[1]
Supuran, C.T. Carbonic anhydrases: Novel therapeutic applications for inhibitors and activators. Nat. Rev. Drug Discov., 2008, 7, 168-181.
[2]
Scozzafava, A.; Mastrolorenzo, A.; Supuran, C.T. Carbonic anhydrase inhibitors and activators and their use in therapy. Expert Opin. Ther. Pat., 2006, 16, 1627-1664.
[3]
Supuran, C.T.; Scozzafava, A.; Casini, A. Carbonic anhydrase inhibitors. Med. Res. Rev., 2003, 23, 146-189.
[4]
Supuran, C.T. In: Drug design of zinc-enzyme inhibitors: Functional,
structural, and disease applications,, Eds. Claudiu T. Supuran
and Jean-Yves Winum, John Wiley & Sons, Inc., Hoboken,
New Jersey,. 2009, 14-38.
[5]
Gao, B.B.; Clermont, A.; Rook, S.; Fonda, S.J.; Srinivasan, V.J.; Wojtkowski, M.; Fujimoto, J.G.; Avery, R.L.; Arrigg, P.G.; Bursell, S.E.; Aiello, L.P.; Feener, E.P. Extracellular carbonic anhydrase mediates hemorrhagic retinal and cerebral vascular permeability through prekallikrein activation. Nat. Med., 2007, 13, 181-188.
[6]
Mincione, F.; Scozzafava, A.; Supuran, C.T. The development of topically acting carbonic anhydrase inhibitors as antiglaucoma agents. Curr. Pharm. Des., 2008, 14, 649-654.
[7]
Supuran, C.T. Diuretics: From classical carbonic anhydrase inhibitors to novel applications of the sulfonamides. Curr. Pharm. Des., 2008, 14, 641-648.
[8]
Hen, N.; Bialer, M.; Yagen, B.; Maresca, A.; Aggarwal, M.; Robbins, A.H.; Supuran, C.T. Anticonvulsant 4-aminobenzenesulfonamide derivatives with branched-alkylamide moieties: X-ray crystallography and inhibition studies of human carbonic anhydrase isoforms I, II, VII, and XIV. J. Med. Chem., 2011, 54, 3977-3981.
[9]
De Simone, G.; Scozzafava, A.; Supuran, C.T. Which carbonic anhydrases are targeted by the antiepileptic sulfonamides and sulfamates? Chem. Biol. Drug Des., 2009, 74, 317-321.
[10]
Basnyat, B.; Gertsch, J.H.; Johnson, E.W.; Castro-Marin, F.; Inoue, Y.; Yeh, C. Efficacy of low-dose acetazolamide (125 mg BID) for the prophylaxis of acute mountain sickness: A prospective, double-blind, randomized, placebo-controlled trial. High Alt. Med. Biol., 2003, 4, 45-52.
[11]
Swenson, E.R.; Teppema, L.J. Prevention of acute mountain sickness by acetazolamide: As yet an unfinished story. J. Appl. Physiol., 2007, 102, 1305-1307.
[12]
Sugrue, M.F. Pharmacological and ocular hypotensive properties of topical carbonic anhydrase inhibitors. Prog. Retin. Eye Res., 2000, 19, 87-112.
[13]
Alterio, V.; Di Fiore, A.; D’Ambrosio, K.; Supuran, C.T.; De Simone, G. Multiple binding modes of inhibitors to carbonic anhydrases: How to design specific drugs targeting 15 different isoforms? Chem. Rev., 2012, 112, 4421-4468.
[14]
Vu, H.; Pham, N.B.; Quinn, R.J. Direct screening of natural product extracts using mass spectrometry. J. Biomol. Screen., 2008, 13, 265-275.
[15]
Maresca, A.; Temperini, C.; Vu, H.; Pham, N.B.; Poulsen, S.A.; Scozzafava, A.; Supuran, C.T. Non-zinc mediated inhibition of carbonic anhydrases: Coumarins are a new class of suicide inhibitors. J. Am. Chem. Soc., 2009, 131, 3057-3062.
[16]
Maresca, A.; Temperini, C.; Pochet, L.; Masereel, B.; Scozzafava, A.; Supuran, C.T. Deciphering the mechanism of carbonic anhydrase inhibition with coumarins and thiocoumarins. J. Med. Chem., 2009, 53, 335-344.
[17]
Maresca, A.; Supuran, C.T. Coumarins incorporating hydroxy-and chloro-moieties selectively inhibit the transmembrane, tumor-associated carbonic anhydrase isoforms IX and XII over the cytosolic ones I and II. Bioorg. Med. Chem. Lett., 2010, 20, 4511-4514.
[18]
Tars, K.; Vullo, D.; Kazaks, A.; Leitans, J.; Lends, A.; Grandane, A.; Supuran, C.T. Sulfocoumarins (1, 2-benzoxathiine-2, 2-dioxides): A class of potent and isoform-selective inhibitors of tumor-associated carbonic anhydrases. J. Med. Chem., 2013, 56, 293-300.
[19]
Maresca, A.; Scozzafava, A.; Supuran, C.T. 7, 8-Disubstituted-but not 6,7-disubstituted coumarins selectively inhibit the transmembrane, tumor-associated carbonic anhydrase isoforms IX and XII over the cytosolic ones I and II in the low nanomolar/subnanomolar range. Bioorg. Med. Chem. Lett., 2010, 20, 7255-7258.
[20]
Wagner, J.; Avvaru, B.S.; Robbins, A.H.; Scozzafava, A.; Supuran, C.T.; McKenna, R. Coumarinyl-substituted sulfonamides strongly inhibit several human carbonic anhydrase isoforms: Solution and crystallographic investigations. Bioorg. Med. Chem., 2010, 18, 4873-4878.
[21]
Tanc, M.; Carta, F.; Bozdag, M.; Scozzafava, A.; Supuran, C.T. 7-Substituted-sulfocoumarins are isoform-selective, potent carbonic anhydrase II inhibitors. Bioorg. Med. Chem., 2013, 21, 4502-4510.
[22]
Gaussian 03; Revision C.02; Frisch, M. J.; Trucks, G.W.; Schlegel,
H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Montgomery,
Jr. J.A.; Vreven, T.; Kudin, K.N.; Burant, J.C.; Millam, J.M.;
Iyengar, S.S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.;
Scalmani, G.; Rega, N.; Petersson, G.A.; Nakatsuji, H.; Hada, M.;
Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.;
Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li.; X.;
Knox, J.E.; Hratchian, H.P.; Cross, J.B.; Bakken, V.; Adamo, C.;
Jaramillo, J.; Gomperts, R.; Stratmann, R.E.; Yazyev, O.; Austin,
A.J.; Cammi, R.; Pomelli, C.; Ochterski, J.W.; Ayala, P.Y.;
Morokuma, K.; Voth, G.A.; Salvador, P.; Dannenberg, J.J.;
Zakrzewski, V.G.; Dapprich, S.; Daniels, A.D.; Strain, M.C.; Farkas,
O.;Malick, D.K.; Rabuck, A.D.; Raghavachari, K.; Foresman,
J.B.; Ortiz, J.V.; Cui, Q.; Baboul, A.G.; Clifford, S.; Cioslowski, J.;
Stefanov, B.B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.;
Martin, R.L.; Fox, D.J.; Keith, T.; Al-Laham, M.A.; Peng, C.Y.;
Nanayakkara, A.; Challacombe, M.; Gill, P.M.W; Johnson, B;
Chen, W; Wong, M. W; Gonzalez, C; and Pople, J. A; Gaussian;
Inc.; Wallingford CT; 2004.
[23]
Parr, R.G.; Yang, W. Density functional theory of atoms and molecules; Oxford University Press: New York, 1989.
[24]
Becke, A.D. Density‐functional thermochemistry. I. The effect of the exchange‐only gradient correction. J. Chem. Phys., 1992, 96, 2155-2160.
[25]
CODESSATM III, 12456 W, 62nd Terrace, Suite D, Shawnee, KS
66216, USA.
[26]
CODESSA™, References Manual, V. 2.13 (PC). Semichem, 7204,
Mullen, Shawnee, KS, USA, Copyright© Semichem and the University
of Florida, 2002.
[27]
Kennard, R.W.; Stone, L.A. Computer aided design of experiments. Technometrics, 1969, 11, 137-148.
[28]
Puzyn, T.; Mostrag-Szlichtyng, A.; Gajewicz, A.; Skrzyński, M.; Worth, A.P. Investigating the influence of data splitting on the predictive ability of QSAR/QSPR models. Struct. Chem., 2011, 22, 795-804.
[29]
Roy, K.; Kar, S.; Das, R.N. Statistical methods in QSAR/QSPR. In:A primer on QSAR/QSPR modeling; Springer International Publishing, 2015, pp. 37-59.
[30]
Atkinson, A.C. Plots, transformations and regression; Clarendon Press: Oxford, 1985.
[31]
Sahigara, F.; Mansouri, K.; Ballabio, D.; Mauri, A.; Consonni, V.; Todeschini, R. Comparison of different approaches to define the applicability domain of QSAR models. Molecules, 2012, 17, 4791-4810.
[32]
Murray, J.S.; Politzer, P. The electrostatic potential: An overview. WIRES Comput. Mol. Sci., 2011, 1, 153-163.
[33]
Politzer, P.; Murray, J.S.; Peralta‐Inga, Z. Molecular surface electrostatic potentials in relation to noncovalent interactions in biological systems. Int. J. Quantum Chem., 2001, 85, 676-684.
[34]
Murray, J.S.; Lane, P.; Brinck, T.; Politzer, P. Relationships between computed molecular properties and solute-solvent interactions in supercritical solutions. J. Phys. Chem., 1993, 97, 5144-5148.
[35]
Yorulmaz, N.; Oltulu, O.; Eroğlu, E. Development of selective QSAR models and molecular docking study for inhibitory activity of sulfonamide derivatives against carbonic anhydrase isoforms II and IX. J. Mol. Struct., 2018, 1163, 270-279.
[36]
Tsuneda, T.; Singh, R.K.; Chattaraj, P.K. Diagrams for comprehensive molecular orbital-based chemical reaction analyses: Reactive orbital energy diagrams. Phys. Chem. Chem. Phys., 2018, 20, 14211-14222.
[37]
Reenu, V. Role of exchange and correlation in the real external prediction of mutagenicity: Performance of hybrid and meta-hybrid exchange-correlation functionals. RSC Advances, 2015, 5, 29238-29251.
[38]
Vijayaraj, R.; Subramanian, V.; Chattaraj, P.K. Comparison of global reactivity descriptors calculated using various density functionals: A QSAR perspective. J. Chem. Theory Comput., 2009, 5, 2744-2753.
[39]
Fayet, G.; Jacquemin, D.; Wathelet, V.; Perpete, E.A.; Rotureau, P.; Adamo, C. Excited-state properties from ground-state DFT descriptors: A QSPR approach for dyes. J. Mol. Graph. Model., 2010, 28, 465-471.