[1]
Organization, W.H. Guidelines for Drinking-Water Quality; World Health Organization: Geneva, 2004, Vol. 1, .
[2]
Project, H. Major Ions in Water, New Delhi, September 1999; pp.
41.
[3]
Ayoob, S.; Gupta, A.K. Fluoride in drinking water: A review on the status and stress effects. Crit. Rev. Environ. Sci. Technol., 2006, 36(6), 433-487.
[4]
Fawell, J.K.; Bailey, K.; Chilton, J.; Dahi, E.; Lennon, M.; Jackson, P. Fluoride in Drinking-Water; World Health Organization, 2006.
[5]
Suthar, S.; Garg, V.K.; Jangir, S.; Kaur, S.; Goswami, N.; Singh, S. Fluoride contamination in drinking water in rural habitations of Northern Rajasthan, India. Environ. Monit. Assess., 2008, 145(1), 1-6.
[6]
Ghosh, A.; Mukherjee, K.; Ghosh, S.K.; Saha, B. Sources and toxicity of fluoride in the environment. Res. Chem. Intermed., 2013, 39(7), 2881-2915.
[7]
Lapworth, D.; Baran, N.; Stuart, M.; Ward, R. Emerging organic contaminants in groundwater: A review of sources, fate and occurrence. Environ. Pollut., 2012, 163, 287-303.
[8]
World Health Organization. Health criteria and other supporting information. Guidelines for Drinking-Water Quality, 1996, 2, 796-803.
[9]
WHO. Guidelines for Drinking Water Quality; World Health Organization, 2011.
[10]
Specification for Drinking Water IS 10500: 2012. New Delhi,
India, 2012.
[11]
Miretzky, P.; Cirelli, A.F. Fluoride removal from water by chitosan derivatives and composites: A review. J. Fluor. Chem., 2011, 132(4), 231-240.
[12]
Maheshwari, R. Fluoride in drinking water and its removal. J. Hazard. Mater., 2006, 137(1), 456-463.
[13]
Li, Y.; Liang, C.; Slemenda, C.W.; Ji, R.; Sun, S.; Cao, J.; Emsley, C.L.; Ma, F.; Wu, Y.; Ying, P. Effect of long-term exposure to fluoride in drinking water on risks of bone fractures. J. Bone Miner. Res., 2001, 16(5), 932-939.
[14]
Alarcon-Herrera, M.T. MartIn-Dominguez, I.R.; Trejo-Vázquez, R.; Rodriguez-Dozal, S. Well water fluoride, dental fluorosis, and bone fractures in the Guadiana Valley of Mexico. Fluoride, 2001, 34(2), 139-149.
[15]
Cauley, J.A.; Buhari, A.M.; Murphy, P.A.; Riley, T.J. Effects of fluoridated drinking water on bone mass and fractures: the study of osteoporotic fractures. J. Bone Miner. Res., 1995, 10(7), 1076-1086.
[16]
Smith, A.H.; Lopipero, P.A.; Bates, M.N.; Steinmaus, C.M. Arsenic epidemiology and drinking water standards. Science, 2002, 296(5576), 2145-2146.
[17]
Chatterjee, A.; Das, D.; Mandal, B.K.; Chowdhury, T.R.; Samanta, G.; Chakraborti, D. Arsenic in ground water in six districts of West Bengal, India: The biggest arsenic calamity in the world. Part I. Arsenic species in drinking water and urine of the affected people. Analyst, 1995, 120, 643-650.
[18]
Karmacharya, M.; Gupta, V.K.; Tyagi, I.; Agarwal, S.; Jha, V. Removal of As (III) and As (V) using rubber tire derived activated carbon modified with alumina composite. J. Mol. Liq., 2016, 216, 836-844.
[19]
Samadder, S.R. Impact of arsenic pollution on spatial distribution of human development index. KSCE J. Civ. Eng., 2011, 15(6), 975-982.
[20]
Smith, A.H.; Hopenhayn-Rich, C.; Bates, M.N.; Goeden, H.M.; Hertz-Picciotto, I.; Duggan, H.M.; Wood, R.; Kosnett, M.J.; Smith, M.T. Cancer risks from arsenic in drinking water. Environ. Health Perspect., 1992, 97, 259.
[21]
Chen, C.J.; Chen, C.; Wu, M.; Kuo, T. Cancer potential in liver, lung, bladder and kidney due to ingested inorganic arsenic in drinking water. Br. J. Cancer, 1992, 66(5), 888-892.
[22]
Smith, A.H.; Goycolea, M.; Haque, R.; Biggs, M.L. Marked increase in bladder and lung cancer mortality in a region of Northern Chile due to arsenic in drinking water. Am. J. Epidemiol., 1998, 147(7), 660-669.
[23]
Argos, M.; Kalra, T.; Rathouz, P.J.; Chen, Y.; Pierce, B.; Parvez, F.; Islam, T.; Ahmed, A.; Rakibuz-Zaman, M.; Hasan, R. Arsenic exposure from drinking water, and all-cause and chronic-disease mortalities in Bangladesh (HEALS): A prospective cohort study. Lancet, 2010, 376(9737), 252-258.
[24]
Rahman, M.M.; Naidu, R.; Bhattacharya, P. Arsenic contamination in groundwater in the Southeast Asia region. Environ. Geochem. Health, 2009, 31(1), 9-21.
[25]
Radloff, K.; Zheng, Y.; Michael, H.; Stute, M.; Bostick, B.; Mihajlov, I.; Bounds, M.; Huq, M.; Choudhury, I.; Rahman, M. Arsenic migration to deep groundwater in Bangladesh influenced by adsorption and water demand. Nat. Geosci., 2011, 4(11), 793.
[26]
Pang, Z.; Yuan, L.; Huang, T.; Kong, Y.; Liu, J.; Li, Y. Impacts of human activities on the occurrence of groundwater nitrate in an alluvial plain: A multiple isotopic tracers approach. J. Earth Sci., 2013, 24(1), 111-124.
[27]
Viers, J.; Liptzin, D.; Rosenstock, T.; Jensen, V.; Hollander, A.; McNally, A.; King, A.; Kourakos, G.; Lopez, E. E.; De La Mora, N.;
Canada, H.E.; Laybourne, S.; McKenney, C.; Darby, J.; Quinn,
J.F.; Harter, T. Nitrogen Sources and Loading to Groundwater.
Technical Report 2 in: Addressing Nitrate in California’s Drinking
Water with a Focus on Tulare Lake Basin and Salinas Valley
Groundwater. Report for the State Water Resources Control Board
Report to the Legislature. Center for Watershed Sciences,
University of California, Davis 2012.
[28]
Haller, L.; McCarthy, P.; O’Brien, T.; Riehle, J.; Stuhldreher, T. Nitrate pollution of groundwater. 2014: alpha water systems INC; Google Scholar, 2013.
[29]
Logeshkumaran, A.; Magesh, N.; Godson, P.S.; Chandrasekar, N. Hydro-geochemistry and application of water quality index (WQI) for groundwater quality assessment, Anna Nagar, part of Chennai City, Tamil Nadu, India. Appl. Water Sci., 2015, 5(4), 335-343.
[30]
Fewtrell, L. Drinking-water nitrate, methemoglobinemia, and global burden of disease: A discussion. Environ. Health Perspect., 2004, 112(14), 1371.
[31]
Fan, A.M.; Steinberg, V.E. Health implications of nitrate and nitrite in drinking water: An update on methemoglobinemia occurrence and reproductive and developmental toxicity. Regul. Toxicol. Pharmacol., 1996, 23(1), 35-43.
[32]
Knobeloch, L.; Salna, B.; Hogan, A.; Postle, J.; Anderson, H. Blue babies and nitrate-contaminated well water. Environ. Health Perspect., 2000, 108(7), 675.
[33]
Comly, H.H. Cyanosis in infants caused by nitrates in well water. JAMA, 1945, 129(2), 112-116.
[34]
Inoue-Choi, M.; Jones, R.R.; Anderson, K.E.; Cantor, K.P.; Cerhan, J.R.; Krasner, S.; Robien, K.; Weyer, P.J.; Ward, M.H. Nitrate and nitrite ingestion and risk of ovarian cancer among postmenopausal women in Iowa. Int. J. Cancer, 2015, 137(1), 173-182.
[35]
Onyango, M.S.; Kojima, Y.; Kuchar, D.; Osembo, S.O.; Matsuda, H. Diffusion kinetic modeling of fluoride removal from aqueous solution by charge-reversed zeolite particles. J. Chem. Eng. Jpn, 2005, 38(9), 701-710.
[36]
Khoei, A.J.; Joogh, N.J.G.; Darvishi, P.; Rezaei, K. Application of physical and biological methods to remove heavy metal, arsenic and pesticides, malathion and diazinon from water. Turk. J. Fish. Aquat. Sci., 2019, 19(1), 21-28.
[37]
Onyango, M.S.; Kojima, Y.; Kumar, A.; Kuchar, D.; Kubota, M.; Matsuda, H. Uptake of fluoride by Al3+ pretreated low-silica synthetic zeolites: Adsorption equilibrium and rate studies. Sep. Sci. Technol., 2006, 41(4), 683-704.
[38]
Stephenson, R.J.; Duff, S.J. Coagulation and precipitation of a mechanical pulping effluent—I. Removal of carbon, colour and turbidity. Water Res., 1996, 30(4), 781-792.
[39]
Randtke, S.J. Organic contaminant removal by coagulation and related process combinations. J. Am. Water Works Assoc., 1988, 80, 40-56.
[40]
Madaeni, S. The application of membrane technology for water disinfection. Water Res., 1999, 33(2), 301-308.
[41]
Pendergast, M.M.; Hoek, E.M. A review of water treatment membrane nanotechnologies. Energy Environ. Sci., 2011, 4(6), 1946-1971.
[42]
Ali, I.; Gupta, V. Advances in water treatment by adsorption technology. Nat. Protoc., 2006, 1(6), 2661-2667.
[43]
Xie, Z.; Wang, J.; Wei, X.; Li, F.; Chen, M.; Wang, J.; Gao, B. Interactions between arsenic adsorption/desorption and indigenous bacterial activity in shallow high arsenic aquifer sediments from the Jianghan Plain, Central China. Sci. Total Environ., 2018, 644, 382-388.
[44]
Faust, S.D.; Aly, O.M. Adsorption Processes for Water Treatment; Elsevier Science: Burlington, 2013.
[45]
Etzel, J.E.; Wachinski, A.M. Environmental Ion Exchange: Principles and Design; CRC Press LLC: Boca Raton, Florida, 1997.
[46]
Helfferich, F.G. Ion Exchange; Courier Corporation, 1995.
[47]
Fan, X.; Parker, D.; Smith, M. Adsorption kinetics of fluoride on low cost materials. Water Res., 2003, 37(20), 4929-4937.
[48]
Lata, S.; Samadder, S. Removal of arsenic from water using nano adsorbents and challenges: A review. J. Environ. Manage., 2016, 166, 387-406.
[49]
Ruan, Z.; Tian, Y.; Ruan, J.; Cui, G.; Iqbal, K.; Iqbal, A.; Ye, H.; Yang, Z.; Yan, S. Synthesis of hydroxyapatite/multi-walled carbon nanotubes for the removal of fluoride ions from solution. Appl. Surf. Sci., 2017, 412, 578-590.
[50]
Tang, Q.; Duan, T.; Li, P.; Zhang, P.; Wu, D. Enhanced defluoridation capacity from aqueous media via hydroxyapatite decorated with carbon nanotube. Front Chem., 2018, 6, 104.
[51]
Smitha, K.; Thampi, S.G. Experimental investigations on fluoride removal from water using nanoalumina-carbon nanotubes blend. JWARP, 2017, 9(07), 760.
[52]
Li, Y-H.; Wang, S.; Zhang, X.; Wei, J.; Xu, C.; Luan, Z.; Wu, D. Adsorption of fluoride from water by aligned carbon nanotubes. Mater. Res. Bull., 2003, 38(3), 469-476.
[53]
Li, Y-H.; Wang, S.; Cao, A.; Zhao, D.; Zhang, X.; Xu, C.; Luan, Z.; Ruan, D.; Liang, J.; Wu, D. Adsorption of fluoride from water by amorphous alumina supported on carbon nanotubes. Chem. Phys. Lett., 2001, 350(5-6), 412-416.
[54]
Zhang, C.; Li, Y.; Wang, T-J.; Jiang, Y.; Fok, J. Synthesis and properties of a high-capacity iron oxide adsorbent for fluoride removal from drinking water. Appl. Surf. Sci., 2017, 425, 272-281.
[55]
Zhang, Y.; Lin, X.; Zhou, Q.; Luo, X. Fluoride adsorption from aqueous solution by magnetic core-shell Fe3O4@ alginate-La particles fabricated via electro-coextrusion. Appl. Surf. Sci., 2016, 389, 34-45.
[56]
Liu, L.; Cui, Z.; Ma, Q.; Cui, W.; Zhang, X. One-step synthesis of magnetic iron–aluminum oxide/graphene oxide nanoparticles as a selective adsorbent for fluoride removal from aqueous solution. RSC Advances, 2016, 6(13), 10783-10791.
[57]
Raul, P.K.; Devi, R.R.; Umlong, I.M.; Banerjee, S.; Singh, L.; Purkait, M. Removal of fluoride from water using iron oxide-hydroxide nanoparticles. J. Nanosci. Nanotechnol., 2012, 12(5), 3922-3930.
[58]
Li, L.; Zhu, Q.; Man, K.; Xing, Z. Fluoride removal from liquid phase by Fe-Al-La trimetal hydroxides adsorbent prepared by iron and aluminum leaching from red mud. J. Mol. Liq., 2017, 237, 164-172.
[59]
Hamamoto, S.; Kishimoto, N. Characteristics of fluoride adsorption onto aluminium (III) and iron (III) hydroxide flocs. Sep. Sci. Technol., 2017, 52(1), 42-50.
[60]
Zhou, J.; Zhu, W.; Yu, J.; Zhang, H.; Zhang, Y.; Lin, X.; Luo, X. Highly selective and efficient removal of fluoride from ground water by layered Al-Zr-La tri-metal hydroxide. Appl. Surf. Sci., 2018, 435, 920-927.
[61]
Mudzielwana, R.; Gitari, M.W.; Akinyemi, S.A.; Msagati, T.A.M. Synthesis and physicochemical characterization of MnO2 coated Na-bentonite for groundwater defluoridation: Adsorption modelling and mechanistic aspect. Appl. Surf. Sci., 2017, 422, 745-753.
[62]
Zhou, J.; Cheng, Y.; Yu, J.; Liu, G. Hierarchically porous calcined lithium/aluminum layered double hydroxides: Facile synthesis and enhanced adsorption towards fluoride in water. J. Mater. Chem., 2011, 21(48), 19353-19361.
[63]
Turner, B.D.; Binning, P.; Stipp, S. Fluoride removal by calcite: Evidence for fluorite precipitation and surface adsorption. Environ. Sci. Technol., 2005, 39(24), 9561-9568.
[64]
Islam, M.; Patel, R. Evaluation of removal efficiency of fluoride from aqueous solution using quick lime. J. Hazard. Mater., 2007, 143(1), 303-310.
[65]
Jain, S.; Jayaram, R.V. Removal of fluoride from contaminated drinking water using unmodified and aluminium hydroxide impregnated blue lime stone waste. Sep. Sci. Technol., 2009, 44(6), 1436-1451.
[66]
Roy, S.; Das, P.; Sengupta, S.; Manna, S. Calcium impregnated activated charcoal: Optimization and efficiency for the treatment of fluoride containing solution in batch and fixed bed reactor. Process Saf. Environ. Prot., 2017, 109, 18-29.
[67]
Sivasamy, A.; Singh, K.P.; Mohan, D.; Maruthamuthu, M. Studies on defluoridation of water by coal-based sorbents. J. Chem. Technol. Biotechnol., 2001, 76(7), 717-722.
[68]
Borah, L.N.; Dey, N.C. Removal of fluoride from low TDS water using low grade coal. Indian J. Chem. Technol., 2009, 16(4), 361-363.
[69]
Moges, G.; Zewge, F.; Socher, M. Preliminary investigations on the defluoridation of water using fired clay chips. J. Afr. Earth Sci., 1996, 22(4), 479-482.
[70]
Karthikeyan, G.; Pius, A.; Alagumuthu, G. Fluoride adsorption studies of montmorillonite clay. Indian J. Chem. Technol., 2005, 12, 263-272.
[71]
Parmar, H.S.; Patel, J.B.; Sudhakar, P.; Koshy, V. Removal of fluoride from water with powdered corn cobs. J. Environ. Sci. Eng., 2006, 48(2), 135-138.
[72]
Mohan, D.; Singh, K.P.; Singh, V.K. Wastewater treatment using low cost activated carbons derived from agricultural byproducts-a case study. J. Hazard. Mater., 2008, 152(3), 1045-1053.
[73]
Sivabalan, R.; Rengaraj, S.; Arabindoo, B.; Murugesan, V. Cashewnut sheath carbon: A new sorbent for defluoridation of water. Indian J. Chem. Technol., 2003, 10, 217-222.
[74]
Chaturvedi, A.; Yadava, K.; Pathak, K.; Singh, V. Defluoridation of water by adsorption on fly ash. Water Air Soil Pollut., 1990, 49(1), 51-61.
[75]
Nigussie, W.; Zewge, F.; Chandravanshi, B. Removal of excess fluoride from water using waste residue from alum manufacturing process. J. Hazard. Mater., 2007, 147(3), 954-963.
[76]
Yadav, A.K.; Kaushik, C.; Haritash, A.K.; Kansal, A.; Rani, N. Defluoridation of groundwater using brick powder as an adsorbent. J. Hazard. Mater., 2006, 128(2), 289-293.
[77]
Oguz, E. Adsorption of fluoride on gas concrete materials. J. Hazard. Mater., 2005, 117(2), 227-233.
[78]
Kagne, S.; Jagtap, S.; Dhawade, P.; Kamble, S.; Devotta, S.; Rayalu, S. Hydrated cement: A promising adsorbent for the removal of fluoride from aqueous solution. J. Hazard. Mater., 2008, 154(1), 88-95.
[79]
Tor, A.; Danaoglu, N.; Arslan, G.; Cengeloglu, Y. Removal of fluoride from water by using granular red mud: Batch and column studies. J. Hazard. Mater., 2009, 164(1), 271-278.
[80]
Naghizadeh, A.; Yari, A.R.; Tashauoei, H.R.; Mahdavi, M.; Derakhshani, E.; Rahimi, R.; Bahmani, P.; Daraei, H.; Ghahremani, E. Carbon nanotubes technology for removal of arsenic from water. Arch. Hyg. Sci., 2012, 1(1), 6-11.
[81]
Ntim, S.A.; Mitra, S. Adsorption of arsenic on multiwall carbon nanotube–zirconia nanohybrid for potential drinking water purification. J. Colloid Interface Sci., 2012, 375(1), 154-159.
[82]
Liu, H.; Zuo, K.; Vecitis, C.D. Titanium dioxide-coated carbon nanotube network filter for rapid and effective arsenic sorption. Environ. Sci. Technol., 2014, 48(23), 13871-13879.
[83]
Moradi, R.; Rokni, F.F. Synthesis, characterization and performance of nio/cnt nanocomposite for arsenic removal from aqueous media. Curr. Nanosci., 2017, 13(6), 579-585.
[84]
Martinson, C.A.; Reddy, K. Adsorption of arsenic (III) and arsenic (V) by cupric oxide nanoparticles. J. Colloid Interface Sci., 2009, 336(2), 406-411.
[85]
Goswami, A.; Raul, P.; Purkait, M. Arsenic adsorption using copper (II) oxide nanoparticles. Chem. Eng. Res. Des., 2012, 90(9), 1387-1396.
[86]
Bang, S.; Patel, M.; Lippincott, L.; Meng, X. Removal of arsenic from groundwater by granular titanium dioxide adsorbent. Chemosphere, 2005, 60(3), 389-397.
[87]
Lee, H.; Choi, W. Photocatalytic oxidation of arsenite in TiO2 suspension: Kinetics and mechanisms. Environ. Sci. Technol., 2002, 36(17), 3872-3878.
[88]
Pena, M.; Meng, X.; Korfiatis, G.P.; Jing, C. Adsorption mechanism of arsenic on nanocrystalline titanium dioxide. Environ. Sci. Technol., 2006, 40(4), 1257-1262.
[89]
Dutta, P.K.; Ray, A.K.; Sharma, V.K.; Millero, F.J. Adsorption of arsenate and arsenite on titanium dioxide suspensions. J. Colloid Interface Sci., 2004, 278(2), 270-275.
[90]
Han, D.S.; Abdel-Wahab, A.; Batchelor, B. Surface complexation modeling of arsenic (III) and arsenic (V) adsorption onto nanoporous titania adsorbents (NTAs). J. Colloid Interface Sci., 2010, 348(2), 591-599.
[91]
Deedar, N.; Aslam, I. Evaluation of the adsorption potential of titanium dioxide nanoparticles for arsenic removal. J. Environ. Sci., 2009, 21(3), 402-408.
[92]
Singh, N.; Singh, S.; Gupta, V.; Yadav, H.K.; Ahuja, T.; Tripathy, S.S. A process for the selective removal of arsenic from contaminated water using acetate functionalized zinc oxide nanomaterials. Environ. Prog. Sustain. Energy, 2013, 32(4), 1023-1029.
[93]
Sharma, A.; Verma, N.; Sharma, A.; Deva, D.; Sankararamakrishnan, N. Iron doped phenolic resin based activated carbon micro and nanoparticles by milling: Synthesis, characterization and application in arsenic removal. Chem. Eng. Sci., 2010, 65(11), 3591-3601.
[94]
Pintor, A.M.; Vieira, B.R.; Santos, S.C.; Boaventura, R.A.; Botelho, C.M. Arsenate and arsenite adsorption onto iron-coated cork granulates. Sci. Total Environ., 2018, 642, 1075-1089.
[95]
Chandra, V.; Park, J.; Chun, Y.; Lee, J.W.; Hwang, I-C.; Kim, K.S. Water-dispersible magnetite-reduced graphene oxide composites for arsenic removal. ACS Nano, 2010, 4(7), 3979-3986.
[96]
Guivar, J.A.R.; Bustamante, A.; Gonzalez, J.; Sanches, E.A.; Morales, M.; Raez, J.M.; López-Muñoz, M-J.; Arencibia, A. Adsorption of arsenite and arsenate on binary and ternary magnetic nanocomposites with high iron oxide content. Appl. Surf. Sci., 2018, 454, 87-100.
[97]
Phanthasri, J.; Khamdahsag, P.; Jutaporn, P.; Sorachoti, K.; Wantala, K.; Tanboonchuy, V. Enhancement of arsenite removal using manganese oxide coupled with iron (III) trimesic. Appl. Surf. Sci., 2018, 427, 545-552.
[98]
Li, Z.; Deng, S.; Yu, G.; Huang, J.; Lim, V.C. As (V) and As (III) removal from water by a Ce–Ti oxide adsorbent: Behavior and mechanism. Chem. Eng. J., 2010, 161(1), 106-113.
[99]
Basu, T.; Ghosh, U.C. Influence of groundwater occurring ions on the kinetics of As (III) adsorption reaction with synthetic nanostructured Fe (III)–Cr (III) mixed oxide. Desalination, 2011, 266(1), 25-32.
[100]
Kong, S.; Wang, Y.; Zhan, H.; Yuan, S.; Yu, M.; Liu, M. Adsorption/oxidation of arsenic in groundwater by nanoscale Fe-Mn binary oxides loaded on zeolite. Water Environ. Res., 2014, 86(2), 147-155.
[101]
Gupta, K.; Ghosh, U.C. Arsenic removal using hydrous nanostructure iron (III)–titanium (IV) binary mixed oxide from aqueous solution. J. Hazard. Mater., 2009, 161(2), 884-892.
[102]
Zhang, S.; Niu, H.; Cai, Y.; Zhao, X.; Shi, Y. Arsenite and arsenate adsorption on coprecipitated bimetal oxide magnetic nanomaterials: MnFe2O4 and CoFe2O4. Chem. Eng. J., 2010, 158(3), 599-607.
[103]
Parsons, J.; Lopez, M.; Peralta-Videa, J.; Gardea-Torresdey, J. Determination of arsenic (III) and arsenic (V) binding to microwave assisted hydrothermal synthetically prepared Fe3O4, Mn3O4, and MnFe2O4 nanoadsorbents. Microchem. J., 2009, 91(1), 100-106.
[104]
Hokkanen, S.; Repo, E.; Lou, S.; Sillanpää, M. Removal of arsenic (V) by magnetic nanoparticle activated microfibrillated cellulose. Chem. Eng. J., 2015, 260, 886-894.
[105]
Zhou, S.; Wang, D.; Sun, H.; Chen, J.; Wu, S.; Na, P. Synthesis, characterization, and adsorptive properties of magnetic cellulose nanocomposites for arsenic removal. Water Air Soil Pollut., 2014, 225(5), 1945.
[106]
Tian, Y.; Wu, M.; Liu, R.; Wang, D.; Lin, X.; Liu, W.; Ma, L.; Li, Y.; Huang, Y. Modified native cellulose fibers-A novel efficient adsorbent for both fluoride and arsenic. J. Hazard. Mater., 2011, 185(1), 93-100.
[107]
Guo, X.; Chen, F. Removal of arsenic by bead cellulose loaded with iron oxyhydroxide from groundwater. Environ. Sci. Technol., 2005, 39(17), 6808-6818.
[108]
Martins, C.; Duarte, R.F.; Magalhães, M.C.; Evtuguin, D. Arsenic
Removal via Cellulose-Based Organic/Inorganic Hybrid Materials from Drinking Water, In: Pinto, A.M.P.; Pouzada, A.S. (Eds.).
Materials Science Forum, Trans Tech Publ: 2013; Vol. 730-732,
pp. 563-568.
[109]
Agrafioti, E.; Kalderis, D.; Diamadopoulos, E. Arsenic and chromium removal from water using biochars derived from rice husk, organic solid wastes and sewage sludge. J. Environ. Manage., 2014, 133, 309-314.
[110]
Alimohammadi, V.; Sedighi, M.; Jabbari, E. Response surface modeling and optimization of nitrate removal from aqueous solutions using magnetic multi-walled carbon nanotubes. J. Environ. Chem. Eng., 2016, 4(4), 4525-4535.
[111]
Tofighy, M.A.; Mohammadi, T. Nitrate removal from water using functionalized carbon nanotube sheets. Chem. Eng. Res. Des., 2012, 90(11), 1815-1822.
[112]
Azari, A.; Babaie, A-A.; Rezaei-Kalantary, R.; Esrafili, A.; Moazzen, M.; Kakavandi, B. Nitrate removal from aqueous solution by carbon nanotubes magnetized with nano zero-valent iron. JMUMS, 2014, 23(2), 15-27.
[113]
Beheshtian, J.; Peyghan, A.A.; Bagheri, Z. Nitrate adsorption by carbon nanotubes in the vacuum and aqueous phase. Monatsh. für Chem., 2012, 143(12), 1623-1626.
[114]
Fu, F.; Dionysiou, D.D.; Liu, H. The use of zero-valent iron for groundwater remediation and wastewater treatment: A review. J. Hazard. Mater., 2014, 267, 194-205.
[115]
Zhang, H.; Jin, Z-H.; Lu, H.; Qin, C-H. Synthesis of nanoscale zero-valent iron supported on exfoliated graphite for removal of nitrate. Trans. Nonferrous Met. Soc. China, 2006, 16, s345-s349.
[116]
Sepehri, S.; Heidarpour, M.; Abedi-Koupai, J. Nitrate removal from aqueous solution using natural zeolite-supported zero-valent iron nanoparticles. Soil Water Res., 2014, 9(4), 224-232.
[117]
Imtiaz, A.; Rafique, U. Synthesis of metal oxides and its application as adsorbent for the treatment of wastewater effluents. Int. J. Chem. Environ. Eng., 2011, 2(6), 399.
[118]
Wang, S.; Peng, Y. Natural zeolites as effective adsorbents in water and wastewater treatment. Chem. Eng. J., 2010, 156(1), 11-24.
[119]
Arora, M.; Eddy, N.K.; Mumford, K.A.; Baba, Y.; Perera, J.M.; Stevens, G.W. Surface modification of natural zeolite by chitosan and its use for nitrate removal in cold regions. Cold Reg. Sci. Technol., 2010, 62(2-3), 92-97.
[120]
Bhattacharyya, K.G.; Gupta, S.S. Adsorption of a few heavy metals on natural; and modified kaolinite and montmorillonite: A review. Adv. Colloid Interface Sci., 2008, 140(2), 114-131.
[121]
Naidu, R.; Mallavarapu, M.; Xi, Y. Preparation, characterization of surfactants; modified clay minerals and nitrate adsorption. Appl. Clay Sci., 2010, 48(1-2), 92-96.
[122]
Orlando, U.S.; Baes, A.U.; Nishijima, W.; Okada, M. A new procedure to produce; lignocellulosic anion exchangers from agricultural waste materials. Bioresour. Technol., 2002, 83(3), 195-198.
[123]
Wang, Y.; Gao, B-y.; Yue, W-w.; Yue, Q-y. Preparation and utilization of wheat; straw anionic sorbent for the removal of nitrate from aqueous solution. J. Environ. Sci., 2007, 19(11), 1305-1310.
[124]
Wang, Y.; Gao, B-y.; Yue, W-w.; Yue, Q-y. Adsorption kinetics of nitrate from aqueous solutions onto modified wheat residue. Colloids Surf. A Physicochem. Eng. Asp., 2007, 308(1-3), 1-5.
[125]
Rezaee, A.; Godini, H.; Dehestani, S.; Khavanin, A. Application of impregnated almond shell activated carbon by zinc and zinc sulfate for nitrate removal from water. Iran. J. Environ. Health Sci. Eng., 2008, 5(2), 125-130.
[126]
Fan, C.; Zhang, Y. Adsorption isotherms, kinetics and thermodynamics of nitrate and phosphate in binary systems on a novel adsorbent derived from corn stalks. J. Geochem. Explor., 2018, 188, 95-100.
[127]
Cengeloglu, Y.; Tor, A.; Ersoz, M.; Arslan, G. Removal of nitrate from aqueous solution by using red mud. Separ. Purif. Tech., 2006, 51(3), 374-378.
[128]
Bhatnagar, A.; Sillanpää, M. Applications of chitin-and chitosan-derivatives for the detoxification of water and wastewater—a short review. Adv. Colloid Interface Sci., 2009, 152(1), 26-38.
[129]
Chatterjee, S.; Woo, S.H. The removal of nitrate from aqueous solutions by chitosan hydrogel beads. J. Hazard. Mater., 2009, 164(2), 1012-1018.
[130]
Jaafari, K.; Elmaleh, S.; Coma, J.; Benkhouja, K. Equilibrium and kinetics of nitrate removal by protonated cross-linked chitosan. Water S.A., 2001, 27(1), 9-14.
[131]
Jaafari, K.; Ruiz, T.; Elmaleh, S.; Coma, J.; Benkhouja, K. Simulation of a fixed bed adsorber packed with protonated cross-linked chitosan gel beads to remove nitrate from contaminated water. Chem. Eng. J., 2004, 99(2), 153-160.
[132]
Ghanizadeh, G.; Ehrampoush, M.; Ghaneian, M. Application of iron impregnated activated carbon for removal of arsenic from water. Iran. J. Environ. Health Sci. Eng., 2010, 7(2), 145.
[133]
Zhao, X.; Wang, J.; Wu, F.; Wang, T.; Cai, Y.; Shi, Y.; Jiang, G. Removal of fluoride from aqueous media by Fe3O4@ Al(OH)3 magnetic nanoparticles. J. Hazard. Mater., 2010, 173(1), 102-109.
[134]
Xu, P.; Zeng, G.M.; Huang, D.L.; Feng, C.L.; Hu, S.; Zhao, M.H.; Lai, C.; Wei, Z.; Huang, C.; Xie, G.X. Use of iron oxide nanomaterials in wastewater treatment: A review. Sci. Total Environ., 2012, 424, 1-10.
[135]
Chai, L.; Wang, Y.; Zhao, N.; Yang, W.; You, X. Sulfate-doped Fe3O4/Al2O3 nanoparticles as a novel adsorbent for fluoride removal from drinking water. Water Res., 2013, 47(12), 4040-4049.
[136]
Cumbal, L.; SenGupta, A.K. Arsenic removal using polymer-supported hydrated iron (III) oxide nanoparticles: Role of Donnan membrane effect. Environ. Sci. Technol., 2005, 39(17), 6508-6515.
[137]
Poursaberi, T.; Hassanisadi, M.; Torkestani, K.; Zare, M. Development of zirconium (IV)-metalloporphyrin grafted Fe3O4 nanoparticles for efficient fluoride removal. Chem. Eng. J., 2012, 189, 117-125.
[138]
Jayarathna, L.; Bandara, A.; Ng, W.; Weerasooriya, R. Fluoride adsorption on γ-Fe2O3 nanoparticles. J. Environ. Health Sci. Eng., 2015, 13(1), 54.
[139]
Yang, J.; Zhang, H.; Yu, M.; Emmanuelawati, I.; Zou, J.; Yuan, Z.; Yu, C. High-content, well-dispersed γ‐Fe2O3 nanoparticles encapsulated in macroporous silica with superior arsenic removal performance. Adv. Funct. Mater., 2014, 24(10), 1354-1363.
[140]
Lin, S.; Lu, D.; Liu, Z. Removal of arsenic contaminants with magnetic γ-Fe2O3 nanoparticles. Chem. Eng. J., 2012, 211, 46-52.
[141]
Ghorai, S.; Pant, K. Equilibrium, kinetics and breakthrough studies for adsorption of fluoride on activated alumina. Separ. Purif. Tech., 2005, 42(3), 265-271.
[142]
Maliyekkal, S.M.; Shukla, S.; Philip, L.; Nambi, I.M. Enhanced fluoride removal from drinking water by magnesia-amended activated alumina granules. Chem. Eng. J., 2008, 140(1), 183-192.
[143]
Tripathy, S.S.; Bersillon, J-L.; Gopal, K. Removal of fluoride from drinking water by adsorption onto alum-impregnated activated alumina. Separ. Purif. Tech., 2006, 50(3), 310-317.
[144]
Ku, Y.; Chiou, H-M. The adsorption of fluoride ion from aqueous solution by activated alumina. Water Air Soil Pollut., 2002, 133(1), 349-361.
[145]
Lin, T-F.; Wu, J-K. Adsorption of arsenite and arsenate within activated alumina grains: Equilibrium and kinetics. Water Res., 2001, 35(8), 2049-2057.
[146]
Singh, T.S.; Pant, K. Equilibrium, kinetics and thermodynamic studies for adsorption of As (III) on activated alumina. Separ. Purif. Tech., 2004, 36(2), 139-147.
[147]
Jain, S.; Bansiwal, A.; Biniwale, R.B.; Milmille, S.; Das, S.; Tiwari, S.; Antony, P.S. Enhancing adsorption of nitrate using metal impregnated alumina. J. Environ. Chem. Eng., 2015, 3(4), 2342-2349.
[148]
Golie, W.M.; Upadhyayula, S. Continuous fixed-bed column study for the removal of nitrate from water using chitosan/alumina composite. J. Water Process Eng., 2016, 12, 58-65.
[149]
Lee, G.; Chen, C.; Yang, S-T.; Ahn, W-S. Enhanced adsorptive removal of fluoride using mesoporous alumina. Microporous Mesoporous Mater., 2010, 127(1), 152-156.
[150]
Kim, Y.; Kim, C.; Choi, I.; Rengaraj, S.; Yi, J. Arsenic removal using mesoporous alumina prepared via a templating method. Environ. Sci. Technol., 2004, 38(3), 924-931.
[151]
Bhatnagar, A.; Kumar, E.; Sillanpää, M. Nitrate removal from water by nano-alumina: Characterization and sorption studies. Chem. Eng. J., 2010, 163(3), 317-323.
[152]
Qiao, J.; Cui, Z.; Sun, Y.; Hu, Q.; Guan, X. Simultaneous removal of arsenate and fluoride from water by Al-Fe (hydr) oxides. Front. Environ. Sci. Eng., 2014, 8(2), 169-179.
[153]
Wu, K.; Zhang, N.; Liu, T.; Ma, C.; Jin, P.; Zhang, F.; Zhang, J.; Wang, X. Competitive adsorption behaviors of arsenite and fluoride onto manganese-aluminum binary adsorbents. Colloids Surf. A Physicochem. Eng. Asp., 2017, 529, 185-194.