, L.; Hu, M.; Li, D.; Qiu, Y.; Wang, G.; Wu, L.; Yao, H.; Zhu, Z.; Xu, J. Design, synthesis, and biological evaluation of NAD(P)H: Quinone Oxidoreductase (NQO1)-targeted oridonin prodrugs possessing indolequinone moiety for hypoxia-selective activation. Eur. J. Med. Chem., 2017, 132, 310-321.
[30]
Wang, C.; Yang, D.; Jiang, L.; Wang, S.; Wang, J.; Zhou, K.; Shi, X.; Chang, L.; Liu, Y.; Ke, Y.; Liu, H. Jesridonin in combination with paclitaxel demonstrates synergistic anti-tumor activity in human esophageal carcinoma cells. Bioorg. Med. Chem. Lett., 2017, 27(9), 2058-2062.
[31]
Ding, Y.; Li, D.; Ding, C.; Wang, P.; Liu, Z.; Wold, E.A.; Ye, N.; Chen, H.; White, M.A.; Shen, Q.; Zhou, J. Regio- and stereospecific synthesis of oridonin D-ring aziridinated analogues for the treatment of triple-negative breast cancer via mediated irreversible covalent warheads. J. Med. Chem., 2018, 61(7), 2737-2752.
[32]
Ke, Y.; Wang, W.; Zhao, L-F.; Liang, J-J.; Liu, Y.; Zhang, X.; Feng, K.; Liu, H-M. Design, synthesis and biological mechanisms research on 1,2,3-triazole derivatives of jiyuan oridonin A. Bioorg. Med. Chem., 2018, 26(17), 4761-4773.
[33]
Ding, C.; Zhang, Y.; Chen, H.; Wild, C.; Wang, T.; White, M.A.; Shen, Q.; Zhou, J. Overcoming Synthetic Challenges of Oridonin A-Ring Structural Diversification: Regio- and stereoselective installation of azides and 1,2,3-triazoles at the c-1, c-2, or c-3 position. Org. Lett., 2013, 15(14), 3718-3721.
[34]
Xu, S.; Pei, L.; Wang, C.; Zhang, Y.K.; Li, D.; Yao, H.; Wu, X.; Chen, Z.S.; Sun, Y.; Xu, J. Novel hybrids of natural oridonin-bearing nitrogen mustards as potential anticancer drug candidates. ACS Med. Chem. Lett., 2014, 5(7), 797-802.
[35]
Ding, C.; Zhang, Y.; Chen, H.; Yang, Z.; Wild, C.; Ye, N.; Ester, C.D.; Xiong, A.; White, M.A.; Shen, Q.; Zhou, J. Oridonin ring a-based diverse constructions of enone functionality: Identification of novel dienone analogues effective for highly aggressive breast cancer by inducing apoptosis. J. Med. Chem., 2013, 56(21), 8814-8825.
[36]
Ding, C.; Zhang, Y.; Chen, H.; Yang, Z.; Wild, C.; Chu, L.; Liu, H.; Shen, Q.; Zhou, J. Novel nitrogen-enriched oridonin analogues with thiazole-fused a-ring: Protecting group-free synthesis, enhanced anticancer profile, and improved aqueous solubility. J. Med. Chem., 2013, 56(12), 5048-5058.
[37]
Lin, Z.; Guo, Y.; Gao, Y.; Wang, S.; Wang, X.; Xie, Z.; Niu, H.; Chang, W.; Liu, L.; Yuan, H.; Lou, H. Ent-Kaurane diterpenoids from chinese liverworts and their antitumor activities through michael addition as detected in situ by a fluorescence probe. J. Med. Chem., 2015, 58(9), 3944-3956.
[38]
Xu, S.; Luo, S.; Yao, H.; Cai, H.; Miao, X.; Wu, F.; Yang, D.H.; Wu, X.; Xie, W.; Yao, H.; Chen, Z.S.; Xu, J. Probing the anticancer action of oridonin with fluorescent analogues: Visualizing subcellular localization to mitochondria. J. Med. Chem., 2016, 59(10), 5022-5034.
[39]
Wang, L.; Li, D.; Xu, S.; Cai, H.; Yao, H.; Zhang, Y.; Jiang, J.; Xu, J. The conversion of oridonin to spirolactone-type or enmein-type diterpenoid: Synthesis and biological evaluation of Ent-6,7-Seco-oridonin derivatives as novel potential anticancer agents. Eur. J. Med. Chem., 2012, 52, 242-250.
[40]
Li, D.; Cai, H.; Jiang, B.; Liu, G.; Wang, Y.; Wang, L.; Yao, H.; Wu, X.; Sun, Y.; Xu, J. Synthesis of spirolactone-type diterpenoid derivatives from kaurene-type oridonin with improved antiproliferative effects and their apoptosis-inducing activity in human hepatoma Bel-7402 Cells. Eur. J. Med. Chem., 2013, 59, 322-328.
[41]
Dounay, A.B.; Overman, L.E. The asymmetric intramolecular heck reaction in natural product total synthesis. Chem. Rev., 2003, 103(8), 2945-2963.
[42]
Mallepally, V.R.; Thota, N.; Payare, L.S.; Malhotra, P.; Ali, F.; Inshad, A.K.; Swapandeep, S.C.; Koul, S. Novel bisstyryl derivatives of bakuchiol: Targeting oral cavity pathogens. Eur. J. Med. Chem., 2010, 45(7), 3125-3134.
[43]
Liang, J.H.; Dong, L.J.; Wang, H.; An, K.; Li, X.L.; Yang, L.; Yao, G.W.; Xu, Y.C. Synthesis and antibacterial activities of 6-O-Methylerythromycin A 9-O-(3-aryl-2-propenyl) oxime ketolide, 2,3-enol ether, and alkylide analogues. Eur. J. Med. Chem., 2010, 45(9), 3627-3635.
[44]
Maiwald, F.; Benítez, D.; Charquero, D.; Dar, M.A.; Erdmann, H.; Preu, L.; Koch, O.; Hölscher, C.; Loaëc, N.; Meijer, L.; Comini, M.A.; Kunick, C. 9- and 11-Substituted 4-Azapaullones are potent and selective inhibitors of African trypanosoma. Eur. J. Med. Chem., 2014, 83, 274-283.
[45]
Xu, H.; Tang, H.; Feng, H.; Li, Y. design, synthesis and anticancer activity evaluation of novel C14 heterocycle substituted epi-triptolide. Eur. J. Med. Chem., 2014, 73, 46-55.
[46]
Hou, W.; Zhang, G.; Luo, Z.; Li, D.; Ruan, H.; Ruan, B.H.; Su, L.; Xu, H. Identification of a diverse synthetic abietane diterpenoid library and insight into the structure-activity relationships for antibacterial activity. Bioorg. Med. Chem. Lett., 2017, 27(24), 5382-5386.
[47]
Hou, W.; Luo, Z.; Zhang, G.; Cao, D.; Li, D.; Ruan, H.; Ruan, B.H.; Su, L.; Xu, H. Click chemistry-based synthesis and anticancer activity evaluation of novel C-14 1,2,3-Triazole dehydroabietic acid hybrids. Eur. J. Med. Chem., 2017, 138, 1042-1052.
[48]
Xu, H.; Liu, L.; Fan, X.; Zhang, G.; Li, Y.; Jiang, B. Identification of a diverse synthetic abietane diterpenoid library for anticancer activity. Bioorg. Med. Chem. Lett., 2017, 27(3), 505-510.
[49]
Hou, W.; Zhang, G.; Luo, Z.; Su, L.; Xu, H. Click chemistry-based synthesis and cytotoxic activity evaluation of 4α-triazole acetate podophyllotoxin derivatives. Chem. Biol. Drug Des., 2019, 93(4), 473-483.
[50]
Xu, H.; Fan, X.; Zhang, G.; Liu, X.; Li, Z.; Li, Y.; Jiang, B. LLDT-288, a novel triptolide analogue exhibits potent antitumor activity in vitro and in vivo. Biomed. Pharmacother., 2017, 93, 1004-1009.
[51]
Xu, H.; Tang, H.; Feng, H.; Li, Y. Divergent total synthesis of triptolide, triptonide, tripdiolide, 16-hydroxytriptolide, and their analogues. J. Org. Chem., 2014, 79(21), 10110-10122.
[52]
Xu, H.; Chen, Y.; Tang, H.; Feng, H.; Li, Y. Semisynthesis of triptolide analogues: Effect of B-Ring substituents on cytotoxic activities. Bioorg. Med. Chem. Lett., 2014, 24(24), 5671-5674.
[53]
Xu, H.; Tang, H.; Feng, H.; Li, Y. Design, synthesis and structure-activity relationships studies on the d ring of the natural product triptolide. ChemMedChem, 2014, 9(2)290295
[55]
Xu, H.; Liu, B. Triptolide-targeted delivery methods. Eur. J. Med. Chem., 2019, 164, 342-351.
[56]
Chugh, R.; Sangwan, V.; Patil, S.P.; Dudeja, V.; Dawra, R.K.; Banerjee, S.; Schumacher, R.J.; Blazar, B.R.; Georg, G.I.; Vickers, S.M.; Saluja, A.K. A preclinical evaluation of minnelide as a therapeutic agent against pancreatic cancer. Sci. Transl. Med.,, 2012, 4(156), 156ra139-156ra139.
[57]
Tominaga, H.; Ishiyama, M.; Ohseto, F.; Sasamoto, K.; Hamamoto, T.; Suzuki, K.; Watanabe, M. A water-soluble tetrazolium salt useful for colorimetric cell viability assay. Anal. Commun., 1999, 36(2), 47-50.
[59]
Clarke, P.R.; Allan, L.A. Cell-cycle control in the face of damage – a matter of life or death. Trends Cell Biol., 2009, 19(3), 89-98.
[60]
Santamaría, D.; Barrière, C.; Cerqueira, A.; Hunt, S.; Tardy, C.; Newton, K.; Cáceres, J.F.; Dubus, P.; Malumbres, M.; Barbacid, M. Cdk1 is sufficient to drive the mammalian cell cycle. Nature, 2007, 448, 811.
[61]
Tadesse, S.; Caldon, E.C.; Tilley, W.; Wang, S. Cyclin-dependent kinase 2 inhibitors in cancer therapy: An update. J. Med. Chem., 2019, 62(9), 4233-4251.
[62]
Tutone, M.; Almerico, A.M. Recent advances on cdk inhibitors: An insight by means of in silico methods. Eur. J. Med. Chem., 2017, 142, 300-315.
[63]
Kalra, S.; Joshi, G.; Munshi, A.; Kumar, R. Structural insights of cyclin dependent kinases: Implications in design of selective inhibitors. Eur. J. Med. Chem., 2017, 142, 424-458.
[64]
Fisher, D.E. Apoptosis in cancer therapy. Cell, 1994, 78, 539-542.
[65]
Evan, G.I.; Vousden, K.H. Proliferation, cell cycle and apoptosis in cancer. Nature, 2001, 411, 342-348.
[66]
Cui, Q.; Tashiro, S.; Onodera, S.; Minami, M.; Ikejima, T. Autophagy preceded apoptosis in oridonin-treated human breast cancer MCF-7 cells. Biol. Pharm. Bull., 2007, 30(5), 859-864.
[67]
Zhang, Y.; Wu, Y.; Wu, D.; Tashiro, S.; Onodera, S.; Ikejima, T. NF-Kb facilitates oridonin-induced apoptosis and autophagy in HT1080 cells through a P53-mediated pathway. Arch. Biochem. Biophys., 2009, 489(1), 25-33.
[68]
Liu, Y.; Liu, Y-Z.; Zhang, R-X.; Wang, X.; Meng, Z-J.; Huang, J.; Wu, K.; Luo, J-Y.; Zuo, G-W.; Chen, L.; Yin, L-J.; Deng, Z-L.; He, B-C. Oridonin inhibits the proliferation of human osteosarcoma cells by suppressing wnt/β-catenin signaling. Int. J. Oncol., 2014, 45(2), 795-803.
[69]
Dong, Y.; Zhang, T.; Li, J.; Deng, H.; Song, Y.; Zhai, D.; Peng, Y.; Lu, X.; Liu, M.; Zhao, Y.; Yi, Z. oridonin inhibits tumor growth and metastasis through anti-angiogenesis by blocking the notch signaling. PLoS One, 2014, 9(12)e113830