[1]
Almeida JG, Preto AJ, Koukos PI, Bonvin A, Moreira IS. Membrane proteins structures: A review on computational modeling tools. Biochim Biophys Acta 2017; 1859(10): 2021-39.
[2]
Gromiha MM, Ou YY. Bioinformatics approaches for functional annotation of membrane proteins. Brief Bioinform 2014; 15(2): 155-68.
[3]
Uhlen M, Fagerberg L, Hallstrom BM, et al. Proteomics. Tissue-based map of the human proteome. Sci 2015; 347(6220): 1260419.
[4]
Krogh A, Larsson B, von Heijne G, Sonnhammer EL. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 2001; 305(3): 567-80.
[5]
Koopmans T, Gosens R. Revisiting asthma therapeutics: focus on WNT signal transduction. Drug Discov Today 2018; 23(1): 49-62.
[6]
Roth BL, Sheffler DJ, Kroeze WK. Magic shotguns versus magic bullets: selectively non-selective drugs for mood disorders and schizophrenia. Nat Rev Drug Discov 2004; 3(4): 353-9.
[7]
Richards JL, Yap YA, McLeod KH, Mackay CR, Marino E. Dietary metabolites and the gut microbiota: an alternative approach to control inflammatory and autoimmune diseases. Clin Transl Immunology 2016; 5(5): e82.
[8]
Sloop KW, Emmerson PJ, Statnick MA, Willard FS. The current state of GPCR-based drug discovery to treat metabolic disease. Br J Pharmacol 2018; 175(21): 4060-71.
[9]
Wallin E, von Heijne G. Genome-wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms. Protein Sci 1998; 7(4): 1029-38.
[10]
Overington JP, Al-Lazikani B, Hopkins AL. How many drug targets are there? Nat Rev Drug Discov 2006; 5(12): 993-6.
[11]
Dolgin E. The greatest hits of the human genome. Nature 2017; 551(7681): 427-31.
[12]
Zou Q, Li X, Jiang Y, Zhao Y, Wang G. BinMemPredict: a web server and software for predicting membrane protein types. Curr Proteomics 2013; 10(1): 2-9.
[13]
Wen M, Zhang Z, Niu S, et al. Deep-learning-based drug-target interaction prediction. J Proteome Res 2017; 16(4): 1401-9.
[14]
Bai XC, McMullan G, Scheres SHW. How cryo-EM is revolutionizing structural biology. Trends Biochem Sci 2015; 40(1): 49-57.
[15]
Miao JW, Ishikawa T, Robinson IK, Murnane MM. Beyond crystallography: Diffractive imaging using coherent x-ray light sources. Sci 2015; 348(6234): 530-5.
[16]
Miao Y, Cross TA. Solid state NMR and protein-protein interactions in membranes. Curr Opin Struct Biol 2013; 23(6): 919-28.
[17]
Yin H, Flynn AD. Drugging membrane protein interactions. Annu Rev Biomed Eng 2016; 18: 51-76.
[18]
Chen YC, Tolbert R, Aronov AM, et al. Prediction of protein pairs sharing common active ligands using protein sequence, structure, and ligand similarity. J Chem Inf Model 2016; 56(9): 1734-45.
[19]
Papadatos G, Overington JP. The ChEMBL database: a taster for medicinal chemists. Future Med Chem 2014; 6(4): 361-4.
[20]
Gilson MK, Liu T, Baitaluk M, et al. BindingDB in 2015: A public database for medicinal chemistry, computational chemistry and systems pharmacology. Nucleic Acids Res 2016; 44(D1): D1045-53.
[21]
Wishart DS, Feunang YD, Guo AC, et al. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res 2018; 46(D1): D1074-82.
[22]
Li YH, Yu CY, Li XX, et al. Therapeutic target database update 2018: enriched resource for facilitating bench-to-clinic research of targeted therapeutics. Nucleic Acids Res 2018; 46(D1): D1121-7.
[23]
Tanabe M, Kanehisa M. Using the KEGG database resourceCurrent
protocols in bioinformatics / editoral board, Andreas D
Baxevanis [et al] 2012;Chapter 1:Unit1 12 .
[24]
Pandy-Szekeres G, Munk C, Tsonkov TM, et al. GPCRdb in 2018: adding GPCR structure models and ligands. Nucleic Acids Res 2018; 46(D1): D440-6.
[25]
Saier MH Jr, Reddy VS, Tsu BV, et al. The transporter classification database (tcdb): recent advances. Nucleic Acids Res 2016; 44(D1): D372-9.
[26]
Ito J, Ikeda K, Yamada K, Mizuguchi K, Tomii K. PoSSuM v.2.0: data update and a new function for investigating ligand analogs and target proteins of small-molecule drugs. Nucleic Acids Res 2015; 43(Database issue): D392-8.
[27]
Rask-Andersen M, Almen MS, Schioth HB. Trends in the exploitation of novel drug targets. Nat Rev Drug Discov 2011; 10(8): 579-90.
[28]
The Uni Prot C. UniProt: the universal protein knowledgebase. Nucleic Acids Res 2017; 45(D1): D158-69.
[29]
Overington JP, Al-Lazikani B, Hopkins AL. Opinion-How many drug targets are there? Nat Rev Drug Discov 2006; 5(12): 993-6.
[30]
Hopkins AL, Groom CR. The druggable genome. Nat Rev Drug Discov 2002; 1(9): 727-30.
[31]
Rask-Andersen M, Masuram S, Schioth HB. The druggable genome: Evaluation of drug targets in clinical trials suggests major shifts in molecular class and indication. Annu Rev Pharmacol Toxicol 2014; 54: 9-26.
[32]
Lin Y, Mehta S, Kucuk-McGinty H, et al. Drug target ontology to classify and integrate drug discovery data. J Biomed Semantics 2017; 8(1): 50.
[33]
Topiol S. Current and future challenges in gpcr drug discovery. Methods Mol Biol 2018; 1705: 1-21.
[34]
Hauser AS, Attwood MM, Rask-Andersen M, Schioth HB, Gloriam DE. Trends in GPCR drug discovery: new agents, targets and indications. Nat Rev Drug Discov 2017; 16(12): 829-42.
[35]
Andrews SP, Brown GA, Christopher JA. Structure-based and fragment-based gpcr drug discovery. ChemMedChem 2014; 9(2): 256-75.
[36]
Salon JA, Lodowski DT, Palczewski K. The significance of G protein-coupled receptor crystallography for drug discovery. Pharmacol Rev 2011; 63(4): 901-37.
[37]
Fredriksson R, Lagerstrom MC, Lundin LG, Schioth HB. The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol Pharmacol 2003; 63(6): 1256-72.
[38]
Sexton PM, Christopoulos A. To bind or not to bind: unravelling gpcr polypharmacology. Cell 2018; 172(4): 636-8.
[39]
Kakarala KK, Jamil K. Sequence-structure based phylogeny of GPCR Class A Rhodopsin receptors. Mol Phylogenet Evol 2014; 74: 66-96.
[40]
Thomsen W, Frazer J, Unett D. Functional assays for screening GPCR targets. Curr Opin Biotechnol 2005; 16(6): 655-65.
[41]
Lee Y, Basith S, Choi S. Recent advances in structure-based drug design targeting class a g protein-coupled receptors utilizing crystal structures and computational simulations. J Med Chem 2018; 61(1): 1-46.
[42]
Alexander SP, Christopoulos A, Davenport AP, et al. The concise guide to pharmacology 2017/18: G protein-coupled receptors. Br J Pharmacol 2017; 174(Suppl. 1): S17-S129.
[43]
Dorsam RT, Gutkind JS. G-protein-coupled receptors and cancer. Nat Rev Cancer 2007; 7(2): 79-94.
[44]
Yu FX, Zhao B, Panupinthu N, et al. Regulation of the Hippo-YAP pathway by G-protein-coupled receptor signaling. Cell 2012; 150(4): 780-91.
[45]
Yu FX, Zhang Y, Park HW, et al. Protein kinase A activates the Hippo pathway to modulate cell proliferation and differentiation. Genes Dev 2013; 27(11): 1223-32.
[46]
Tao Y, Cai F, Shan L, et al. The Hippo signaling pathway: an emerging anti-cancer drug target. Discov Med 2017; 24(130): 7-18.
[47]
Harvey KF, Zhang X, Thomas DM. The Hippo pathway and human cancer. Nat Rev Cancer 2013; 13(4): 246-57.
[48]
Zhou X, Wang Z, Huang W, Lei QY. G protein-coupled receptors: bridging the gap from the extracellular signals to the Hippo pathway. Acta Biochim Biophys Sin (Shanghai) 2015; 47(1): 10-5.
[49]
Baidya M, Dwivedi H, Shukla AK. Frozen in action: cryo-EM structure of a GPCR-G-protein complex. Nat Struct Mol Biol 2017; 24(6): 500-2.
[50]
Liang YL, Khoshouei M, Radjainia M, et al. Phase-plate cryo-EM structure of a class B GPCR-G-protein complex. Nature 2017; 546(7656): 118-23.
[51]
Wu H, Wang K, Lu L, et al. Deep conditional random field approach to transmembrane topology prediction and application to gpcr three-dimensional structure modeling IEEE/ACM transactions
on computational biology and bioinformatics / IEEE, ACM
2017; 14(5): 1106-14
[52]
Shen H, Chou JJ. MemBrain: improving the accuracy of predicting transmembrane helices. PLoS One 2008; 3(6): e2399.
[53]
Chen SA, Ou YY, Lee TY, Gromiha MM. Prediction of transporter targets using efficient RBF networks with PSSM profiles and biochemical properties. Bioinformatics 2011; 27(15): 2062-7.
[54]
Saier MH Jr, Tran CV, Barabote RD. TCDB: the Transporter Classification Database for membrane transport protein analyses and information. Nucleic Acids Res 2006; 34: D181-6.
[55]
Tarling EJ, de Aguiar Vallim TQ, Edwards PA. Role of ABC transporters in lipid transport and human disease. Trends Endocrinol Metab 2013; 24(7): 342-50.
[56]
Jordheim LP, Durantel D, Zoulim F, Dumontet C. Advances in the development of nucleoside and nucleotide analogues for cancer and viral diseases. Nat Rev Drug Discov 2013; 12(6): 447-64.
[57]
Minuesa G, Huber-Ruano I, Pastor-Anglada M, et al. Drug uptake transporters in antiretroviral therapy. Pharmacol Ther 2011; 132(3): 268-79.
[58]
Pastor-Anglada M, Perez-Torras S. Nucleoside transporter proteins as biomarkers of drug responsiveness and drug targets. Front Pharmacol 2015; 6.
[59]
Tahlan K, Wilson R, Kastrinsky DB, et al. SQ109 targets MmpL3, a membrane transporter of trehalose monomycolate involved in mycolic acid donation to the cell wall core of Mycobacterium tuberculosis. Antimicrob Agents Chemother 2012; 56(4): 1797-809.
[60]
Gasser PJ, Daws LC. Editorial for the special issue: Monoamine transporters in health and disease. J Chem Neuroanat 2017; 83-84: 1-2.
[61]
Zhao YW, Su ZD, Yang W, et al. IonchanPred 2.0: A tool to predict ion channels and their types. Int J Mol Sci 2017; 18(9)
[62]
Liu WX, Deng EZ, Chen W, Lin H. Identifying the subfamilies of voltage-gated potassium channels using feature selection technique. Int J Mol Sci 2014; 15(7): 12940-51.
[63]
Chen W, Lin H. Identification of voltage-gated potassium channel subfamilies from sequence information using support vector machine. Comput Biol Med 2012; 42(4): 504-7.
[64]
Lin H, Ding H. Predicting ion channels and their types by the dipeptide mode of pseudo amino acid composition. J Theor Biol 2011; 269(1): 64-9.
[65]
Miranda WE, Ngo VA, Perissinotti LL, Noskov SY. Computational membrane biophysics: From ion channel interactions with drugs to cellular function. Biochim Biophys Acta 2017; 1865(11 Pt B): 1643-53.
[66]
Chou KC. Insights from modeling three-dimensional structures of the human potassium and sodium channels. J Proteome Res 2004; 3(4): 856-61.
[67]
Dunlop J, Bowlby M, Peri R, Vasilyev D, Arias R. High-throughput electrophysiology: an emerging paradigm for ion-channel screening and physiology. Nat Rev Drug Discov 2008; 7(4): 358-68.
[68]
Huang C, Zhang R, Chen Z, et al. Predict potential drug targets from the ion channel proteins based on SVM. J Theor Biol 2010; 262(4): 750-6.
[69]
Kutzner C, Kopfer DA, Machtens JP, et al. Insights into the function of ion channels by computational electrophysiology simulations. Bba-Biomembranes 2016; 1858(7): 1741-52.
[70]
Imbrici P, Liantonio A, Camerino GM, et al. Therapeutic approaches to genetic ion channelopathies and perspectives in drug discovery. Front Pharmacol 2016; 7: 121.
[71]
Konstantopoulou A, Tsikrikas S, Asvestas D, Korantzopoulos P, Letsas KP. Mechanisms of drug-induced proarrhythmia in clinical practice. World J Cardiol 2013; 5(6): 175-85.
[72]
Abstracts of papers at the seventieth annual meeting of the society of general physiologistS: Genetic and animal models for ion channel function in physiology and disease. J Gen Physiol 2016; 148(2): 183.
[73]
Gaulton A, Bellis LJ, Bento AP, et al. ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Res 2012; 40: D1100-7.
[74]
Barneh F, Jafari M, Mirzaie M. Updates on drug-target network; facilitating polypharmacology and data integration by growth of DrugBank database. Brief Bioinform 2016; 17(6): 1070-80.
[76]
Law V, Knox C, Djoumbou Y, et al. DrugBank 4.0: shedding new light on drug metabolism. Nucleic Acids Res 2014; 42(Database issue): D1091-7.
[77]
Knox C, Law V, Jewison T, et al. DrugBank 3.0: a comprehensive resource for ‘omics’ research on drugs. Nucleic Acids Res 2011; 39: D1035-41.
[78]
Wishart DS, Knox C, Guo AC, et al. DrugBank: a knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Res 2008; 36: D901-6.
[79]
Wishart DS, Knox C, Guo AC, et al. DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res 2006; 34: D668-72.
[80]
Yang H, Qin C, Li YH, et al. Therapeutic target database update 2016: enriched resource for bench to clinical drug target and targeted pathway information. Nucleic Acids Res 2016; 44(D1): D1069-74.
[81]
Qin C, Zhang C, Zhu F, et al. Therapeutic target database update 2014: a resource for targeted therapeutics. Nucleic Acids Res 2014; 42: D1118-23.
[82]
Zhu F, Shi Z, Qin C, et al. Therapeutic target database update 2012: a resource for facilitating target-oriented drug discovery. Nucleic Acids Res 2012; 40: D1128-36.
[83]
Zhu F, Han B, Kumar P, et al. Update of TTD: Therapeutic target database. Nucleic Acids Res 2010; 38: D787-91.
[84]
Chen X, Ji ZL, Chen YZ. TTD: Therapeutic target database. Nucleic Acids Res 2002; 30(1): 412-5.
[85]
Munk C, Isberg V, Mordalski S, et al. GPCRdb: the G protein-coupled receptor database - an introduction. Br J Pharmacol 2016; 173(14): 2195-207.
[86]
Molloy C. Drug discovery tomorrow: how to Catapult ourselves into the future. Drug Discov Today 2018; 23(1): 1-3.
[87]
Cucurull-Sanchez L, Spink KG, Moschos SA. Relevance of systems pharmacology in drug discovery. Drug Discov Today 2012; 17(13-14): 665-70.
[88]
Berger SI, Iyengar R. Role of systems pharmacology in understanding drug adverse events. Wiley Interdiscip Rev Syst Biol Med 2011; 3(2): 129-35.
[89]
Tanrikulu Y, Kruger B, Proschak E. The holistic integration of virtual screening in drug discovery. Drug Discov Today 2013; 18(7-8): 358-64.
[90]
Kraemer O, Hazemann I, Podjarny AD, Klebe G. Virtual screening for inhibitors of human aldose reductase. Proteins 2004; 55(4): 814-23.
[91]
Garland SL. Are GPCRs still a source of new targets? J Biomol Screen 2013; 18(9): 947-66.
[92]
Ripphausen P, Nisius B, Bajorath J. State-of-the-art in ligand-based virtual screening. Drug Discov Today 2011; 16(9-10): 372-6.
[93]
Sun H. Pharmacophore-based virtual screening. Curr Med Chem 2008; 15(10): 1018-24.
[94]
Cross JB. Methods for virtual screening of gpcr targets: Approaches and Challenges. Methods Mol Biol 2018; 1705: 233-64.
[95]
Bock JR, Gough DA. Virtual screen for ligands of orphan G protein-coupled receptors. J Chem Inf Model 2005; 45(5): 1402-14.
[96]
Jacob L, Hoffmann B, Stoven V, Vert JP. Virtual screening of GPCRs: An in silico chemogenomics approach. BMC Bioinformatics 2008; 9: 363.
[97]
Hawkins PCD, Stahl G. Ligand-based methods in GPCR computer-aided drug design. Methods Mol Biol 2018; 1705: 365-74.
[98]
Zhang R, Xie X. Tools for GPCR drug discovery. Acta Pharmacol Sin 2012; 33(3): 372-84.
[99]
Yarnitzky T, Levit A, Niv MY. Homology modeling of G-protein-coupled receptors with X-ray structures on the rise. Curr Opin Drug Discov Devel 2010; 13(3): 317-25.
[100]
Mobarec JC, Sanchez R, Filizola M. Modern homology modeling of G-protein coupled receptors: which structural template to use? J Med Chem 2009; 52(16): 5207-16.
[101]
Rosenbaum DM, Rasmussen SG, Kobilka BK. The structure and function of G-protein-coupled receptors. Nature 2009; 459(7245): 356-63.
[102]
Ananthan S, Zhang W, Hobrath JV. Recent advances in structure-based virtual screening of G-protein coupled receptors. AAPS J 2009; 11(1): 178-85.
[103]
Kitchen DB, Decornez H, Furr JR, Bajorath J. Docking and scoring in virtual screening for drug discovery: methods and applications. Nat Rev Drug Discov 2004; 3(11): 935-49.
[104]
Ngo T, Kufareva I, Coleman JLJ, et al. Identifying ligands at orphan GPCRs: current status using structure-based approaches. Br J Pharmacol 2016; 173(20): 2934-51.
[105]
Hanson MA, Stevens RC. Discovery of new GPCR biology: one receptor structure at a time. Structure 2009; 17(1): 8-14.
[106]
Rasmussen SG, Choi HJ, Rosenbaum DM, et al. Crystal structure of the human beta2 adrenergic G-protein-coupled receptor. Nature 2007; 450(7168): 383-7.
[107]
Jaakola VP, Griffith MT, Hanson MA, et al. The 2.6 angstrom crystal structure of a human A2A adenosine receptor bound to an antagonist. Sci 2008; 322(5905): 1211-7.
[108]
Wu B, Chien EY, Mol CD, et al. Structures of the CXCR4 chemokine GPCR with small-molecule and cyclic peptide antagonists. Sci 2010; 330(6007): 1066-71.
[109]
Shimamura T, Shiroishi M, Weyand S, et al. Structure of the human histamine H1 receptor complex with doxepin. Nature 2011; 475(7354): 65-70.
[110]
Chien EYT, Liu W, Zhao QA, et al. Structure of the human dopamine d3 receptor in complex with a d2/d3 selective antagonist. Sci 2010; 330(6007): 1091-5.
[111]
Rodriguez D, Ranganathan A, Carlsson J. Discovery of GPCR ligands by molecular docking screening: novel opportunities provided by crystal structures. Curr Top Med Chem 2015; 15(24): 2484-503.
[112]
Kooistra AJ, Vischer HF, McNaught-Flores D, et al. Function-specific virtual screening for GPCR ligands using a combined scoring method. Sci Rep 2016; 6.
[113]
Radestock S, Weil T, Renner S. Homology model-based virtual screening for GPCR ligands using docking and target-biased scoring. J Chem Inf Model 2008; 48(5): 1104-17.
[114]
Christopher JA, Aves SJ, Bennett KA, et al. Fragment and structure-based drug discovery for a class C GPCR: Discovery of the mglu5 negative allosteric modulator HTL14242 (3-Chloro-5-[6-(5-fluoropyridin-2-yl)pyrimidin-4-yl]benzonitrile). J Med Chem 2015; 58(16): 6653-64.
[115]
Boezio B, Audouze K, Ducrot P, Taboureau O. Network-based Approaches in Pharmacology. Mol Inform 2017; 36(10)
[116]
Yamanishi Y, Araki M, Gutteridge A, Honda W, Kanehisa M. Prediction of drug-target interaction networks from the integration of chemical and genomic spaces. Bioinformatics 2008; 24(13): i232-40.
[117]
Yamanishi Y, Kotera M, Kanehisa M, Goto S. Drug-target interaction prediction from chemical, genomic and pharmacological data in an integrated framework. Bioinformatics 2010; 26(12): i246-54.
[118]
van Laarhoven T, Nabuurs SB, Marchiori E. Gaussian interaction profile kernels for predicting drug-target interaction. Bioinformatics 2011; 27(21): 3036-43.
[119]
Alaimo S, Pulvirenti A, Giugno R, Ferro A. Drug-target interaction prediction through domain-tuned network-based inference. Bioinform 2013; 29(16): 2004-8.
[120]
Chen X, Liu MX, Yan GY. Drug-target interaction prediction by random walk on the heterogeneous network. Mol Bio Sys 2012; 8(7): 1970-8.
[121]
Zhang W, Chen Y, Li D. Drug-target interaction prediction through label propagation with linear neighborhood informationMol 2017;
22(12)
[122]
Mei JP, Kwoh CK, Yang P, Li XL, Zheng J. Drug-target interaction prediction by learning from local information and neighbors. Bioinformatics 2013; 29(2): 238-45.
[123]
Shiraishi A, Niijima S, Brown JB, Nakatsui M, Okuno Y. Chemical genomics approach for GPCR-ligand interaction prediction and extraction of ligand binding determinants. J Chem Inf Model 2013; 53(6): 1253-62.
[124]
Ozturk H, Ozkirimli E, Ozgur A. A comparative study of SMILES-based compound similarity functions for drug-target interaction prediction. BMC Bioinformatics 2016; 17: 128.
[125]
Rayhan F, Ahmed S, Shatabda S, et al. iDTI-ESBoost: identification of drug target interaction using evolutionary and structural features with boosting. Sci Rep 2017; 7(1): 17731.
[126]
Seo S, Choi J, Ahn SK, et al. Prediction of GPCR-ligand binding using machine learning algorithms. Comput Math Methods Med 2018.
[127]
Jiang J, Wang N, Chen P, Zhang J, Wang B. DrugECs: An ensemble system with feature subspaces for accurate drug-target interaction prediction. BioMed Res Int 2017; 2017: 6340316.
[128]
Sleire L, Forde HE, Netland IA, et al. Drug repurposing in cancer. Pharmacol Res 2017; 124: 74-91.
[129]
Oh DY, Olefsky JM. G protein-coupled receptors as targets for anti-diabetic therapeutics. Nat Rev Drug Discov 2016; 15(3): 161-72.
[130]
Knight ZA, Lin H, Shokat KM. Targeting the cancer kinome through polypharmacology. Nat Rev Cancer 2010; 10(2): 130-7.
[131]
Moya-Garcia A, Adeyelu T, Kruger FA, et al. Structural and functional view of polypharmacology. Sci Rep 2017; 7(1): 10102.
[132]
Bolognesi ML, Cavalli A. Multitarget drug discovery and polypharmacology. ChemMedChem 2016; 11(12): 1190-2.
[133]
Goldstein I, Lue TF, Padma-Nathan H, et al. Oral sildenafil in the treatment of erectile dysfunction. 1998. J Urol 2002; 167(2 Pt 2): 1197-203.
[134]
Mercurio A, Adriani G, Catalano A, et al. A Mini-review on thalidomide: chemistry, mechanisms of action, therapeutic potential and anti-angiogenic properties in multiple myeloma. Curr Med Chem 2017; 24(25): 2736-44.
[135]
Mulder CJ, van Asseldonk DP, de Boer NK. Drug rediscovery to prevent off-label prescription reduces health care costs: the case of tioguanine in the Netherlands. J Gastrointestin Liver Dis 2014; 23(2): 123-5.
[136]
Simsek M, Meijer B, van Bodegraven AA, de Boer NKH, Mulder CJJ. Finding hidden treasures in old drugs: the challenges and importance of licensing generics. Drug Discov Today 2018; 23(1): 17-21.
[137]
Hauser AS, Chavali S, Masuho I, et al. Pharmacogenomics of GPCR drug targetsCell 2018; 172(1-2): 41-54 e19
[138]
Allen JA, Roth BL. Strategies to discover unexpected targets for drugs active at g protein-coupled receptors. Annu Rev Pharmacol 2011; 51: 117-44.
[139]
Southan C, Sitzmann M, Muresan S. Comparing the chemical structure and protein content of chembl, drugbank, human metabolome database and the therapeutic target database. Mol Inform 2013; 32(11-12): 881-97.
[140]
Hopkins AL. Network pharmacology: the next paradigm in drug discovery. Nat Chem Biol 2008; 4(11): 682-90.
[141]
Papadopoulos N, Lennartsson J. The PDGF/PDGFR pathway as a drug target. Mol Aspects Med 201(62): 75-88.
[142]
Bae JS, Kim SM, Lee H. The Hippo signaling pathway provides novel anti-cancer drug targets. Oncotarget 2017; 8(9): 16084-98.
[143]
Yang K, Bai H, Ouyang Q, Lai L, Tang C. Finding multiple target optimal intervention in disease-related molecular network. Mol Syst Biol 2008; 4: 228.
[144]
Campillos M, Kuhn M, Gavin AC, Jensen LJ, Bork P. Drug target identification using side-effect similarity. Sci 2008; 321(5886): 263-6.
[145]
Wawer M, Peltason L, Weskamp N, Teckentrup A, Bajorath J. Structure-activity relationship anatomy by network-like similarity graphs and local structure-activity relationship indices. J Med Chem 2008; 51(19): 6075-84.
[146]
Vogt M, Stumpfe D, Maggiora GM, Bajorath J. Lessons learned from the design of chemical space networks and opportunities for new applications. J Comput Aided Mol Des 2016; 30(3): 191-208.
[147]
He Z, Zhang J, Shi XH, et al. Predicting drug-target interaction networks based on functional groups and biological features. PLoS One 2010; 5(3): e9603.
[148]
Peng H, Long F, Ding C. Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans Pattern Anal Mach Intell 2005; 27(8): 1226-38.
[149]
Zou Q, Zeng J, Cao L, Ji R. A novel features ranking metric with application to scalable visual and bioinformatics data classification. Neurocomputing 2016; 173: 346-54.
[150]
Tang H, Zhao YW, Zou P, et al. HBPred: a tool to identify growth hormone-binding proteins. Int J Biol Sci 2018; 14(8): 957-64.
[151]
Tang H, Chen W, Lin H. Identification of immunoglobulins using Chou’s pseudo amino acid composition with feature selection technique. Mol Biosyst 2016; 12(4): 1269-75.
[152]
Chen XX, Tang H, Li WC, et al. Identification of bacterial cell wall lyases via pseudo amino acid composition. BioMed Res Int 2016; 2016: 1654623.
[153]
Yang H, Qiu WR, Liu GQ, et al. iRSpot-Pse6NC: Identifying recombination spots in Saccharomyces cerevisiae by incorporating hexamer composition into general PseKNC. Int J Biol Sci 2018; 14(8): 883-91.
[154]
Su ZD, Huang Y, Zhang ZY, et al. iLoc-lncRNA: predict the subcellular location of lncRNAs by incorporating octamer composition into general PseKNC. Bioinformatics 2018; 34: 4196-204.
[155]
Lai HY, Chen XX, Chen W, Tang H, Lin H. Sequence-based predictive modeling to identify cancerlectins. Oncotarget 2017; 8(17): 28169-75.
[156]
Yang H, Tang H, Chen XX, et al. Identification of secretory proteins in mycobacterium tuberculosis using pseudo amino acid composition. BioMed Res Int 2016; 2016: 5413903.
[157]
Yu YY, Liu YG, Jiang Y, Li LM. Prediction of drug-target interaction based on fingerprint similarity. PMC 2017; 42(18): 3578-83.
[158]
Mousavian Z, Khakabimamaghani S, Kavousi K, Masoudi-Nejad A. Drug-target interaction prediction from PSSM based evolutionary information. J Pharmacol Toxicol Methods 2016; 78: 42-51.
[159]
Meng FR, You ZH, Chen X, Zhou Y, An JY. Prediction of drug-target interaction networks from the integration of protein sequences and drug chemical structuresMol 2017; 22(7)
[160]
Yao ZJ, Dong J, Che YJ, et al. TargetNet: a web service for predicting potential drug-target interaction profiling via multi-target SAR models. J Comput Aided Mol Des 2016; 30(5): 413-24.
[161]
Angermueller C, Parnamaa T, Parts L, Stegle O. Deep learning for computational biology. Mol Syst Biol 2016; 12(7): 878.
[162]
LeCun Y, Bengio Y, Hinton G. Deep learning. Nature 2015; 521(7553): 436-44.
[163]
Alipanahi B, Delong A, Weirauch MT, Frey BJ. Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning. Nat Biotechnol 2015; 33(8): 831-8.
[164]
Jo T, Hou J, Eickholt J, Cheng J. Improving protein fold recognition by deep learning networks. Sci Rep 2015; 5: 17573.
[165]
Wei L, Ding Y, Su R, Tang J, Zou Q. Prediction of human protein subcellular localization using deep learning. J Parallel Distrib Comput 2018; 117: 212-7.
[166]
Yu L, Sun X, Tian SW, Shi XY, Yan YL. Drug and nondrug classification based on deep learning with various feature selection strategies. Curr Bioinform 2018; 13(3): 253-9.
[167]
Zong NS, Kim H, Ngo V, Harismendy O. Deep mining heterogeneous networks of biomedical linked data to predict novel drug-target associations. Bioinform 2017; 33(15): 2337-44.
[168]
O’Hayre M, Degese MS, Gutkind JS. Novel insights into G protein and G protein-coupled receptor signaling in cancer. Curr Opin Cell Biol 2014; 27: 126-35.
[169]
Li QR, Wang ZM, Wewer Albrechtsen NJ, et al. Systems signatures reveal unique remission-path of type 2 diabetes following roux-en-y gastric bypass surgery. Exp Biol Med 2018; 28: 234-40.
[170]
Yee SW, Lin L, Merski M, et al. Prediction and validation of enzyme and transporter off-targets for metformin. J Pharmacokinet Pharmacodyn 2015; 42(5): 463-75.
[171]
Dubinsky MC, Vasiliauskas EA, Singh H, et al. 6-thioguanine can cause serious liver injury in inflammatory bowel disease patients. Gastroenterol 2003; 125(2): 298-303.
[172]
Rosenhouse-Dantsker A, Mehta D, Levitan I. Regulation of ion channels by membrane lipids. Compr Physiol 2012; 2(1): 31-68.
[173]
Bukiya AN, Durdagi S, Noskov S, Rosenhouse-Dantsker A. Cholesterol up-regulates neuronal G protein-gated inwardly rectifying potassium (GIRK) channel activity in the hippocampus. J Biol Chem 2017; 292(15): 6135-47.
[174]
Moller C, Netzer R. Effects of estradiol on cardiac ion channel currents. Eur J Pharmacol 2006; 532(1-2): 44-9.