Generic placeholder image

Current Computer-Aided Drug Design

Editor-in-Chief

ISSN (Print): 1573-4099
ISSN (Online): 1875-6697

Research Article

Comparative Docking Studies: A Drug Design Tool for Some Pyrazine- Thiazolidinone Based Derivatives for Anti-HIV Activity

Author(s): Kalyani Dhirendra Asgaonkar*, Shital Manoj Patil*, Trupti Sameer Chitre, Vaibhav Nanabhau Ghegade, Saurabh Radhaji Jadhav, Sajid Shaukat Sande and Atharva Sudhakar Kulkarni

Volume 15, Issue 3, 2019

Page: [252 - 258] Pages: 7

DOI: 10.2174/1573409915666181219125944

Price: $65

Abstract

Background: Acquired immunodeficiency Syndrome (AIDS) is caused by Human immunodeficiency virus type 1 (HIV-1). Pyrazine and Thiazolidinone pharmacophore has diverse biological activities including anti HIV activity.

Aims and Objectives: To study binding behavior of Pyrazine- thiazolidinone derivatives on four different crystal structures of HIV- 1RT.These molecules which were already reported as anti-TB were investigated for dual activity as Anti-HIV and Anti-TB.

Materials and Methods: In the present study we describe a comparative docking study of twentythree derivatives of N-(4-oxo-2 substituted thiazolidin-3-yl) pyrazine-2-carbohydrazide. Binding pattern of these derivatives was gauged by molecular docking studies on four different receptors bearing PDB code 1ZD1, 1RT2, 1FKP and 1FK9 of HIV–RT enzyme using V. Life MDS software Genetic algorithm docking method.

Result and Discussion: The studies revealed hydrogen bonds, hydrophobic interaction and pi-pi interactions playing significant role in binding of the molecules to the enzyme.

Conclusion: Most of the molecules have shown good dock score and binding energy with anti-HIV receptors but Molecules 13 and 14 have potential to act as anti-tubercular and Anti HIV and hence can be further explored for dual activity.

Keywords: Docking, pyrazine, thiazolidinone, anti-HIV, NNRTI, HIV-RT.

Graphical Abstract

[1]
WHO HIV report, 2017.
[2]
Jain, V.; Gupta, D.; Pareek, A.; Ratan, Y. Novel second generation HIV integrase inhibitor-DOLUTEGRAVIR: An emerging weapon against HIV. Lett. Drug Des. Discov., 2017, 14(3), 354-371.
[3]
Alexandrova, L.; Zicari, S.; Matyugina, E.; Khandazhinskaya, A.; Smirnova, T.; Andreevskaya, S.; Chernousova, L.; Vanpouille, C.; Kochetkov, S.; Margolis, L. Dual-targeted anti-TB/anti-HIV heterodimers. Antiviral Res., 2017, 145, 175-183.
[4]
Pawlowski, A.; Jansson, M.; Skold, M.; Rottenberg, M.E.; Kallenius, G. Tuberculosis and HIV co-infection. PLoS Pathog., 2012, 8(2), e1002464.
[5]
Patil, S.M.; Asgaonkar, K.D.; Chitre, T.S.; Kinikar, A.; Kharat, C.; Bhoirekar, V.; Athavale, M.; Katkar, M. Comparative study of various non-nucleoside reverse transcriptase inhibitors on different reverse transcriptase enzyme. Indian J. Pharma. Edu. Res, 2017, 51(4S), S722-S728.
[6]
Pawar, V.; Lokwani, D.; Bhandari, S.; Mitra, D.; Bothara, K.; Madgulkar, A. Design of potential reverse transcriptase inhibitor containing Isatin nucleus using molecular modeling studies. Bioorg. Med. Chem., 2010, 18, 3198-3211.
[7]
Huang, B.; Lin, C.; Chen, W.; Liu, T.; Yu, M.; Fu, L.; Sun, Y.; Liu, H.; De Clercq, E.; Pannecouque, C.; Balzarini, J.; Zhan, P.; Liu, X. Fused heterocycles bearing bridgehead nitrogen as potent HIV-1 NNRTIs. Part 4: Design, synthesis and biological evaluation of novel imidazo[1,2-a] pyrazines. Eur. J. Med. Chem., 2015, 93(26), 330-337.
[8]
Viira, B.; García-Sosa, A.T.; Maran, U. Chemical structure and correlation analysis of HIV-1 NNRT and NRT inhibitors and database-curated, published inhibition constants with chemical structure in diverse datasets. J. Mol. Graph. Model., 2017, 76, 205-223.
[9]
Suryawanshi, R.; Jadhav, S.; Makwana, N.; Desai, D.; Chaturbhuj, D.; Sonawani, A.; Idicula-Thomas, S.; Murugesan, V.; Katti, S.B.; Tripathy, S.; Paranjape, R.; Kulkarni, S. Evaluation of 4-thiazolidinone derivatives as potential reverse transcriptase inhibitors against HIV-1 drug resistant strains. Bioorg. Chem., 2017, 71, 211-218.
[10]
Tripathi, A.C.; Gupta, S.J.; Fatima, G.N.; Sonara, P.K.; Verma, A.; Saraf, S.K. 4-Thiazolidinones: The advances continue. Eur. J. Med. Chem., 2014, 72(24), 52-77.
[11]
Rawal, R.K.; Solomon, V.R.; Prabhakar, Y.S.; Katti, S.B.; De Clercq, E. Synthesis and QSAR studies on thiazolidinones as anti-HIV agents. Comb. Chem. High Throughput Screen., 2005, 8(5), 439-443.
[12]
Shaveta; Sahil, M.S.; Singh, P. Hybrid molecules: The privileged scaffolds for various pharmaceuticals. Eur. J. Med. Chem., 2016, 124, 500-536.
[13]
Chander, S.; Penta, A.; Singh, R.P.; Jha, P.N.; Zheng, Y.; Wang, P.; Murugesan, S. Rational design, synthesis, anti-HIV-1 RT and anti-microbial activity of novel 2-(6,7-dimethoxy-3,4-dihydroisoquinolin-2(1H)-yl)-N-phenylpropanamide derivatives. Anti-Inf. Agts, 2016, 14(1), 63-73.
[14]
Tiwari, S.V.; Nikalje, A.P.G.; Lokwani, D.K.; Sarkate, A.P.; Jamir, K. Synthesis, biological evaluation, molecular docking study and acute oral toxicity study of coupled imidazole-pyrimidine derivatives. Lett. Drug Des. Discov., 2018, 15(5), 475-487.
[15]
Meng, X. Zhang. H.; Mezei, M.; Cui, M. Molecular docking: A powerful approach for structure-based drug discovery. Curr. Comp. Aided Drug Design, 2011, 7(2), 146-157.
[16]
Khan, I.H.; Patel, N.B.; Patel, V.N. Synthesis, in silico molecular docking and pharmacokinetic studies, in vitro antimycobacterial and antimicrobial studies of new imidozolones clubbed with thiazolidinedione. Curr. Comp. Aided Drug Design, 2018, 14(4), 269-283.
[17]
Dubey, K.D.; Tiwari, R.K.; Ojha, P. Recent advances in protein-ligand interactions: molecular dynamics simulations and binding free energy. Curr. Comp. Aided Drug Design., 2013, 9(4), 518-531.
[18]
Chitre, T.S.; Asgaonkar, K.D.; Miniyar, P.B.; Dharme, A.B.; Arkile, M.A.; Yeware, A.; Khedkar, V.M.; Jha, P.C.; Sarkar, D. Synthesis and docking studies of pyrazine–thiazolidinone hybrid scaffold targeting dormant tuberculosis. Bioorg. Med. Chem. Lett., 2016, 26, 2224-2228.
[19]
V-Life Sciences Technologies Pvt. Ltd. manual.
[20]
Noolvi, M.N.; Patel, H.M. A comparative QSAR analysis and molecular docking studies of quinazoline derivatives as tyrosine kinase (EGFR) inhibitors: A rational approach to anticancer drug design. J. Saudi Chem. Soc., 2013, 17, 361-379.
[21]
Menghani, S.; Kerzare, D.; Rarokar, N.; Khedekar, P. Molecular docking, synthesis and evaluation of antianxiety and anticonvulsant potential of some novel 3-(substituted benzylidene)- 5-phenyl-7-nitro-1, 3-dihydro-1H, 3H-1,4-Benzodiazepine-2-one. Am. J. Pharm. Tech. Res, 2016, 6(6), 185-199.
[22]
Sankpal, S.; Choudhari, P.; Kumbhar, S.; Phalle, S.; Deshmukh, M. One pot synthesis and docking study of some tetrahydrobenzo[b]pyran derivatives as extended spectrum class lactamase inhibitors for urinary tract infection. Thai. J. Pharm. Sci., 2016, 40(3), 190-193.
[23]
Motiejunas, D.; Wade, R.C. Computer-Assisted drug design. Compreh. Medi. Chemi., 2007, 4, 193-213.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy