[1]
Ali, I. UD-Din, R.; Saleem, K.; Enein, H.Y.; Rather, A. Social aspects of cancer genesis. Can Ther., 2011, 8, 6-14.
[2]
Ali, I.; Lone, M.N.; Al-Othman, Z.A.; Al-Warthan, A.; Sanagi, M.M. Heterocyclic scaffolds: Centrality in anticancer drug development. Curr. Drug Targets, 2015, 16(7), 711-734.
[3]
Ali, I.; Lone, M.N.; Al-Othman, Z.A.; Alwarthan, A. Insights into the pharmacology of new heterocycles embedded with oxopyrrolidine rings: DNA binding, molecular docking, and anticancer studies. J. Mol. Liq., 2017, 234, 391-402.
[4]
Ali, I.; Wani, W.A.; Haque, A.; Saleem, K. Glutamic acid and its derivatives: Candidates for rational design of anticancer drugs. Fut Med. Chem., 2013, 5(8), 961-978.
[5]
Ali, I.; Wani, W.A.; Saleem, K.; Wesselinova, D. Syntheses, DNA binding and anticancer profiles of L-glutamic acid ligand and its copper(II) and ruthenium(III) complexes. Med. Chem. Res., 2013, 22, 1386-1398.
[6]
Ali, I.; Wani, W.A.; Saleem, K.; Hsieh, M.F. Anticancer metallodrugs of glutamic acid sulphonamides: In silico, DNA binding, hemolysis and anticancer studies. RSC Adv, 2014, 4(56), 29629-29641.
[7]
Ali, I.; Haque, A.; Saleem, K.; Hsieh, M.F. Curcumin-I Knoevenagel’s condensates and their Schiff’s bases as anticancer agents: Synthesis, pharmacological and simulation studies. Bioorg. Med. Chem., 2013, 21(13), 3808-3820.
[8]
Ali, I.; Saleem, K.; Wesselinova, D.; Haque, A. Synthesis, DNA binding, hemolytic, and anti-cancer assays of curcumin I-based ligands and their ruthenium(III) complexes. Med. Chem. Res., 2013, 22(3), 1386-1398.
[9]
Ali, I.; Wani, W.A.; Saleem, K.; Haque, A. Platinum compounds: A hope for future cancer chemotherapy. Anticanc. Agents Med. Chem., 2013, 13(2), 296-306.
[10]
Haque, A.; Saleem, K.; Wani, W.A.; Ali, I. Thalidomide: A banned drug resurged into future anticancer drug. Curr. Drug Ther., 2012, 7, 13-23.
[11]
Ali, I.; Wani, W.A.; Saleem, K.; Hsieh, M.F. Design and synthesis of thalidomide based dithiocarbamate Cu(II), Ni(II) and Ru(III) complexes as anticancer agents. Polyhedron, 2013, 56, 134-143.
[12]
Saleem, K.; Wani, W.A.; Haque, A.; Milhotra, A.; Ali, I. Nanodrugs: Magic bullets in cancer chemotherapy. Topics Anti Canc. Res., 2013, 58(2), 437-494.
[13]
Ali, I.; Lone, M.N.; Suhail, M.; Mukhtar, S.D. Advances in nanocarriers for anticancer drugs delivery. Curr. Med. Chem., 2016, 23, 2159-2187.
[14]
Ali, I. Nano anti-cancer drugs: Pros and cons and future perspectives. Curr. Canc Drug Targets, 2011, 11(2), 131-134.
[15]
Ali, I. Natural products: Human friendly anti-cancer medications. Egyp. Pharm. J., 2010, 9, 133-179.
[16]
Kentepozidis, N.; Economopoulou, P.; Christofyllakis, C.; Chelis, L.; Polyzos, A.; Vardakis, N.; Koinis, F.; Vamvakas, L.; Katsaounis, P.; Kalbakis, K.; Nikolaou, C.; Georgoulias, V.; Kotsakis, A. Salvage treatment with irinotecan/cisplatin versus pemetrexed/cisplatin in patients with non-small cell lung cancer pre-treated with a non-platinum-based regimen in the first-line setting: a randomized phase II study of the Hellenic Oncology Research Group (HORG). Clin. Transl. Oncol., 2017, 19(3), 317-325.
[17]
Karthaus, M.; Ballo, H.; Abenhardt, W.; Steinmetz, T.; Geer, T.; Schimke, J.; Braumann, D.; Behrens, R.; Behringer, D.; Kindler, M.; Messmann, H.; Boeck, H.P.; Greinwald, R.; Kleeberg, U. Prospective, double-blind, placebo-controlled, multicenter, randomized phase III study with orally administered budesonide for prevention of irinotecan (CPT-11)-induced diarrhea in patients with advanced colorectal cancer. Oncology, 2005, 68(4-6), 326-332.
[18]
Verbiest, V.; Montaudon, D.; Tautu, M.T.; Moukarzel, J.; Portail, J.P.; Markovits, J.; Robert, J.; Ichas, F.; Pourquier, P. Protein arginine (N)-methyl transferase 7 (PRMT7) as a potential target for the sensitization of tumor cells to camptothecins. FEBS Lett., 2008, 582(10), 1483-1489.
[19]
Mattern, M.R.; Mong, S.M.; Bartus, H.F.; Mirabelli, C.K.; Crooke, S.T.; Johnson, R.K. Relationship between the intracellular effects of camptothecin and the inhibition of DNA topoisomerase I in cultured L1210 cells. Canc Res., 1987, 47(7), 1793-1798.
[20]
Mazzini, S.; Bellucci, M.C.; Dallavalle, S.; Fraternali, F.; Mondelli, R. Mode of binding of camptothecins to double helix oligonucleotides. Org. Biomol. Chem., 2004, 2(4), 505-513.
[21]
Yanai, M.; Makino, H.; Ping, B.; Takeda, K.; Tanaka, N.; Sakamoto, T.; Yamaguchi, K.; Kodani, M.; Yamasaki, A.; Igishi, T.; Shimizu, E. DNA-PK inhibition by NU7441 enhances chemosensitivity to topoisomerase inhibitor in non-small cell lung carcinoma cells by blocking DNA damage repair. Yonago Acta Med., 2017, 60(1), 9-15.
[22]
Samori, C.; Guerrini, A.; Varchi, G.; Fontana, G.; Bombardelli, E.; Tinelli, S.; Beretta, G.L.; Basili, S.; Moro, S.; Zunino, F.; Battaglia, A. Semisynthesis, biological activity, and molecular modeling studies of C-ring-modified camptothecins. J. Med. Chem., 2009, 52(4), 1029-1039.
[23]
Xu, C.; Barchet, T.M.; Mager, D.E. Quantitative structure-property relationships of camptothecins in humans. Canc Chemother. Pharmacol., 2010, 65(2), 325-333.
[24]
Peng, G.; Lei, Z.; Jiale, W.; Puhai, W.; Li, S.; Shengtao, Y. The synthesis and antitumor activity of 20(S)-O-substituted benzoyl 7-ethylcamptothecin compounds. Chin. J. Synthetic Chem., 2012, 20, 137-142.
[25]
Li, H.; Sun, L.; Li, H.; Lv, X.; Semukunzi, H.; Li, R.; Yu, J.; Yuan, S.; Lin, S. DT-13 synergistically enhanced vinorelbine-mediated mitotic arrest through inhibition of FOXM1-BICD2 axis in non-small-cell lung cancer cells. Cell Death Dis., 2017, 8(5)e2810
[26]
Wang, X.; Wang, H.; Zhang, C.; Zhang, K. Experimental study on inhibition of S180 tumor cells by Agrimonia pilosa extract. Afr. J. Trad. Comp. Altern. Med., 2013, 10(3), 475-479.
[27]
Du, H.; Liu, Y.; Chen, X.; Yu, X.; Hou, X.; Li, H.; Zhan, M.; Lin, S.; Lu, L.; Yuan, S.; Sun, L. DT-13 synergistically potentiates the sensitivity of gastric cancer cells to topotecan via cell cycle arrest in vitro and in vivo. Eur. J. Pharmacol., 2018, 818, 124-131.
[28]
Glisson, B.S.; Ross, W.E. DNA topoisomerase II: A primer on the enzyme and its unique role as a multidrug target in cancer chemotherapy. Pharmacol. Ther., 1987, 32(2), 89-106.
[29]
Turinetto, V.; Pardini, B.; Allione, A.; Fiorito, G.; Viberti, C.; Guarrera, S.; Russo, A.; Anglesio, S.; Ruo Redda, M.G.; Casetta, G.; Cucchiarale, G.; Destefanis, P.; Oderda, M.; Gontero, P.; Rolle, L.; Frea, B.; Vineis, P.; Sacerdote, C.; Giachino, C.; Matullo, G. H2AX phosphorylation level in peripheral blood mononuclear cells as an event-free survival predictor for bladder cancer. Mol. Carcinog., 2016, 55(11), 1833-1842.
[30]
Georgieva, M.; Rashydov, N.M.; Hajduch, M. DNA damage, repair monitoring and epigenetic DNA methylation changes in seedlings of Chernobyl soybeans. DNA Repair., 2017, 50, 14-21.
[31]
Weimer, A.K.; Biedermann, S.; Schnittger, A. Specialization of CDK regulation under DNA damage. Cell Cyc, 2017, 16(2), 143-144.
[32]
Zhang, Y.; Zhang, R.; Ding, X.; Peng, B.; Wang, N.; Ma, F.; Peng, Y.; Wang, Q.; Chang, J. FNC efficiently inhibits mantle cell lymphoma growth. PloS One, 2017, 12(3)e0174112
[33]
Chen, H.; Zeng, X.; Gao, C.; Ming, P.; Zhang, J.; Guo, C.; Zhou, L.; Lu, Y.; Wang, L.; Huang, L.; He, X.; Mei, L. A new arylbenzofuran derivative functions as an anti-tumour agent by inducing DNA damage and inhibiting PARP activity. Sci. Rep., 2015, 5, 10893.
[34]
Hamdan, M.; Jones, K.T.; Cheong, Y.; Lane, S.I. The sensitivity of the DNA damage checkpoint prevents oocyte maturation in endometriosis. Sci. Rep., 2016, 6, 36994.
[35]
Shigetomi, H.; Oonogi, A.; Tsunemi, T.; Tanase, Y.; Yamada, Y.; Kajihara, H.; Yoshizawa, Y.; Furukawa, N.; Haruta, S.; Yoshida, S.; Sado, T.; Oi, H.; Kobayashi, H. The role of components of the chromatin modification machinery in carcinogenesis of clear cell carcinoma of the ovary (Review). Oncol. Lett., 2011, 2(4), 591-597.
[36]
Khanna, K.K.; Jackson, S.P. DNA double-strand breaks: Signaling, repair and the cancer connection. Nat. Genet., 2001, 27(3), 247-254.
[37]
Carroll, B.; Donaldson, J.C.; Obeid, L. Sphingolipids in the DNA damage response. Adv. Biol. Regul., 2015, 58, 38-52.
[38]
Martin, J.S.; Winkelmann, N.; Petalcorin, M.I.; McIlwraith, M.J.; Boulton, S.J. RAD-51-dependent and -independent roles of a Caenorhabditis elegans BRCA2-related protein during DNA double-strand break repair. Mol. Cell. Biol., 2005, 25(8), 3127-3139.
[39]
Ewald, B.; Sampath, D.; Plunkett, W. ATM and the Mre11-Rad50-Nbs1 complex respond to nucleoside analogue-induced stalled replication forks and contribute to drug resistance. Canc Res., 2008, 68(19), 7947-7955.
[40]
Zhao, W.T.; Wang, Y.T.; Huang, Z.W.; Fang, J. BRCA2 affects the efficiency of DNA double-strand break repair in response to N-nitroso compounds with differing carcinogenic potentials. Oncol. Lett., 2013, 5(6), 1948-1954.
[41]
Aikemu, A.; Umar, A.; Yusup, A.; Upur, H.; Berke, B.; Begaud, B.; Moore, N. Immunomodulatory and antitumour effects of abnormal Savda Munziq on S180 tumour-bearing mice. BMC Complement. Altern. Med., 2012, 12, 157.