Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Review Article

High-Affinity Detection of Metal-Mediated Nephrotoxicity by Aptamer Nanomaterial Complementation

Author(s): Huijuan Pan, Thangavel Lakshmipriya, Subash C.B. Gopinath* and Periasamy Anbu*

Volume 15, Issue 6, 2019

Page: [549 - 556] Pages: 8

DOI: 10.2174/1573413715666190115155917

Price: $65

Abstract

Nephrotoxicity, a chronic renal disease that results from the accumulation of endogenous and exogenous toxins in the kidney, disturbs the excretion and detoxification function of the kidney. Metal-mediated nephrotoxicity is induced by toxic metals/metalloids such as mercury, lead, arsenic, chromate, uranium, and cadmium. These materials become concentrated in the kidneys and injure the nephrons. Developing strategies to detect these metal ions will enable the earlier identification of kidney damage. An aptamer, an artificial antibody generated against a wide range of targets including metal ions, may be the right tool for the detection of metal ions associated with renal injury. The use of a detection system consisting of an aptamer and metallic nanoparticles is a potential way to overcome nephrotoxicity. Here, we discuss the detection of metal-mediated nephrotoxicity caused by metals/metalloids using the aptamer and nanomaterial-conjugated system.

Keywords: Nephrotoxicity, metal, metalloid, aptamer, nanomaterial, kidney.

Graphical Abstract

[1]
Ortiz, A.; Tejedor, A.; Caramelo, C. Nephrotoxicity. In Dykens, J.A.; Will, Y. (Eds.). Drug-Induced Mitochondrial Dysfunction; John Wiley & Sons, Inc. 2008, pp. 291-310.
[2]
Naughton, C.A. Drug-induced nephrotoxicity. Am. Fam. Physician, 2008, 78(6), 743-750.
[3]
Hara, M.; Suganuma, A.; Yanagisawa, N.; Imamura, A.; Hishima, T.; Ando, M. Atazanavir nephrotoxicity. Clin. Kidney J., 2015, 8, 137-142.
[4]
Akca, G.; Eren, H.; Tumkaya, L.; Mercantepe, T.; Horsanali, M.O.; Deveci, E.; Dil, E.; Yilmaz, A. The protective effect of astaxanthin against cisplatin-induced nephrotoxicity in rats. Biomed. Pharmacother., 2018, 100, 575-582.
[5]
Nicholson, J.K.; Kendall, M.D.; Osborn, D. Cadmium and mercury nephrotoxicity. Nature, 1983, 304, 633-635.
[6]
Robles-Osorio, M.L.; Sabath-Silva, E.; Sabath, E. Arsenic-mediated nephrotoxicity. Ren. Fail., 2015, 37(4), 542-547.
[7]
Gonick, H.C. Nephrotoxicity of cadmium & lead. Indian J. Med. Res., 2008, 128(4), 335-352.
[8]
Ke, Q.; Costa, M. Overview of chromium (III) toxicology. In: Vincent, J. (ed). The Nutritional Biochemistry of Chromium (III). Amsterdam, Netherlands: Elsevier; 2007, pp. 257-263.
[9]
Lynes, M.A.; Kang, Y.J.; Sensi, S.L.; Perdrizet, G.A.; Hightower, L.E. Heavy metal ions in normal physiology, toxic stress, and cytoprotection. Ann. N. Y. Acad. Sci., 2007, 1113, 159-172.
[10]
Zhong, W.; Zhang, Y.; Wu, Z.; Yang, R.; Chen, X.; Yang, J.; Zhu, L. Health risk assessment of heavy metals in freshwater fish in the Central and Eastern North China. Ecotoxicol. Environ. Saf., 2018, 157, 343-349.
[11]
Fomina, M.; Ritz, K.; Gadd, G.M. Negative fungal chemotropism to toxic metals. FEMS Microbiol. Lett., 2000, 193, 207-211.
[12]
EL-Bady, M.S.M. Toxic levels of some heavy metals in drinking network surface water of Damietta Governorate, Egypt. Int. J. Chemtech Res., 2016, 9, 118-123.
[13]
Chen, D.; Ray, A.K. Removal of toxic metal ions from wastewater by semiconductor photocatalysis. Chem. Eng. Sci., 2001, 56, 1561-1570.
[14]
Sabath, E.; Robles-Osorio, M.L. Renal health and the environment: Heavy metal nephrotoxicity. Nefrologia, 2012, 32, 279-286.
[15]
Tokar, E.J.; Benbrahim-Tallaa, L.; Waalkes, M.P. Metal ions in human cancer development. Met. Ions Life Sci., 2011, 8, 375-401.
[16]
Stejskal, V.; Hudecek, R.; Stejskal, J.; Sterzl, I. Diagnosis and treatment of metal-induced side-effects. Neuroendocrinol. Lett., 2006, 27(Suppl. 1), 7-16.
[17]
Singerman, A. Exposure to toxic metals: Biological effects and their monitoring. Tech. Instrum. Anal. Chem., 1989, 4, 17-93.
[18]
Penner-Hahn, J.E. Technologies for detecting metals in single cells. Met. Ions Life Sci., 2013, 12, 15-40.
[19]
Cerminati, S.; Soncini, F.C.; Checa, S.K. A sensitive whole-cell biosensor for the simultaneous detection of a broad-spectrum of toxic heavy metal ions. Chem. Commun., 2015, 51, 5917-5920.
[20]
Gupta, V.K.; Ganjali, M.R.; Norouzi, P.; Khani, H.; Nayak, A.; Agarwal, S. Electrochemical analysis of some toxic metals by ion-selective electrodes. Crit. Rev. Anal. Chem., 2011, 41(4), 282-313.
[21]
Wang, J.; Zhou, H.S. Colorimetric Biosensor for Food Chemical Hazards Detection. In: Wang, S. (ed.). Food Chemical Hazard Detection: Development and Application of New Technologies; John Wiley & Sons, Inc., 2014; pp. 291-313.
[22]
Farzin, L.; Shamsipur, M.; Sheibani, S. A review: Aptamer-based analytical strategies using the nanomaterials for environmental and human monitoring of toxic heavy metals. Talanta, 2017, 174, 619-627.
[23]
Cuero, R.; Lilly, J.; McKay, D.S. Constructed molecular sensor to enhance metal detection by bacterial ribosomal switch-ion channel protein interaction. J. Biotechnol., 2012, 158, 1-7.
[24]
Xu, H.W.; Masila, M.; Yan, F.; Sadik, O.A. Multiarray sensors for pesticides and toxic metals. Proc. SPIE, 1999, 3534, 437-445.
[25]
Gopinath, S.C.B. Antiviral aptamers. Arch. Virol., 2007, 152, 2137-2157.
[26]
Toh, S.Y.; Citartan, M.; Gopinath, S.C.B.; Tang, T-H. Aptamers as a replacement for antibodies in enzyme-linked immunosorbent assay. Biosens. Bioelectron., 2015, 64, 392-403.
[27]
Gopinath, S.C.B.; Misono, T.S.; Kawasaki, K.; Mizuno, T.; Imai, M.; Odagiri, T.; Kumar, P.K.R. An RNA aptamer that distinguishes between closely related human influenza viruses and inhibits haemagglutinin-mediated membrane fusion. J. Gen. Virol., 2006, 87, 479-487.
[28]
Huang, Y.; Wang, X.; Duan, N.; Xia, Y.; Wang, Z.; Che, Z.; Wang, L.; Yang, X.; Chen, X. Selection and characterization, application of a DNA aptamer targeted to Streptococcus pyogenes in cooked chicken. Anal. Biochem., 2018, 551, 37-42.
[29]
Zhang, H.; Wang, Z.; Xie, L.; Zhang, Y.; Deng, T.; Li, J.; Liu, J.; Xiong, W.; Zhang, L.; Zhang, L.; Peng, B.; He, L.; Ye, M.; Hu, X.; Tan, W. Molecular recognition and in vitro targeted inhibition of renal cell carcinoma using a DNA aptamer. Mol. Ther. Nucleic Acids, 2018, 12, 758-768.
[30]
Gasse, C.; Zaarour, M.; Noppen, S.; Abramov, M.; Marlière, P.; Liekens, S.; De Strooper, B.; Herdewijn, P. Modulation of BACE1 activity by chemically modified aptamers. ChemBioChem, 2018, 19, 754-763.
[31]
Cheen, O.C.; Gopinath, S.C.B.; Perumal, V.; Arshad, M.K.M.; Lakshmipriya, T.; Chen, Y.; Haarindraprasad, R.; Rao, B.S.; Hashim, U.; Pandian, K. Aptamer-based impedimetric determination of the human blood clotting factor IX in serum using an interdigitated electrode modified with a ZnO nanolayer. Mikrochim. Acta, 2017, 184, 117-125.
[32]
Gopinath, S.C.B.; Balasundaresan, D.; Akitomi, J.; Mizuno, H. An RNA aptamer that discriminates bovine factor IX from human factor IX. J. Biochem., 2006, 140, 667-676.
[33]
Gopinath, S.C.B.; Awazu, K.; Fujimaki, M.; Sugimoto, K.; Ohki, Y.; Komatsubara, T.; Tominaga, J.; Gupta, K.C.; Kumar, P.K.R. Influence of nanometric holes on the sensitivity of a waveguide-mode sensor: Label-free nanosensor for the analysis of RNA aptamer-ligand interactions. Anal. Chem., 2008, 80, 6602-6609.
[34]
Gopinath, S.C.B. Antiviral aptamers. Arch. Virol., 2007, 152(12), 2137-2157.
[35]
Gopinath, S.C.B.; Lakshmipriya, T.; Chen, Y.; Phang, W-M.; Hashim, U. Aptamer-based “point-of-care testing.”. Biotechnol. Adv., 2016, 34, 198-208.
[36]
Gopinath, S.C.B.; Kumar, P.K.R. Aptamers that bind to the hemagglutinin of the recent pandemic influenza virus H1N1 and efficiently inhibit agglutination. Acta Biomater., 2013, 9, 8932-8941.
[37]
Lakshmipriya, T.; Fujimaki, M.; Gopinath, S.C.B.; Awazu, K.; Horiguchi, Y.; Nagasaki, Y. A high-performance waveguide-mode biosensor for detection of factor IX using PEG-based blocking agents to suppress non-specific binding and improve sensitivity. Analyst, 2013, 138, 2863-2870.
[38]
Lakshmipriya, T.; Horiguchi, Y.; Nagasaki, Y. Co-immobilized poly(ethylene glycol)-block-polyamines promote sensitivity and restrict biofouling on gold sensor surface for detecting factor IX in human plasma. Analyst, 2014, 139, 3977-3985.
[39]
Lakshmipriya, T.; Fujimaki, M.; Gopinath, S.C.B.; Awazu, K. Generation of anti-in fl uenza aptamers using the systematic evolution of ligands by exponential enrichment for sensing applications. Langmuir, 2013, 29(48), 15107-15115.
[40]
Citartan, M.; Gopinath, S.C.B.; Tominaga, J.; Tan, S.C.; Tang, T.H. Assays for Aptamer-based platforms. Biosens. Bioelectron., 2012, 34, 1-11.
[41]
Shigdar, S.; Lin, J.; Yu, Y.; Pastuovic, M.; Wei, M.; Duan, W. RNA aptamer against a cancer stem cell marker epithelial cell adhesion molecule. Cancer Sci., 2011, 102, 991-998.
[42]
Subramanian, N.; Kanwar, J.R.; Athalya, P.k.; Janakiraman, N.; Khetan, V.; Kanwar, R.K.; Eluchuri, S.; Krishnakumar, S. EpCAM aptamer mediated cancer cell specific delivery of EpCAM siRNA using polymeric nanocomplex. J. Biomed. Sci., 2015, 22, 4.
[43]
Song, K.M.; Cho, M.; Jo, H.; Min, K.; Jeon, S.H.; Kim, T.; Han, M.S.; Ku, J.K.; Ban, C. Gold nanoparticle-based colorimetric detection of kanamycin using a DNA Aptamer. Anal. Biochem., 2011, 415, 175-181.
[44]
Mazaafrianto, D.N.; Maeki, M.; Ishida, A.; Tani, H.; Tokeshi, M. Recent microdevice-based aptamer sensors. Micromachines (Basel), 2018, 9(5), 202.
[45]
Gülbakan, B.; Barylyuk, K.; Schneider, P.; Pillong, M.; Schneider, G.; Zenobi, R. Native electrospray ionization mass spectrometry reveals multiple facets of aptamer-ligand interactions: From mechanism to binding constants. J. Am. Chem. Soc., 2018, 140, 7486-7497.
[46]
Yadav, R.; Gaur, M.S.; Bhadauria, S.; Berlina, A.N.; Dzantiev, B.B. Efficient chemiluminescence by aptamer–reactant platform combination with activated Ag–Au alloy nanoparticles for cobalt detection. Int. J. Environ. Anal. Chem., 2018, 98, 570-581.
[47]
Gopinath, S.C.B.; Tang, T.; Chen, Y.; Citartan, M.; Tominaga, J.; Lakshmipriya, T. Biosensors and bioelectronics sensing strategies for in Fl Uenza surveillance. Biosens. Bioelectron., 2014, 61, 357-369.
[48]
Gopinath, S.C.B.; Lakshmipriya, T.; Awazu, K. Colorimetric detection of controlled assembly and disassembly of aptamers on unmodified gold nanoparticles. Biosens. Bioelectron., 2014, 51, 115-123.
[49]
Gopinath, S.C.B.; Kumaresan, R.; Awazu, K.; Fujimaki, M.; Mizuhata, M.; Tominaga, J.; Kumar, P.K.R. Evaluation of nucleic acid duplex formation on gold over layers in biosensor fabricated using Czochralski-Grown single-crystal silicon substrate. Anal. Bioanal. Chem., 2010, 398, 751-758.
[50]
Brenneman, K.L.; Sen, B.; Stroscio, M.A.; Dutta, M. Aptamer-based optical bionano sensor for mercury(II) ions. 2010 IEEE Nanotechnology Materials and Devices Conference, Monterey, CA, USA2010, pp. 221-224.
[51]
Liu, F.; Zhang, J.; Chen, R.; Chen, L.; Deng, L. Highly effective colorimetric and visual detection of ATP by a DNAzyme-aptamer sensor. Chem. Biodivers., 2011, 8, 311-316.
[52]
Thévenod, F. Nephrotoxicity and the proximal tubule: Insights from cadmium. Nephron, Physiol., 2003, 93(4), 87-93.
[53]
Prozialeck, W.C.; Edwards, J.R. Mechanisms of cadmium-induced proximal tubule injury: New insights with implications for biomonitoring and therapeutic interventions. J. Pharmacol. Exp. Ther., 2012, 343, 2-12.
[54]
Zorrig, W.; Rouached, A.; Shahzad, Z.; Abdelly, C.; Davidian, J.C.; Berthomieu, P. Identification of three relationships linking cadmium accumulation to cadmium tolerance and zinc and citrate accumulation in lettuce. J. Plant Physiol., 2010, 167, 1239-1247.
[55]
Ling, T.; Jun, R.; Fangke, Y. Effect of cadmium supply levels to cadmium accumulation by salix. Int. J. Environ. Sci. Technol., 2011, 8(3), 493-500.
[56]
El Muayed, M.; Raja, M.R.; Zhang, X.; MacRenaris, K.W.; Bhatt, S.; Chen, X.; Urbanek, M.; O’Halloran, T.V.; Lowe, W.L. Accumulation of cadmium in insulin-producing β cells. Islets, 2012, 4, 405-416.
[57]
McCormick, J.A.; Ellison, D.H. Distal convoluted tubule. Compr. Physiol., 2015, 5, 45-98.
[58]
Kovacs, G.; Montalbetti, N.; Franz, M.C.; Graeter, S.; Simonin, A.; Hediger, M.A. Human TRPV5 and TRPV6: Key players in cadmium and zinc toxicity. Cell Calcium, 2013, 54, 276-286.
[59]
Dirks, J.H. The kidney and magnesium regulation. Kidney Int., 1983, 23, 771-777.
[60]
Barbier, O.; Jacquillet, G.; Tauc, M.; Cougnon, M.; Poujeol, P. Effect of heavy metals on, and handling by, the kidney. Nephron, Physiol., 2005, 99(4), 105-110.
[61]
Iqbal, K.; Asmat, M. Uses and effects of mercury in medicine and dentistry. J. Ayub Med. Coll. Abbottabad, 2012, 24, 204-207.
[62]
Wong, M.K.; Tan, P.; Wee, Y.C. Heavy metals in some chinese herbal plants. Biol. Trace Elem. Res., 1993, 36, 135-142.
[63]
Genuis, S.J.; Schwalfenberg, G.; Siy, A.K.J.; Rodushkin, I. Toxic element contamination of natural health products and pharmaceutical preparations. PLoS One, 2012, 7(11)e49676
[64]
Zalups, R. Molecular interactions with mercury in the kidney. Pharmacol. Rev., 2000, 52, 113-143.
[65]
Barnett, L.M.A.; Cummings, B.S. Nephrotoxicity and renal pathophysiology: A contemporary perspective. Toxicol. Sci., 2018, 164, 379-390.
[66]
Xiao, W.; Xiao, M.; Fu, Q.; Yu, S.; Shen, H.; Bian, H.; Tang, Y. A portable smart-phone readout device for the detection of mercury contamination based on an aptamer-assay nanosensor. Sensors (Switzerland), 2016, 16, 1871.
[67]
Orr, S.E.; Bridges, C.C. Chronic kidney disease and exposure to nephrotoxic metals. Int. J. Mol. Sci., 2017, 18E1039
[68]
Hac, E.; Krechniak, J. Mercury content in human kidney and hair. Toxicol. Lett., 1996, 88, 56-57.
[69]
Li, L.; Li, B.; Qi, Y.; Jin, Y. Label-free aptamer-based colorimetric detection of mercury ions in aqueous media using unmodified gold nanoparticles as colorimetric probe. Anal. Bioanal. Chem., 2009, 393, 2051-2057.
[70]
An, J.H.; Park, S.J.; Kwon, O.S.; Bae, J.; Jang, J. High-performance flexible graphene aptasensor for mercury detection in mussels. ACS Nano, 2013, 7, 10563-10571.
[71]
Helwa, Y.; Dave, N.; Froidevaux, R.; Samadi, A.; Liu, J. Aptamer-functionalized hydrogel microparticles for fast visual detection of mercury(II) and adenosine. ACS Appl. Mater. Interfaces, 2012, 4(4), 2228-2233.
[72]
Lin, Y.W.; Liu, C.W.; Chang, H.T. Fluorescence detection of mercury(II) and lead(II) ions using aptamer/reporter conjugates. Talanta, 2011, 84, 324-329.
[73]
Gopinath, S.C.B.; Tang, T.H.; Chen, Y.; Citartan, M.; Lakshmipriya, T. Bacterial detection: From microscope to smartphone. Biosens. Bioelectron., 2014, 60, 332-342.
[74]
Kumar, P.; Kumar, A.; Lead, J.R. Nanoparticles in the Indian environment: Known, unknowns and awareness. Environ. Sci. Technol., 2012, 46(13), 7071-7072.
[75]
Prasad, A.; Lead, J.R.; Baalousha, M. An electron microscopy based method for the detection and quantification of nanomaterial number concentration in environmentally relevant media. Sci. Total Environ., 2015, 537, 479-486.
[76]
Arduini, F.; Calvo, J.Q.; Palleschi, G.; Moscone, D.; Amine, A. Bismuth-modified electrodes for lead detection. Trends Analyt. Chem., 2010, 29(11), 1295-1304.
[77]
Baalousha, M.; Stolpe, B.; Lead, J.R. Flow field-flow fractionation for the analysis and characterization of natural colloids and manufactured nanoparticles in environmental systems: A critical review. J. Chromatogr. A, 2011, 1218(27), 4078-4103.
[78]
Sikder, M.; Lead, J.R.; Chandler, G.T.; Baalousha, M. A rapid approach for measuring silver nanoparticle concentration and dissolution in seawater by UV–Vis. Sci. Total Environ., 2018, 618, 597-607.
[79]
Yang, D.; Liu, X.; Zhou, Y.; Luo, L.; Zhang, J.; Huang, A.; Mao, Q.; Chen, X.; Tang, L. Aptamer-based biosensors for detection of lead(II) ion: A review. Anal. Methods, 2017, 9, 1976-1990.
[80]
Meshik, X.; Xu, K.; Dutta, M.; Stroscio, M.A. Optical detection of lead and potassium ions using a quantum-dot-based aptamer nanosensor. IEEE Trans. Nanobioscience, 2014, 13, 161-164.
[81]
Wang, Y.M.; Zhang, H.; Xiong, Y.T.; Zhu, Q.; Ding, Y.C.; Zhao, S.; Zhang, X.H.; Uchimiya, M.; Yuan, X.Y. Leaf aging effects on copper and cadmium transfer along the lettuce-snail food chain. Chemosphere, 2018, 211, 81-88.
[82]
Kellen, E.; Zeegers, M.P.; Hond, E.D.; Buntinx, F. Blood cadmium may be associated with bladder carcinogenesis: The Belgian case-control study on bladder cancer. Cancer Detect. Prev., 2007, 31, 77-82.
[83]
Kollárová, K.; Vatehová, Z.; Kučerová, D.; Lišková, D. Cadmium impact, accumulation and detection in poplar callus cells. Environ. Sci. Pollut. Res., 2017, 24, 15340-15346.
[84]
Goyer, R.A. Mechanisms of lead and cadmium nephrotoxicity. Toxicol. Lett., 1989, 46, 153-162.
[85]
Klaassen, C.D.; Liu, J.; Diwan, B.A. Metallothionein protection of cadmium toxicity. Toxicol. Appl. Pharmacol., 2009, 238(3), 215-220.
[86]
Qian, Q.M.; Wang, Y.S.; Yang, H.X.; Xue, J.H.; Liu, L.; Zhou, B.; Wang, J.C.; Yin, J.C.; Wang, Y.S. Colorimetric detection of metallothioneins using a thymine-rich oligonucleotide-Hg complex and gold nanoparticles. Anal. Biochem., 2013, 436, 45-52.
[87]
Charles, S.; Dubois, F.; Yunus, S.; Vander Donckt, E. Determination by fluorescence spectroscopy of cadmium at the subnanomolar level: Application to seawater. J. Fluoresc., 2000, 10, 99-105.
[88]
Wang, J.; Liu, G.; Polsky, R.; Merkoçi, A. Electrochemical stripping detection of DNA hybridization based on cadmium sulfide nanoparticle tags. Electrochem. Commun., 2002, 4, 722-726.
[89]
Karthikeyan, S.; Hirata, S. Arsenic speciation in environmental samples. Anal. Lett., 2003, 36, 2355-2366.
[90]
Chandra, S.; Saha, R.; Pal, P. Assessment of arsenic toxicity and tolerance characteristics of bean plants (Phaseolus vulgaris) exposed to different species of arsenic. J. Plant Nutr., 2018, 41, 340-347.
[91]
Olson, M.J. Arsenic: Detection; Management Strategies and Health Effects, 2014.
[92]
Figoli, A.; Cassano, A.; Criscuoli, A.; Mozumder, M.S.I.; Uddin, M.T.; Islam, M.A.; Drioli, E. Influence of operating parameters on the arsenic removal by nanofiltration. Water Res., 2010, 44, 97-104.
[93]
Zheng, L.; Kuo, C-C.; Fadrowski, J.; Agnew, J.; Weaver, V.M.; Navas-Acien, A. Arsenic and chronic kidney disease: A systematic review. Curr. Environ. Health Rep., 2014, 1, 192-207.
[94]
Moghimi, N.; Mohapatra, M.; Leung, K.T. Bimetallic nanoparticles for arsenic detection. Anal. Chem., 2015, 87, 5546-5552.
[95]
Agir, S.K.; Kundu, M. Detection and Quantification of Arsenic in Water Using Electronic Tongue. In: 2016 IEEE 1st International Conference on Control, Measurement and Instrumentation, CMI, Kolkata, India, 2016, 424-428.
[96]
Taghdisi, S.M.; Danesh, N.M.; Ramezani, M.; Sarreshtehdar Emrani, A.; Abnous, K. A simple and rapid fluorescent aptasensor for ultrasensitive detection of arsenic based on target-induced conformational change of complementary strand of aptamer and silica nanoparticles. Sens. Actuators B Chem., 2018, 256, 472-478.
[97]
Vega-Figueroa, K.; Santillán, J.; Ortiz-Gómez, V.; Ortiz-Quiles, E.O. uiñones-Colón, B.A.; Castilla-Casadiego, D.A.; Almodóvar, J.; Bayro, M.J.; Rodríguez-Martínez, J.A.; Nicolau, E. Aptamer-based impedimetric assay of arsenite in water: Interfacial properties and performance. ACS Omega, 2018, 3, 1437-1444.
[98]
Perumal, V.; Saheed, M.S.M.; Mohamed, N.M.; Saheed, M.S.M.; Murthe, S.S.; Gopinath, S.C.B.; Chiu, J-M. Gold nanorod embedded novel 3D graphene nanocomposite for selective bio-capture in rapid detection of Mycobacterium tuberculosis. Biosens. Bioelectron., 2018, 116, 116-122.
[99]
Ong, C.C.; Gopinath, S.C.B.; Rebecca, L.W.X.; Perumal, V.; Lakshmipriya, T.; Saheed, M.S.M. Diagnosing human blood clotting deficiency. Int. J. Biol. Macromol., 2018, 116, 765-773.
[100]
Taghdisi, S.M.; Emrani, S.S.; Tabrizian, K.; Ramezani, M.; Abnous, K.; Emrani, A.S. Ultrasensitive detection of lead (II) based on fluorescent aptamer-functionalized carbon nanotubes. Environ. Toxicol. Pharmacol., 2014, 37, 1236-1242.
[101]
Wu, Y.; Zhan, S.; Wang, L.; Zhou, P. Selection of a DNA aptamer for cadmium detection based on cationic polymer mediated aggregation of gold nanoparticles. Analyst, 2014, 139, 1550-1561.
[102]
Zhan, S.; Yu, M.; Lv, J.; Wang, L.; Zhou, P. Colorimetric detection of trace arsenic(III) in aqueous solution using arsenic aptamer and gold nanoparticles. Aust. J. Chem., 2014, 67, 813-818.
[103]
Luan, Y.; Lu, A.; Chen, J.; Fu, H.; Xu, L. A label-free aptamer-based fluorescent assay for cadmium detection. Appl. Sci., 2016, 6, 432.
[104]
Ye, B-F.; Zhao, Y-J.; Cheng, Y.; Li, T-T.; Xie, Z-Y.; Zhao, X-W.; Gu, Z-Z. Colorimetric photonic hydrogel aptasensor for the screening of heavy metal ions. Nanoscale, 2012, 4, 5998.
[105]
Wang, H.Y.; Song, Z.Y.; Zhang, H.S.; Chen, S.P. Single-molecule analysis of lead(II)-binding aptamer conformational changes in an α-hemolysin nanopore, and sensitive detection of lead(II). Mikrochim. Acta, 2016, 183, 1003-1010.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy