[1]
Slemmer, J.E.; Martin, B.R.; Damaj, M.I. bupropion is a nicotinic antagonist. J. Pharmacol. Exp. Ther., 2000, 295(1), 321-327.
[2]
Cooper, B.R.; Hester, T.J.; Maxwell, R.A. Behavioral and biochemical effects of the antidepressant bupropion (Wellbutrin): evidence for selective blockade of dopamine uptake in vivo. J. Pharmacol. Exp. Ther., 1980, 215(1), 127-134.
[3]
Ferris, R.M.; Cooper, B.R.; Maxwell, R.A. Studies of bupropion’s mechanism of antidepressant activity. J. Clin. Psychiatry, 1983, 44(5 Pt 2), 74-78.
[4]
Gadde, K.M.; Parker, C.B.; Maner, L.G.; Wagner, H.R.; Logue, E.J.; Drezner, M.K.; Krishnan, K.R.R. Bupropion for weight loss: An investigation of efficacy and tolerability in overweight and obese women. Obes. Res., 2001, 9(9), 544-551.
[5]
Skarydova, L.; Tomanova, R.; Havlikova, L.; Stambergova, H.; Solich, P.; Wsol, V. Deeper insight into the reducing biotransformation of bupropion in the human liver. Drug Metab. Pharmacokinet., 2014, 29(2), 177-184.
[6]
Li, D-J.; Tseng, P-T.; Chen, Y-W.; Wu, C-K.; Lin, P-Y. Significant treatment effect of bupropion in patients with bipolar disorder but similar phase-shifting rate as other antidepressants. Medicine, 2016, 95(13), e3165.
[7]
Ng, Q.X. A systematic review of the use of bupropion for attention-deficit/hyperactivity disorder in children and adolescents. J. Child Adolesc. Psychopharmacol., 2016, 27(2), 112-116.
[8]
Verbeeck, W.; Bekkering, G.E.; Van den Noortgate, W.; Kramers, C. Bupropion for Attention Deficit Hyperactivity Disorder (ADHD) in adults. Cochrane Database Syst. Rev., 2017, 10, CD009504.
[9]
Findlay, J.W.A.; Van Wyck Fleet, J.; Smith, P.G.; Butz, R.F.; Hinton, M.L.; Blum, M.R.; Schroeder, D.H. Pharmacokinetics of bupropion, a novel antidepressant agent, following oral administration to healthy subjects. Eur. J. Clin. Pharmacol., 1981, 21(2), 127-135.
[10]
Benowitz, N.L.; Zhu, A.Z.X.; Tyndale, R.F.; Dempsey, D.; Jacob, P. III. Influence of CYP2B6 genetic variants on plasma and urine concentrations of bupropion and metabolites at steady state. Pharmacogenet. Genomics, 2013, 23(3), 135-141.
[11]
Schroeder, D.H. Metabolism and kinetics of bupropion. J. Clin. Psychiatry, 1983, 44(5 Pt 2), 79-81.
[12]
Wang, X.; Abdelrahman, D.R.; Zharikova, O.L.; Patrikeeva, S.L.; Hankins, G.D.V.; Ahmed, M.S.; Nanovskaya, T.N. Bupropion metabolism by human placenta. Biochem. Pharmacol., 2010, 79(11), 1684-1690.
[13]
Meyer, A.; Vuorinen, A.; Zielinska, A.E.; Strajhar, P.; Lavery, G.G.; Schuster, D.; Odermatt, A. Formation of threohydrobupropion from bupropion is dependent on 11β-Hydroxysteroid dehydrogenase 1. Drug Metab. Dispos., 2013, 41(9), 1671-1678.
[14]
Bondarev, M.L.; Bondareva, T.S.; Young, R.; Glennon, R.A. Behavioral and biochemical investigations of bupropion metabolites. Eur. J. Pharmacol., 2003, 474(1), 85-93.
[15]
Jefferson, J.W.; Pradko, J.F.; Muir, K.T. Bupropion for major depressive disorder: Pharmacokinetic and formulation considerations. Clin. Ther., 2005, 27(11), 1685-1695.
[16]
Masters, A.R.; Gufford, B.T.; Lu, J.B.L.; Metzger, I.F.; Jones, D.R.; Desta, Z. Chiral plasma pharmacokinetics and urinary excretion of bupropion and metabolites in healthy volunteers. J. Pharmacol. Exp. Ther., 2016, 358(2), 230-238.
[17]
Fokina, V.M.; West, H.; Oncken, C.; Clark, S.M.; Ahmed, M.S.; Hankins, G.D.; Nanovskaya, T.N. Bupropion therapy during pregnancy: the drug and its major metabolites in umbilical cord plasma and amniotic fluid. Am. J. Obstet. Gynecol., , 2016, 215(4), 497e1-7.
[18]
Sager, J.E.; Price, L.S.L.; Isoherranen, N. Stereoselective metabolism of bupropion to OH-Bupropion, threohydrobupropion, erythrohydrobupropion and 4′-OH-Bupropion in vitro. Drug Metab. Dispos., 2016, 44(10), 1709-1719.
[19]
Roth, M.; Obaidat, A.; Hagenbuch, B. OATPs, OATs and OCTs: The organic anion and cation transporters of the SLCO and SLC22A gene superfamilies. Br. J. Pharmacol., 2012, 165(5), 1260-1287.
[20]
Wang, H.; Yan, Z.; Dong, M.; Zhu, X.; Wang, H.; Wang, Z. Alteration in placental expression of bile acids transporters OATP1A2, OATP1B1, OATP1B3 in intrahepatic cholestasis of pregnancy. Arch. Gynecol. Obstet., 2012, 285(6), 1535-1540.
[21]
Kullak-Ublick, G.A.; Ismair, M.G.; Stieger, B.; Landmann, L.; Huber, R.; Pizzagalli, F.; Fattinger, K.; Meier, P.J.; Hagenbuch, B. Organic anion-transporting polypeptide B (OATP-B) and its functional comparison with three other OATPs of human liver. Gastroenterology, 2001, 120(2), 525-533.
[22]
Hagenbuch, B.; Gui, C. Xenobiotic transporters of the human organic anion transporting polypeptides (OATP) family. Xenobiotica, 2008, 38(7-8), 778-801.
[23]
Ronaldson, P.; Bauer, B.; El-Kattan, A.; Shen, H.; Salphati, L.; Louie, S. Highlights from the american association of pharmaceutical scientists/ international transporter consortium joint workshop on drug transporters in absorption, distribution, metabolism, and excretion: From the bench to the bedside - Clinical pharmacology C. Clin. Pharmacol. Ther., 2016, 100(5), 419-422.
[24]
Mao, Q.; Ganapathy, V.; Unadkat, J.D. Drug Transport in the Placenta.In Drug Transporters., John Wiley & Sons, Inc.: Hoboken,NJ,. 2014, 341-353.
[25]
Turpeinen, M.; Tolonen, A.; Uusitalo, J.; Jalonen, J.; Pelkonen, O.; Laine, K. Effect of clopidogrel and ticlopidine on cytochrome P450 2B6 activity as measured by bupropion hydroxylation. Clin. Pharmacol. Ther., 2005, 77(6), 553-559.
[26]
Tamraz, B.; Fukushima, H.; Wolfe, A.R.; Kaspera, R.; Totah, R.A.; Floyd, J.S.; Ma, B.; Chu, C.; Marciante, K.D.; Heckbert, S.R. OATP1B1-Related drug-drug and drug-gene interactions as potential risk factors for cerivastatin-induced rhabdomyolysis. Pharmacogenet. Genomics, 2013, 23(7), 355-364.
[27]
Telles-Correia, D.; Barbosa, A.; Cortez-Pinto, H.; Campos, C.; Rocha, N.B.F.; Machado, S. Psychotropic drugs and liver disease: a critical review of pharmacokinetics and liver toxicity. World J. Gastrointest. Pharmacol. Ther., 2017, 8(1), 26-38.
[28]
Luethi, D.; Liechti, M.E.; Krähenbühl, S. Mechanisms of hepatocellular toxicity associated with new psychoactive synthetic cathinones. Toxicology, 2017, 387, 57-66.
[29]
Köck, K.; Brouwer, K.L.R. A perspective on efflux transport proteins in the liver. Clin. Pharmacol. Ther., 2012, 92(5), 599-612.
[30]
Choi, Y.H.; Yu, A-M. ABC transporters in multidrug resistance and pharmacokinetics, and strategies for drug development. Curr. Pharm. Des., 2014, 20(5), 793-807.
[31]
Joshi, A.A.; Vaidya, S.S.; St-Pierre, M.V.; Mikheev, A.M.; Desino, K.E.; Nyandege, A.N.; Audus, K.L.; Unadkat, J.D.; Gerk, P.M. Placental ABC transporters: Biological impact and pharmaceutical significance. Pharm. Res., 2016, 33(12), 2847-2878.
[32]
Mason, C.W.; Buhimschi, I.A.; Buhimschi, C.S.; Dong, Y.; Weiner, C.P.; Swaan, P.W. ATP-binding cassette transporter expression in human placenta as a function of pregnancy condition. Drug Metab. Dispos., 2011, 39(6), 1000-1007.
[33]
Ni, Z.; Mao, Q. ATP-binding cassette efflux transporters in human placenta. Curr. Pharm. Biotechnol., 2011, 12(4), 674-685.
[34]
Mao, Q. BCRP/ABCG2 in the placenta: Expression, function and regulation. Pharm. Res., 2008, 25(6), 1244-1255.
[35]
Begley, D.J. ABC transporters and the blood-brain barrier. Curr. Pharm. Des., 2004, 10(12), 1295-1312.
[36]
Miller, D. Regulation of ABC transporters at the blood-brain barrier. Clin. Pharmacol. Ther., 2015, 97(4), 395-403.
[37]
Mahringer, A.; Fricker, G. ABC transporters at the blood-brain barrier. Expert Opin. Drug Metab. Toxicol., 2016, 12(5), 499-508.
[38]
Beckmann, T.F.; Krämer, O.; Klausing, S.; Heinrich, C.; Thüte, T.; Büntemeyer, H.; Hoffrogge, R.; Noll, T. Effects of high passage cultivation on CHO cells: A global analysis. Appl. Microbiol. Biotechnol., 2012, 94(3), 659-671.
[39]
Gao, C.; Liao, M.Z.; Han, L.W.; Thummel, K.E.; Mao, Q. Hepatic transport of 25-Hydroxyvitamin D3 conjugates: A mechanism of 25-Hydroxyvitamin D3 delivery to the intestinal tract. Drug Metab. Dispos., 2018, 46(5), 581-591.
[40]
Wang, X.; Abdelrahman, D.R.; Fokina, V.M.; Hankins, G.D.V.; Ahmed, M.S.; Nanovskaya, T.N. Metabolism of bupropion by baboon hepatic and placental microsomes. Biochem. Pharmacol., 2011, 82(3), 295-303.
[41]
Lau, Y.Y.; Huang, Y.; Frassetto, L.; Benet, L.Z. Effect of OATP1B transporter inhibition on the pharmacokinetics of atorvastatin in healthy volunteers. Clin. Pharmacol. Ther., 2007, 81(2), 194-204.
[42]
Treiber, A.; Schneiter, R.; Hausler, S.; Stieger, B. Bosentan is a substrate of human OATP1B1 and OATP1B3: inhibition of hepatic uptake as the common mechanism of its interactions with cyclosporin A, rifampicin, and sildenafil. Drug Metab. Dispos., 2007, 35(8), 1400-1407.
[43]
Annaert, P.; Ye, Z.W.; Stieger, B.; Augustijns, P. Interaction of HIV protease inhibitors with OATP1B1, 1B3, and 2B1. Xenobiotica, 2010, 40(3), 163-176.
[44]
Okuda, M.; Urakami, Y.; Saito, H.; Inui, K. Molecular mechanisms of organic cation transport in OCT2-expressing xenopus oocytes. Biochim. Biophys. Acta, 1999, 1417(2), 224-231.
[45]
Ho, E.S.; Lin, D.C.; Mendel, D.B.; Cihlar, T. Cytotoxicity of antiviral nucleotides adefovir and cidofovir is induced by the expression of human renal organic anion transporter 1. J. Am. Soc. Nephrol., 2000, 11(3), 383-393.
[46]
Chu, X.Y.; Bleasby, K.; Yabut, J.; Cai, X.; Chan, G.H.; Hafey, M.J.; Xu, S.; Bergman, A.J.; Braun, M.P.; Dean, D.C. Transport of the dipeptidyl peptidase-4 inhibitor sitagliptin by human organic anion transporter 3, organic anion transporting polypeptide 4C1, and multidrug resistance p-glycoprotein. J. Pharmacol. Exp. Ther., 2007, 321(2), 673-683.
[47]
Mulato, A.S.; Ho, E.S.; Cihlar, T. Nonsteroidal anti-inflammatory drugs efficiently reduce the transport and cytotoxicity of adefovir mediated by the human renal organic anion transporter 1. J. Pharmacol. Exp. Ther., 2000, 295(1), 10-15.
[48]
Turpeinen, M.; Koivuviita, N.; Tolonen, A.; Reponen, P.; Lundgren, S.; Miettunen, J.; Metsärinne, K.; Rane, A.; Pelkonen, O.; Laine, K. Effect of renal impairment on the pharmacokinetics of bupropion and its metabolites. Br. J. Clin. Pharmacol., 2007, 64(2), 165-173.
[49]
Hayer-Zillgen, M.; Brüss, M.; Bönisch, H. Expression and pharmacological profile of the human organic cation transporters HOCT1, HOCT2 and HOCT3. Br. J. Pharmacol., 2002, 136(6), 829-836.
[50]
Ahlin, G.; Karlsson, J.; Pedersen, J.M.; Gustavsson, L.; Larsson, R.; Matsson, P.; Norinder, U.; Bergström, C.A.S.; Artursson, P. Structural requirements for drug inhibition of the liver specific human organic cation transport protein 1. J. Med. Chem., 2008, 51(19), 5932-5942.
[51]
Ahlin, G.; Hilgendorf, C.; Karlsson, J.; Szigyarto, C.A.K.; Uhlén, M.; Artursson, P. Endogenous gene and protein expression of drug-transporting proteins in cell lines routinely used in drug discovery programs. Drug Metab. Dispos., 2009, 37(12), 2275-2283.
[52]
Stepanenko, A.A.; Heng, H.H. Transient and stable vector transfection: pitfalls, off-target effects, artifacts. Mutat. Res. Mutat. Res., 2017, 773, 91-103.
[53]
Karlgren, M.; Vildhede, A.; Norinder, U.; Wisniewski, J.R.; Kimoto, E.; Lai, Y.; Haglund, U.; Artursson, P. Classification of inhibitors of hepatic organic anion transporting polypeptides (OATPs): Influence of protein expression on drug-drug interactions. J. Med. Chem., 2012, 55(10), 4740-4763.
[54]
Tamai, I.; Nozawa, T.; Koshida, M.; Nezu, J.; Sai, Y.; Tsuji, A. Functional characterization of human organic anion transporting polypeptide B (OATP-B) in comparison with liver-specific OATP-C. Pharm. Res., 2001, 18(9), 1262-1269.
[55]
Noe, J.; Portmann, R.; Brun, M.E.; Funk, C. Substrate-dependent drug-drug interactions between gemfibrozil, fluvastatin and other organic anion-transporting peptide (OATP) substrates on OATP1B1, OATP2B1, and OATP1B3. Drug Metab. Dispos., 2007, 35(8), 1308-1314.
[56]
Sai, Y.; Kaneko, Y.; Ito, S.; Mitsuoka, K.; Kato, Y.; Tamai, I.; Artursson, P.; Tsuji, A. Predominant contribution of organic anion transporting polypeptide OATP-B (OATP2B1) to apical uptake of estrone-3-sulfate by human intestinal caco-2 cells. Drug Metab. Dispos., 2006, 34(8), 1423-1431.
[57]
Li, X.; Guo, Z.; Wang, Y.; Chen, X.; Liu, J.; Zhong, D. Potential role of organic anion transporting polypeptide 1B1 (OATP1B1) in the selective hepatic uptake of hematoporphyrin monomethyl ether isomers. Acta Pharmacol. Sin., 2015, 36(2), 268-280.
[58]
Kalliokoski, A.; Niemi, M. Impact of OATP transporters on pharmacokinetics. Br. J. Pharmacol., 2009, 158(3), 693-705.
[59]
Yang, X.; Hua, W.; Ryu, S.; Yates, P.; Chang, C.; Zhang, H.; Di, L. 11 β -hydroxysteroid dehydrogenase 1 human tissue distribution, selective inhibitor, and role in doxorubicin metabolism. Drug Metab. Dispos., 2018, 46(7), 1023-1029.
[60]
He, J.; Yu, Y.; Prasad, B.; Chen, X.; Unadkat, J.D. Mechanism of an unusual, but clinically significant, digoxin-bupropion drug interaction. Biopharm. Drug Dispos., 2014, 35(5), 253-263.
[61]
Hemauer, S.J.; Patrikeeva, S.L.; Wang, X.; Abdelrahman, D.R.; Hankins, G.D.V.; Ahmed, M.S.; Nanovskaya, T.N. Role of transporter-mediated efflux in the placental biodisposition of bupropion and its metabolite, oh-bupropion. Biochem. Pharmacol., 2010, 80(7), 1080-1086.
[62]
Earhart, A.D.; Patrikeeva, S.; Wang, X.; Abdelrahman, D.R.; Hankins, G.D.V.; Ahmed, M.S.; Nanovskaya, T. Transplacental transfer and metabolism of bupropion. J. Matern. Fetal Neonatal Med., 2010, 23(5), 409-416.
[63]
Nishikawa, M.; Iwano, H.; Yanagisawa, R.; Koike, N.; Inoue, H.; Yokota, H. Placental transfer of conjugated bisphenol a and subsequent reactivation in the rat fetus. Environ. Health Perspect., 2010, 118(9), 1196-1203.
[64]
Sager, J.E.; Price, L.S.L.; Isoherranen, N. stereoselective metabolism of bupropion to OH-bupropion, threohydrobupropion, erythrohydrobupropion, and 4′-OH-bupropion in vitro. Drug Metab. Dispos., 2016, 44(10), 1709-1719.
[65]
Zhou, Q.; Yu, L.S.; Zeng, S. Stereoselectivity of chiral drug transport: a focus on enantiomer-transporter interaction. Drug Metab. Rev., 2014, 46(3), 283-290.