Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Review Article

Self-microemulsion Technology for Water-insoluble Drug Delivery

Author(s): Beibei Yan, Yu Gu, Juan Zhao, Yangyang Liu, Lulu Wang and Yancai Wang*

Volume 15, Issue 6, 2019

Page: [576 - 588] Pages: 13

DOI: 10.2174/1573413715666190112122107

Price: $65

Abstract

According to the drug discovery, approximately 40% of the new chemical entities show poor bioavailability due to their low aqueous solubility. In order to increase the solubility of the drugs, self-micro emulsifying drug delivery systems (SMEDDS) are considered as an ideal technology for enhancing the permeability of poorly soluble drugs in GI membranes. The SMEDDS are also generally used to enhance the oral bioavailability of the hydrophobic drugs. At present, most of the self-microemulsion drugs are liquid dosage forms, which could cause some disadvantages, such as the low bioavailability of the traditional liquid SMEDDS. Therefore, solid self-micro emulsifying drug delivery systems (S-SMEDDS) have emerged widely in recent years, which were prepared by solidifying a semi-solid or liquid self-emulsifying (SE) ingredient into a powder in order to improve stability, treatment and patient compliance. The article gives a comprehensive introduction of the study of SMEDDS which could effectively tackle the problem of the water-insoluble drug, especially the development of solidification technology of SMEDDS. Finally, the present challenges and the prospects in this field were also discussed.

Keywords: Water insoluble drug, self-micro emulsifying, drug delivery, evaluation index, solidification technology, stability, bioavailability.

Graphical Abstract

[1]
Wang, L.; Du, J.; Zhou, Y.; Wang, Y. Safety of nanosuspensions in drug delivery. Nanomedicine, 2017, 13, 455-469.
[2]
Zhao, J.; Wang, Y.; Ma, Y.; Liu, Y.; Yan, B.; Wang, L. Smart nanocarrier based on PEGylated hyaluronic acid for deacetyl mycoepoxydience: High stability with enhanced bioavailability and efficiency. Carbohydr. Polym., 2019, 203, 356-368.
[3]
Zhao, J.; Liu, Y.; Wang, L.; Zhou, Y.; Du, J.; Wang, Y. Functional and modified nanocrystals technology for target drug delivery. J. Nanosci. Nanotechnol., 2018, 18, 5207-5221.
[4]
Wang, L.; Liu, Y.; Zhao, J.; Li, C.; Zhou, Y.; Du, J.; Wang, Y. In vitro and in vivo evaluation of targeting tumor with folate-based amphiphilic multifunctional stabilizer for resveratrol nanosuspensions. Colloids Surf. B, 2017, 160, 462-472.
[5]
Dening, T.J.; Rao, S.; Thomas, N.; Prestidge, C.A. Novel nanostructured solid materials for modulating oral drug delivery from solid-state lipid-based drug delivery systems. AAPS J., 2016, 18, 23-40.
[6]
Gonçalves, A.; Nikmaram, N.; Roohinejad, S.; Estevinho, B.N.; Rocha, F.; Greiner, R.; McClements, D.J. Production, properties, and applications of solid self-emulsifying delivery systems (S-SEDS) in the food and pharmaceutical industries. Colloids Surf. A, 2018, 538, 108-126.
[7]
Mandic, J.; Zvonar Pobirk, A.; Vrecer, F.; Gasperlin, M. Overview of solidification techniques for self-emulsifying drug delivery systems from industrial perspective. Int. J. Pharm., 2017, 533, 335-345.
[8]
Du, J.; Zhou, Y.; Wang, L.; Zhao, J.; Liu, Y.; Li, C.; Wang, Y. Deacetyl mycoepoxydience nanocrystals dispersible tablets formulation and in vitro study. J. Nanosci. Nanotechnol., 2018, 18, 3850-3855.
[9]
Ye, C.; Chi, H. A review of recent progress in drug and protein encapsulation: Approaches, applications and challenges. Mater. Sci. Eng. C Mater. Biol. Appl., 2018, 83, 233-246.
[10]
Rojas-Moreno, S.; Cárdenas-Bailón, F.; Osorio-Revilla, G.; Gallardo-Velázquez, T.; Proal-Nájera, J. Effects of complex coacervation-spray drying and conventional spray drying on the quality of microencapsulated orange essential oil. J. Food Meas. Charact., 2017, 12, 650-660.
[11]
Huo, T.; Tao, C.; Zhang, M.; Liu, Q.; Lin, B.; Liu, Z.; Zhang, J.; Zhang, M.; Yang, H.; Wu, J.; Sun, X.; Zhang, Q.; Song, H. Preparation and comparison of tacrolimus-loaded solid dispersion and self-microemulsifying drug delivery system by in vitro/in vivo evaluation. Eur. J. Pharm. Sci., 2018, 114, 74-83.
[12]
Djekic, L.; Jankovic, J.; Raskovic, A.; Primorac, M. Semisolid self-microemulsifying drug delivery systems (SMEDDSs): Effects on pharmacokinetics of acyclovir in rats. Eur. J. Pharm. Sci., 2018, 121, 287-292.
[13]
Dhumal, D.M.; Akamanchi, K.G. Self-microemulsifying drug delivery system for camptothecin using new bicephalous heterolipid with tertiary-amine as branching element. Int. J. Pharm., 2018, 541, 48-55.
[14]
Cetkovic, Z.; Cvijic, S.; Vasiljevic, D. In vitro/in silico approach in the development of simvastatin-loaded self-microemulsifying drug delivery systems. Drug Dev. Ind. Pharm., 2018, 44, 849-860.
[15]
Zhou, Y.; Du, J.; Wang, L.; Wang, Y. Nanocrystals technology for improving bioavailability of poorly soluble drugs: A mini-review. J. Nanosci. Nanotechnol., 2017, 17, 18-28.
[16]
Cao, M.; Xue, X.; Pei, X.; Qian, Y.; Liu, L.; Ren, L.; Chen, G. Formulation optimization and pharmacokinetics evaluation of oral self-microemulsifying drug delivery system for poorly water soluble drug cinacalcet and no food effect. Drug Dev. Ind. Pharm., 2018, 44, 969-981.
[17]
Zhou, J.; Tan, L.; Xie, J.; Lai, Z.; Huang, Y.; Qu, C.; Luo, D.; Lin, Z.; Huang, P.; Su, Z.; Xie, Y. Characterization of brusatol self-microemulsifying drug delivery system and its therapeutic effect against dextran sodium sulfate-induced ulcerative colitis in mice. Drug Deliv., 2017, 24, 1667-1679.
[18]
Yeom, D.W.; Chae, B.R.; Son, H.Y.; Kim, J.H.; Chae, J.S.; Song, S.H.; Oh, D.; Choi, Y.W. Enhanced oral bioavailability of valsartan using a polymer-based supersaturable self-microemulsifying drug delivery system. Int. J. Nanomedicine, 2017, 12, 3533-3545.
[19]
Tiwari, R.; Dubey, V.; Kesavan, K. Ocular self-microemulsifying drug delivery system of prednisolone improves therapeutic effectiveness in the treatment of experimental uveitis. Ocul. Immunol. Inflamm., 2019, 27, 303-311.
[20]
Khan, J.; Rades, T.; Boyd, B. The precipitation behavior of poorly water-soluble drugs with an emphasis on the digestion of lipid based formulations. Pharm. Res., 2016, 33, 548-562.
[21]
Quan, G.; Niu, B.; Singh, V.; Zhou, Y.; Wu, C.Y.; Pan, X.; Wu, C. Supersaturable solid self-microemulsifying drug delivery system: Precipitation inhibition and bioavailability enhancement. Int. J. Nanomedicine, 2017, 12, 8801-8811.
[22]
Midha, K.; Nagpal, M.; Singh, G.; Aggarwal, G. Prospectives of solid self-microemulsifying systems in novel drug delivery. Curr. Drug Deliv., 2017, 14, 1078-1096.
[23]
Llera-Rojas, V.G.; Del Real, L.A.; Mendoza-Munoz, N.; Melgoza-Contreras, L.M.; Quintanar-Guerrero, D. Feasibility of obtaining in situ nanocapsules through modified self-microemulsifying drug delivery systems. A new manufacturing approach for oral route administration. Drug Dev. Ind. Pharm., 2017, 43, 925-931.
[24]
Khumpirapang, N.; Pikulkaew, S.; Mullertz, A.; Rades, T.; Okonogi, S. Self-microemulsifying drug delivery system and nanoemulsion for enhancing aqueous miscibility of Alpinia galanga oil. PLoS One, 2017, 12e0188848
[25]
Song, W.H.; Park, J.H.; Yeom, D.W.; Ahn, B.K.; Lee, K.M.; Lee, S.G.; Woo, H.S.; Choi, Y.W. Enhanced dissolution of celecoxib by supersaturating self-emulsifying drug delivery system (S-SEDDS) formulation. Arch. Pharm. Res., 2013, 36, 69-78.
[26]
Liu, Y.; Zhao, J.; Wang, L.; Yan, B.; Gu, Y.; Chang, P.; Wang, Y. Nanocrystals technology for transdermal delivery of water-insoluble drugs. Curr. Drug Deliv., 2018, 15, 1221-1229.
[27]
Zhou, Y.; Du, J.; Wang, L.; Wang, Y. State of the art of nanocrystals technology for delivery of poorly soluble drugs. J. Nanopart. Res., 2016, 18, 257.
[28]
Djekic, L.; Jankovic, J.; Calija, B.; Primorac, M. Development of semisolid self-microemulsifying drug delivery systems (SMEDDSs) filled in hard capsules for oral delivery of aciclovir. Int. J. Pharm., 2017, 528, 372-380.
[29]
Dalvadi, H.; Patel, N.; Parmar, K. Systematic development of design of experiments (DoE) optimised self-microemulsifying drug delivery system of Zotepine. J. Microencapsul., 2017, 34, 308-318.
[30]
Chen, L.; Liu, C.S.; Chen, Q.Z.; Wang, S.; Xiong, Y.A.; Jing, J.; Lv, J.J. Characterization, pharmacokinetics and tissue distribution of chlorogenic acid-loaded self-microemulsifying drug delivery system. Eur. J. Pharm. Sci., 2017, 100, 102-108.
[31]
Kamboj, S.; Rana, V. Quality-by-design based development of a self-microemulsifying drug delivery system to reduce the effect of food on Nelfinavir mesylate. Int. J. Pharm., 2016, 501, 311-325.
[32]
Khan, A.W.; Kotta, S.; Ansari, S.H.; Sharma, R.K.; Ali, J. Potentials and challenges in self-nanoemulsifying drug delivery systems. Expert Opin. Drug Deliv., 2012, 9, 1305-1317.
[33]
Chen, Z.Q.; Liu, Y.; Zhao, J.H.; Wang, L.; Feng, N.P. Improved oral bioavailability of poorly water-soluble indirubin by a supersaturatable self-microemulsifying drug delivery system. Int. J. Nanomedicine, 2012, 7, 1115-1125.
[34]
Mahmoud, E.A.; Bendas, E.R.; Mohamed, M.I. Preparation and evaluation of self-nanoemulsifying tablets of carvedilol. AAPS PharmSciTech, 2009, 10, 183-192.
[35]
Tang, B.; Cheng, G.; Gu, J.C.; Xu, C.H. Development of solid self-emulsifying drug delivery systems: Preparation techniques and dosage forms. Drug Discov. Today, 2008, 13, 606-612.
[36]
Gao, P.; Morozowich, W. Development of supersaturatable self-emulsifying drug delivery system formulations for improving the oral absorption of poorly soluble drugs. Expert Opin. Drug Deliv., 2006, 3, 97-110.
[37]
Trevaskis, N.L.; Charman, W.N.; Porter, C.J. Lipid-based delivery systems and intestinal lymphatic drug transport: A mechanistic update. Adv. Drug Deliv. Rev., 2008, 60, 702-716.
[38]
Taha, E.; Ghorab, D.; Zaghloul, A.A. Bioavailability assessment of vitamin A self-nanoemulsified drug delivery systems in rats: A comparative study. Med. Princ. Pract., 2007, 16, 355-359.
[39]
Dahan, A.; Hoffman, A. Rationalizing the selection of oral lipid based drug delivery systems by an in vitro dynamic lipolysis model for improved oral bioavailability of poorly water soluble drugs. J. Control. Release, 2008, 129, 1-10.
[40]
Sander, C.; Holm, P. Porous magnesium aluminometasilicate tablets as carrier of a cyclosporine self-emulsifying formulation. AAPS PharmSciTech, 2009, 10, 1388-1395.
[41]
Wasylaschuk, W.R.; Harmon, P.A.; Wagner, G.; Harman, A.B.; Templeton, A.C.; Xu, H.; Reed, R.A. Evaluation of hydroperoxides in common pharmaceutical excipients. J. Pharm. Sci., 2007, 96, 106-116.
[42]
Tung, N.T.; Tran, C.S.; Pham, T.M.; Nguyen, H.A.; Nguyen, T.L.; Chi, S.C.; Nguyen, D.D.; Bui, T.B. Development of solidified self-microemulsifying drug delivery systems containing l-tetrahydropalmatine: Design of experiment approach and bioavailability comparison. Int. J. Pharm., 2018, 537, 9-21.
[43]
Kohli, K.; Chopra, S.; Dhar, D.; Arora, S.; Khar, R.K. Self-emulsifying drug delivery systems: An approach to enhance oral bioavailability. Drug Discov. Today, 2010, 15, 958-965.
[44]
Callender, S.P.; Mathews, J.A.; Kobernyk, K.; Wettig, S.D. Microemulsion utility in pharmaceuticals: Implications for multi-drug delivery. Int. J. Pharm., 2017, 526, 425-442.
[45]
Cirri, M.; Roghi, A.; Valleri, M.; Mura, P. Development and characterization of fast-dissolving tablet formulations of glyburide based on solid self-microemulsifying systems. Eur. J. Pharm. Biopharm., 2016, 104, 19-29.
[46]
Bala, V.; Rao, S.; Bateman, E.; Keefe, D.; Wang, S.; Prestidge, C.A. Enabling oral SN38-based chemotherapy with a combined lipophilic prodrug and self-microemulsifying drug delivery system. Mol. Pharm., 2016, 13, 3518-3525.
[47]
Yeom, D.W.; Song, Y.S.; Kim, S.R.; Lee, S.G.; Kang, M.H.; Lee, S.; Choi, Y.W. Development and optimization of a self-microemulsifying drug delivery system for atorvastatin calcium by using D-optimal mixture design. Int. J. Nanomedicine, 2015, 10, 3865-3877.
[48]
Li, S.H.; Madan, P.; Lin, S.S. Effect of ionization of drug on drug solubilization in SMEDDS prepared using Capmul MCM and caprylic acid. Asian J. Pharm. Sci., 2017, 12, 73-82.
[49]
Li, F.; Hu, R.; Wang, B.; Gui, Y.; Cheng, G.; Gao, S.; Ye, L.; Tang, J. Self-microemulsifying drug delivery system for improving the bioavailability of huperzine A by lymphatic uptake. Acta Pharm. Sin. B, 2017, 7, 353-360.
[50]
Akula, S.; Gurram, A.K.; Devireddy, S.R.; Deshpande, P.B. Evaluation of surfactant effect on self micro emulsifying drug delivery system (SMEDDS) of lercanidipine hydrochloride: Formulation and evaluation. J. Pharm. Innov., 2015, 10, 374-387.
[51]
Pi, J.; Gao, X.; Yu, Y.; Zheng, Y.; Zhu, Z.; Wang, Y. Self-micro emulsifying formulation improved intestinal absorption and oral bioavailability of bakuchiol. Arch. Pharm. Res., 2014.
[http://dx.doi.org/10.1007/s12272-014-0499-x]
[52]
Qureshi, M.J.; Mallikarjun, C.; Kian, W.G. Enhancement of solubility and therapeutic potential of poorly soluble lovastatin by SMEDDS formulation adsorbed on directly compressed spray dried magnesium aluminometasilicate liquid loadable tablets: A study in diet induced hyperlipidemic rabbits. Asian J. Pharm. Sci., 2015, 10, 40-56.
[53]
Zhang, X.; Yi, Y.; Qi, J.; Lu, Y.; Tian, Z.; Xie, Y.; Yuan, H.; Wu, W. Controlled release of cyclosporine A self-nanoemulsifying systems from osmotic pump tablets: Near zero-order release and pharmacokinetics in dogs. Int. J. Pharm., 2013, 452, 233-240.
[54]
Dokania, S.; Joshi, A.K. Self-microemulsifying drug delivery system (SMEDDS)--challenges and road ahead. Drug Deliv., 2015, 22, 675-690.
[55]
Truong, D.H.; Tran, T.H.; Ramasamy, T.; Choi, J.Y.; Lee, H.H.; Moon, C.; Choi, H.G.; Yong, C.S.; Kim, J.O. Development of solid self-emulsifying formulation for improving the oral bioavailability of Erlotinib. AAPS PharmSciTech, 2016, 17, 466-473.
[56]
Ammar, H.O.; Ibrahim, M.; Mahmoud, A.A.; Shamma, R.N.; El Hoffy, N.M. Non-ionic surfactant based in situ forming vesicles as controlled parenteral delivery systems. AAPS PharmSciTech, 2018, 19(3), 1001-1010.
[57]
Cuine, J.F.; Charman, W.N.; Pouton, C.W.; Edwards, G.A.; Porter, C.J. Increasing the proportional content of surfactant (Cremophor EL) relative to lipid in self-emulsifying lipid-based formulations of danazol reduces oral bioavailability in beagle dogs. Pharm. Res., 2007, 24, 748-757.
[58]
Kuchlyan, J.; Kundu, N.; Sarkar, N. Ionic liquids in microemulsions: Formulation and characterization. Curr. Opin. Colloid Interface Sci., 2016, 25, 27-38.
[59]
Han, S.D.; Jung, S.W.; Jang, S.W.; Son, M.; Kim, B.M.; Kang, M.J. Reduced food-effect on intestinal absorption of dronedarone by self-microemulsifying drug delivery system (SMEDDS). Biol. Pharm. Bull., 2015, 38, 1026-1032.
[60]
Seljak, K.B.; Berginc, K.; Trontelj, J.; Zvonar, A.; Kristl, A.; Gasperlin, M. A self-microemulsifying drug delivery system to overcome intestinal resveratrol toxicity and presystemic metabolism. J. Pharm. Sci., 2014, 103, 3491-3500.
[61]
Planchette, C.; Mercuri, A.; Arcangeli, L.; Kriechbaum, M.; Laggner, P. Self-emulsification of lipidic drug delivery system in pure water and in concentrated glycerol solution. AAPS PharmSciTech, 2017, 18, 3053-3063.
[62]
Bardhan, S.; Kundu, K.; Chakraborty, G.; Saha, S.K.; Paul, B.K. The Schulman method of cosurfactant titration of the oil/water interface (dilution method): A Review on a well-known powerful technique in interfacial science for characterization of water-in-oil microemulsions. J. Surfactants Deterg., 2015, 18, 547-567.
[63]
Kim, D.W.; Kwon, M.S.; Yousaf, A.M.; Balakrishnan, P.; Park, J.H.; Kim, D.S.; Lee, B.J.; Park, Y.J.; Yong, C.S.; Kim, J.O.; Choi, H.G. Comparison of a solid SMEDDS and solid dispersion for enhanced stability and bioavailability of clopidogrel napadisilate. Carbohydr. Polym., 2014, 114, 365-374.
[64]
Coneac, G.; Vlaia, V.; Olariu, I.; Mut, A.M.; Anghel, D.F.; Ilie, C.; Popoiu, C.; Lupuleasa, D.; Vlaia, L. Development and evaluation of new microemulsion-based hydrogel formulations for topical delivery of fluconazole. AAPS PharmSciTech, 2015, 16, 889-904.
[65]
More, U.; Kumari, P.; Vaid, Z.; Behera, K.; Malek, N.I. Interaction between ionic liquids and gemini surfactant: A detailed investigation into the role of ionic liquids in modifying properties of aqueous gemini surfactant. J. Surfactants Deterg., 2015, 19, 75-89.
[66]
Bera, A.; Mandal, A. Microemulsions: A novel approach to enhanced oil recovery: A review. J. Pet. Explor. Prod. Technol., 2014, 5, 255-268.
[67]
Pawar, S.K.; Vavia, P.R. Rice germ oil as multifunctional excipient in preparation of self-microemulsifying drug delivery system (SMEDDS) of tacrolimus. AAPS PharmSciTech, 2012, 13, 254-261.
[68]
El Maghraby, G.M. Self-microemulsifying and microemulsion systems for transdermal delivery of indomethacin: Effect of phase transition. Colloids Surf. B, 2010, 75, 595-600.
[69]
Shete, H.; Sable, S.; Tidke, P.; Selkar, N.; Pawar, Y.; Chakraborty, A.; De, A.; Vanage, G.; Patravale, V. Mono-guanidine heterolipid based SMEDDS: A promising tool for cytosolic delivery of antineoplastics. Biomaterials, 2015, 57, 116-132.
[70]
Singh, D.; Tiwary, A.K.; Bedi, N. Canagliflozin loaded SMEDDS: formulation optimization for improved solubility, permeability and pharmacokinetic performance. J. Pharm. Investig., 2018, 49, 67-85.
[71]
Vohra, A.M.; Patel, C.V.; Kumar, P.; Thakkar, H.P. Development of dual drug loaded solid self microemulsifying drug delivery system: Exploring interfacial interactions using QbD coupled risk based approach. J. Mol. Liq., 2017, 242, 1156-1168.
[72]
Fahmy, U.A.; Ahmed, O.A.; Hosny, K.M. Development and evaluation of avanafil self-nanoemulsifying drug delivery system with rapid onset of action and enhanced bioavailability. AAPS PharmSciTech, 2015, 16, 53-58.
[73]
Alqahtani, S.; Alayoubi, A.; Nazzal, S.; Sylvester, P.W.; Kaddoumi, A. Enhanced solubility and oral bioavailability of gamma-tocotrienol using a self-emulsifying drug delivery system (SEDDS). Lipids, 2014, 49, 819-829.
[74]
Hajjar, B.; Zier, K-I.; Khalid, N.; Azarmi, S.; Löbenberg, R. Evaluation of a microemulsion-based gel formulation for topical drug delivery of diclofenac sodium. J. Pharm. Investig., 2017, 453, 569-578.
[75]
Nanda Kishore, R.; Yalavarthi, P.R.; Vadlamudi, H.C.; Vandana, K.R.; Rasheed, A.; Sushma, M. Solid self microemulsification of Atorvastatin using hydrophilic carriers: A design. Drug Dev. Ind. Pharm., 2015, 41, 1213-1222.
[76]
Wu, L.; Qiao, Y.; Wang, L.; Guo, J.; Wang, G.; He, W.; Yin, L.; Zhao, J. A Self-microemulsifying drug delivery system (SMEDDS) for a novel medicative compound against depression: A preparation and bioavailability study in rats. AAPS PharmSciTech, 2015, 16, 1051-1058.
[77]
Chudasama, A.; Shah, B.; Patel, V.; Nivsarkar, M.; Vasu, K.; Shishoo, C. Development of self emulsifying drug delivery system of itraconazole for oral delivery: Formulation and pharmacokinetic consideration. J. Pharm. Investig., 2015, 45, 271-283.
[78]
Dangre, P.; Gilhotra, R.; Dhole, S. Formulation and statistical optimization of self-microemulsifying drug delivery system of eprosartan mesylate for improvement of oral bioavailability. Drug Deliv. Transl. Res., 2016, 6, 610-621.
[79]
Wang, L.; Ma, Y.; Gu, Y.; Liu, Y.; Zhao, J.; Yan, B.; Wang, Y. Cryoprotectant choice and analyses of freeze-drying drug suspension of nanoparticles with functional stabilisers. J. Microencapsul., 2018, 35, 241-248.
[80]
Yan, B.; Wang, Y.; Wang, L.; Zhou, Y.; Shang, X.; Zhao, J.; Liu, Y.; Du, J. Design and synthesis of a novel multifunctional stabilizer for highly stable DL-tetrahydropalmatine nanosuspensions and in vitro study. Appl. Nanosci., 2018, 8, 1285-1297.
[81]
Du, J.; Zhou, Y.; Wang, L.; Wang, Y. Effect of PEGylated chitosan as multifunctional stabilizer for deacetyl mycoepoxydience nanosuspension design and stability evaluation. Carbohydr. Polym., 2016, 153, 471-481.
[82]
Chow, P.Y.; Gue, S.Z.; Leow, S.K.; Goh, L.B. Solid self-microemulsifying system (S-SMECS) for enhanced bioavailability and pigmentation of highly lipophilic bioactive carotenoid. Powder Technol., 2015, 274, 199-204.
[83]
Dangre, P.V.; Gilhotra, R.M.; Dhole, S.N. Formulation and development of solid self micro-emulsifying drug delivery system (S-SMEDDS) containing chlorthalidone for improvement of dissolution. J. Pharm. Investig., 2016, 46, 633-644.
[84]
Jesionowski, T.; Zdarta, J.; Krajewska, B. Enzyme immobilization by adsorption: A review. Adsorption, 2014, 20, 801-821.
[85]
Gumaste, S.G.; Dalrymple, D.M.; Serajuddin, A.T. Development of solid SEDDS, V: Compaction and drug release properties of tablets prepared by adsorbing lipid-based formulations onto Neusilin(R) US2. Pharm. Res., 2013, 30(12), 3186-3199.
[86]
Jiang, D.; Deng, Y.; Gao, G.; Wu, L.; Yang, H. Self-assembly of silica nanowires in a microemulsion system and their adsorption capacity. Colloids Surf. A, 2018, 538, 526-533.
[87]
Lee, D.R.; Kim, Y.H.; Park, K.W.; Ho, M.J.; Jung, H.J.; Cho, H.R.; Park, J.S.; Choi, Y.S.; Yeom, D.W.; Choi, Y.W.; Kang, M.J. Fujicalin®-based solid supersaturable self-emulsifying drug delivery system (S-SEDDS) of tacrolimus for enhanced dissolution rate and oral absorption. J. Pharm. Investig., 2015, 45, 651-658.
[88]
He, H.; Shi, B.; Cai, C.; Tang, X. Preparation of lovastatin matrix sustained-release pellets by extrusion-spheronization combined with microcrystal dispersion technique. Arch. Pharm. Res., 2011, 34, 1931-1938.
[89]
Qazi, F.; Shoaib, M.H.; Yousuf, R.I.; Nasiri, M.I.; Ahmed, K.; Ahmad, M. Lipids bearing extruded-spheronized pellets for extended release of poorly soluble antiemetic agent-Meclizine HCl. Lipids Health Dis., 2017, 16, 75.
[90]
Nasiri, M.I.; Yousuf, R.I.; Shoaib, M.H.; Fayyaz, M.; Qazi, F.; Ahmed, K. Investigation on release of highly water soluble drug from matrix-coated pellets prepared by extrusion–spheronization technique. J. Coat. Technol. Res., 2016, 13, 333-344.
[91]
Darji, M.A.; Lalge, R.M.; Marathe, S.P.; Mulay, T.D.; Fatima, T.; Alshammari, A.; Lee, H.K.; Repka, M.A.; Narasimha Murthy, S. Excipient stability in oral solid dosage forms: A review. AAPS PharmSciTech, 2018, 19, 12-26.
[92]
Hu, X.; Lin, C.; Chen, D.; Zhang, J.; Liu, Z.; Wu, W.; Song, H. Sirolimus solid self-microemulsifying pellets: Formulation development, characterization and bioavailability evaluation. Int. J. Pharm., 2012, 438, 123-133.
[93]
Duarte, I.; Santos, J.L.; Pinto, J.F.; Temtem, M. Screening methodologies for the development of spray-dried amorphous solid dispersions. Pharm. Res., 2015, 32, 222-237.
[94]
Tan, A.; Rao, S.; Prestidge, C.A. Transforming lipid-based oral drug delivery systems into solid dosage forms: An overview of solid carriers, physicochemical properties, and biopharmaceutical performance. Pharm. Res., 2013, 30, 2993-3017.
[95]
Agrahari, V. Novel drug delivery systems, devices, and fabrication methods. Drug Deliv. Transl. Res., 2018, 8, 303-306.
[96]
Katla, V.M.; Veerabrahma, K. Cationic solid self micro emulsifying drug delivery system (SSMED) of losartan: Formulation development, characterization and in vivo evaluation. J. Drug Deliv. Sci. Technol., 2016, 35, 190-199.
[97]
Silva, L.A.D.; Almeida, S.L.; Alonso, E.C.P.; Rocha, P.B.R.; Martins, F.T.; Freitas, L.A.P.; Taveira, S.F.; Cunha-Filho, M.S.S.; Marreto, R.N. Preparation of a solid self-microemulsifying drug delivery system by hot-melt extrusion. Int. J. Pharm., 2018, 541, 1-10.
[98]
Shah, A.V.; Desai, H.H.; Thool, P.; Dalrymple, D.; Serajuddin, A.T.M. Development of self-microemulsifying drug delivery system for oral delivery of poorly water-soluble nutraceuticals. Drug Dev. Ind. Pharm., 2018, 44, 895-901.
[99]
Shah, A.; Thool, P.; Sorathiya, K.; Prajapati, H.; Dalrymple, D.; Serajuddin, A.T.M. Effect of different polysorbates on development of self-microemulsifying drug delivery systems using medium chain lipids. Drug Dev. Ind. Pharm., 2018, 44, 215-223.
[100]
Sato, Y.; Joumura, T.; Nashimoto, S.; Yokoyama, S.; Takekuma, Y.; Yoshida, H.; Sugawara, M. Enhancement of lymphatic transport of lutein by oral administration of a solid dispersion and a self-microemulsifying drug delivery system. Eur. J. Pharm. Biopharm., 2018, 127, 171-176.
[101]
Sunazuka, Y.; Ueda, K.; Higashi, K.; Tanaka, Y.; Moribe, K. Combined effects of the drug distribution and mucus diffusion properties of self-microemulsifying drug delivery systems on the oral absorption of fenofibrate. Int. J. Pharm., 2018, 546, 263-271.
[102]
Sun, C.; Gui, Y.; Hu, R.; Chen, J.; Wang, B.; Guo, Y.; Lu, W.; Nie, X.; Shen, Q.; Gao, S.; Fang, W. Preparation and pharmacokinetics evaluation of solid self-microemulsifying drug delivery system (S-SMEDDS) of osthole. AAPS PharmSciTech, 2018, 19, 2301-2310.
[103]
Li, D.; Zhao, G.; Ai, W.; Li, G.; Si, L.; Huang, J.; Chen, Y.; Wu, S. Simultaneous LC-MS/MS bioanalysis of etoposide and paclitaxel in mouse tissues and plasma after oral administration of self-microemulsifying drug-delivery systems. Biomed. Chromatogr., 2018, 32e4192
[104]
Jiang, F.; Wu, G.; Li, W.; Yang, J.; Yan, J.; Wang, Y.; Yao, W.; Zhou, X.; He, Z.; Wu, L.; Xiao, C.; Xiao, T.; Zhang, M.; Shen, X.; Tao, L. Preparation and protective effects of 1,8-cineole-loaded self-microemulsifying drug delivery system on lipopolysaccharide-induced endothelial injury in mice. Eur. J. Pharm. Sci., 2018, 127, 14-23.
[105]
Madhav, K.V.; Kishan, V. Self microemulsifying particles of loratadine for improved oral bioavailability: Preparation, characterization and in vivo evaluation. J. Pharm. Investig., 2018, 48, 497-508.
[106]
Park, S.; Mun, S.; Kim, Y-R. Emulsifier dependent in vitro digestion and bioaccessibility of β-carotene loaded in oil-in-water emulsions. Food Biophys., 2018, 13, 147-154.
[107]
Vithani, K.; Hawley, A.; Jannin, V.; Pouton, C.; Boyd, B.J. Inclusion of digestible surfactants in solid SMEDDS formulation removes lag time and influences the formation of structured particles during digestion. AAPS J., 2017, 19, 754-764.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy