Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Animal Venom Peptides as a Treasure Trove for New Therapeutics Against Neurodegenerative Disorders

Author(s): Xinwang Yang*, Ying Wang, Chunyun Wu and Eng-Ang Ling*

Volume 26, Issue 25, 2019

Page: [4749 - 4774] Pages: 26

DOI: 10.2174/0929867325666181031122438

Price: $65

Abstract

Background: Neurodegenerative diseases, such as Alzheimer’s disease, Parkinson’s disease, and cerebral ischemic stroke, impose enormous socio-economic burdens on both patients and health-care systems. However, drugs targeting these diseases remain unsatisfactory, and hence there is an urgent need for the development of novel and potent drug candidates.

Methods: Animal toxins exhibit rich diversity in both proteins and peptides, which play vital roles in biomedical drug development. As a molecular tool, animal toxin peptides have not only helped clarify many critical physiological processes but also led to the discovery of novel drugs and clinical therapeutics.

Results: Recently, toxin peptides identified from venomous animals, e.g. exenatide, ziconotide, Hi1a, and PcTx1 from spider venom, have been shown to block specific ion channels, alleviate inflammation, decrease protein aggregates, regulate glutamate and neurotransmitter levels, and increase neuroprotective factors.

Conclusion: Thus, components of venom hold considerable capacity as drug candidates for the alleviation or reduction of neurodegeneration. This review highlights studies evaluating different animal toxins, especially peptides, as promising therapeutic tools for the treatment of different neurodegenerative diseases and disorders.

Keywords: Animal toxins, small peptides, molecular mechanisms, therapeutics, neurodegenerative diseases, excitotoxicity.

[1]
The Huntington’s Disease Collaborative Research Group. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell, 1993, 72(6), 971-983.
[http://dx.doi.org/10.1016/0092-8674(93)90585-E] [PMID: 8458085]
[2]
Sisodia, S.S.; Koo, E.H.; Beyreuther, K.; Unterbeck, A.; Price, D.L. Evidence that beta-amyloid protein in Alzheimer’s disease is not derived by normal processing. Science, 1990, 248(4954), 492-495.
[http://dx.doi.org/10.1126/science.1691865] [PMID: 1691865]
[3]
Roberson, E.D.; Mucke, L. 100 years and counting: prospects for defeating Alzheimer’s disease. Science, 2006, 314(5800), 781-784.
[http://dx.doi.org/10.1126/science.1132813] [PMID: 17082448]
[4]
Lang, A.E.; Lozano, A.M. Parkinson’s disease. First of two parts. N. Engl. J. Med., 1998, 339(15), 1044-1053.
[http://dx.doi.org/10.1056/NEJM199810083391506] [PMID: 9761807]
[5]
Perry, G.; Zhu, X.; Smith, M.A.; Sorensen, A.; Avila, J. Preface. Alzheimer’s disease: advances for a new century. J. Alzheimers Dis., 2013, 33(Suppl. 1), S1.
[http://dx.doi.org/10.3233/JAD-2012-129045] [PMID: 23397602]
[6]
Holtzman, D.M.; Morris, J.C.; Goate, A.M. Alzheimer’s disease: the challenge of the second century. Sci. Transl. Med., 2011, 3(77), 77sr1.
[http://dx.doi.org/10.1126/scitranslmed.3002369] [PMID: 21471435]
[7]
Goedert, M.; Spillantini, M.G. A century of Alzheimer’s disease. Science, 2006, 314(5800), 777-781.
[http://dx.doi.org/10.1126/science.1132814] [PMID: 17082447]
[8]
Kalogeris, T.; Baines, C.P.; Krenz, M.; Korthuis, R.J. Cell biology of ischemia/reperfusion injury. Int. Rev. Cell Mol. Biol., 2012, 298, 229-317.
[http://dx.doi.org/10.1016/B978-0-12-394309-5.00006-7] [PMID: 22878108]
[9]
Yan, M.H.; Wang, X.; Zhu, X. Mitochondrial defects and oxidative stress in Alzheimer disease and Parkinson disease. Free Radic. Biol. Med., 2013, 62, 90-101.
[http://dx.doi.org/10.1016/j.freeradbiomed.2012.11.014] [PMID: 23200807]
[10]
Kroemer, G.; Galluzzi, L.; Vandenabeele, P.; Abrams, J.; Alnemri, E.S.; Baehrecke, E.H.; Blagosklonny, M.V.; El-Deiry, W.S.; Golstein, P.; Green, D.R.; Hengartner, M.; Knight, R.A.; Kumar, S.; Lipton, S.A.; Malorni, W.; Nuñez, G.; Peter, M.E.; Tschopp, J.; Yuan, J.; Piacentini, M.; Zhivotovsky, B.; Melino, G. Nomenclature Committee on Cell Death 2009. Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ., 2009, 16(1), 3-11.
[http://dx.doi.org/10.1038/cdd.2008.150] [PMID: 18846107]
[11]
Kerr, J.F.; Wyllie, A.H.; Currie, A.R. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer, 1972, 26(4), 239-257.
[http://dx.doi.org/10.1038/bjc.1972.33] [PMID: 4561027]
[12]
Elmore, S. Apoptosis: a review of programmed cell death. Toxicol. Pathol., 2007, 35(4), 495-516.
[http://dx.doi.org/10.1080/01926230701320337] [PMID: 17562483]
[13]
Zhang, X.; Chen, Y.; Jenkins, L.W.; Kochanek, P.M.; Clark, R.S. Bench-to-bedside review: apoptosis/programmed cell death triggered by traumatic brain injury. Crit. Care, 2005, 9(1), 66-75.
[http://dx.doi.org/10.1186/cc2950] [PMID: 15693986]
[14]
Thornberry, N.A.; Lazebnik, Y. Caspases: enemies within. Science, 1998, 281(5381), 1312-1316.
[http://dx.doi.org/10.1126/science.281.5381.1312] [PMID: 9721091]
[15]
Shi, Y. Mechanisms of caspase activation and inhibition during apoptosis. Mol. Cell, 2002, 9(3), 459-470.
[http://dx.doi.org/10.1016/S1097-2765(02)00482-3] [PMID: 11931755]
[16]
Kanno, S.; Tomizawa, A.; Ohtake, T.; Koiwai, K.; Ujibe, M.; Ishikawa, M. Naringenin-induced apoptosis via activation of NF-kappaB and necrosis involving the loss of ATP in human promyeloleukemia HL-60 cells. Toxicol. Lett., 2006, 166(2), 131-139.
[http://dx.doi.org/10.1016/j.toxlet.2006.06.005] [PMID: 16860949]
[17]
Araya, J.; Hara, H.; Kuwano, K. Autophagy in the pathogenesis of pulmonary disease. Intern. Med., 2013, 52(20), 2295-2303.
[http://dx.doi.org/10.2169/internalmedicine.52.1118] [PMID: 24126389]
[18]
Levine, B.; Kroemer, G. Autophagy in the pathogenesis of disease. Cell, 2008, 132(1), 27-42.
[http://dx.doi.org/10.1016/j.cell.2007.12.018] [PMID: 18191218]
[19]
Booth, L.A.; Tavallai, S.; Hamed, H.A.; Cruickshanks, N.; Dent, P. The role of cell signalling in the crosstalk between autophagy and apoptosis. Cell. Signal., 2014, 26(3), 549-555.
[http://dx.doi.org/10.1016/j.cellsig.2013.11.028] [PMID: 24308968]
[20]
Lin, W.; Xu, G. Autophagy: a role in the apoptosis, survival, inflammation, and development of the retina. Ophthalmic Res., 2019, 61(2), 65-72.
[PMID: 29694961]
[21]
He, G.; Ma, Y.; Zhu, Y.; Yong, L.; Liu, X.; Wang, P.; Liang, C.; Yang, C.; Zhao, Z.; Hai, B.; Pan, X.; Liu, Z.; Liu, X.; Mao, C. Cross talk between autophagy and apoptosis contributes to ZnO nanoparticle-induced human osteosarcoma cell death. Adv. Healthc. Mater., 2018, 7(17)e1800332
[http://dx.doi.org/10.1002/adhm.201800332] [PMID: 29900694]
[22]
Sendler, M.; Mayerle, J.; Lerch, M.M. Necrosis, apoptosis, necroptosis, pyroptosis: it matters how acinar cells die during pancreatitis. Cell. Mol. Gastroenterol. Hepatol., 2016, 2(4), 407-408.
[http://dx.doi.org/10.1016/j.jcmgh.2016.05.007] [PMID: 28174728]
[23]
Lekshmi, A.; Varadarajan, S.N.; Lupitha, S.S.; Indira, D.; Mathew, K.A.; Chandrasekharan Nair, A.; Nair, M.; Prasad, T.; Sekar, H.; Gopalakrishnan, A.K.; Murali, A.; Santhoshkumar, T.R. A quantitative real-time approach for discriminating apoptosis and necrosis. Cell Death Discov., 2017, 3, 16101.
[http://dx.doi.org/10.1038/cddiscovery.2016.101] [PMID: 28179996]
[24]
Ekshyyan, O.; Aw, T.Y. Apoptosis: a key in neurodegenerative disorders. Curr. Neurovasc. Res., 2004, 1(4), 355-371.
[http://dx.doi.org/10.2174/1567202043362018] [PMID: 16181084]
[25]
Linnik, M.D. Role of apoptosis in acute neurodegenerative disorders. Restor. Neurol. Neurosci., 1996, 9(4), 219-225.
[PMID: 21551910]
[26]
Mochizuki, H.; Goto, K.; Mori, H.; Mizuno, Y. Histochemical detection of apoptosis in Parkinson’s disease. J. Neurol. Sci., 1996, 137(2), 120-123.
[http://dx.doi.org/10.1016/0022-510X(95)00336-Z] [PMID: 8782165]
[27]
Tymianski, M.; Wallace, M.C.; Spigelman, I.; Uno, M.; Carlen, P.L.; Tator, C.H.; Charlton, M.P. Cell-permeant Ca2+ chelators reduce early excitotoxic and ischemic neuronal injury in vitro and in vivo. Neuron, 1993, 11(2), 221-235.
[http://dx.doi.org/10.1016/0896-6273(93)90180-Y] [PMID: 8102532]
[28]
Yoneda, S.; Tanaka, E.; Goto, W.; Ota, T.; Hara, H. Topiramate reduces excitotoxic and ischemic injury in the rat retina. Brain Res., 2003, 967(1-2), 257-266.
[http://dx.doi.org/10.1016/S0006-8993(03)02270-4] [PMID: 12650986]
[29]
Mazzone, G.L.; Veeraraghavan, P.; Gonzalez-Inchauspe, C.; Nistri, A.; Uchitel, O.D. ASIC channel inhibition enhances excitotoxic neuronal death in an in vitro model of spinal cord injury. Neuroscience, 2017, 343, 398-410.
[http://dx.doi.org/10.1016/j.neuroscience.2016.12.008] [PMID: 28003157]
[30]
Pansiot, J.; Pham, H.; Dalous, J.; Chevenne, D.; Colella, M.; Schwendimann, L.; Fafouri, A.; Mairesse, J.; Moretti, R.; Schang, A.L.; Charriaut-Marlangue, C.; Gressens, P.; Baud, O. Glial response to 17β-estradiol in neonatal rats with excitotoxic brain injury. Exp. Neurol., 2016, 282, 56-65.
[http://dx.doi.org/10.1016/j.expneurol.2016.05.024] [PMID: 27222132]
[31]
Tekkök, S.B.; Ye, Z.; Ransom, B.R. Excitotoxic mechanisms of ischemic injury in myelinated white matter. J. Cereb. Blood Flow Metab., 2007, 27(9), 1540-1552.
[http://dx.doi.org/10.1038/sj.jcbfm.9600455] [PMID: 17299453]
[32]
Yu, C.G.; Yezierski, R.P. Activation of the ERK1/2 signaling cascade by excitotoxic spinal cord injury. Brain Res. Mol. Brain Res., 2005, 138(2), 244-255.
[http://dx.doi.org/10.1016/j.molbrainres.2005.04.013] [PMID: 15922485]
[33]
Kushnareva, Y.E.; Wiley, S.E.; Ward, M.W.; Andreyev, A.Y.; Murphy, A.N. Excitotoxic injury to mitochondria isolated from cultured neurons. J. Biol. Chem., 2005, 280(32), 28894-28902.
[http://dx.doi.org/10.1074/jbc.M503090200] [PMID: 15932874]
[34]
Irimia, A.; Goh, S.M.; Wade, A.C.; Patel, K.; Vespa, P.M.; Van Horn, J.D. Traumatic brain injury severity, neuropathophysiology, and clinical outcome: insights from multimodal neuroimaging. Front. Neurol., 2017, 8, 530.
[http://dx.doi.org/10.3389/fneur.2017.00530] [PMID: 29051745]
[35]
Quillinan, N.; Herson, P.S.; Traystman, R.J. Neuropathophysiology of brain injury. Anesthesiol. Clin., 2016, 34(3), 453-464.
[http://dx.doi.org/10.1016/j.anclin.2016.04.011] [PMID: 27521191]
[36]
Lau, A.; Tymianski, M. Glutamate receptors, neurotoxicity and neurodegeneration. Pflugers Arch., 2010, 460(2), 525-542.
[http://dx.doi.org/10.1007/s00424-010-0809-1] [PMID: 20229265]
[37]
Wollmuth, L.P. Ion permeation in ionotropic glutamate receptors: still dynamic after all these years. Curr. Opin. Physiol., 2018, 2, 36-41.
[http://dx.doi.org/10.1016/j.cophys.2017.12.003] [PMID: 29607422]
[38]
Scheefhals, N.; MacGillavry, H.D. Functional organization of postsynaptic glutamate receptors. Mol. Cell. Neurosci., 2018, 91, 82-94.
[http://dx.doi.org/10.1016/j.mcn.2018.05.002] [PMID: 29777761]
[39]
Lian, Y.N.; Lu, Q.; Chang, J.L.; Zhang, Y. The role of glutamate and its receptors in central nervous system in stress-induced hyperalgesia. Int. J. Neurosci., 2018, 128(3), 283-290.
[http://dx.doi.org/10.1080/00207454.2017.1387112] [PMID: 28969521]
[40]
Chomova, M.; Zitnanova, I. Look into brain energy crisis and membrane pathophysiology in ischemia and reperfusion. Stress, 2016, 19(4), 341-348.
[http://dx.doi.org/10.1080/10253890.2016.1174848] [PMID: 27095435]
[41]
Raichle, M.E. The pathophysiology of brain ischemia. Ann. Neurol., 1983, 13(1), 2-10.
[http://dx.doi.org/10.1002/ana.410130103] [PMID: 6299175]
[42]
Pepe, S. Mitochondrial function in ischaemia and reperfusion of the ageing heart. Clin. Exp. Pharmacol. Physiol., 2000, 27(9), 745-750.
[http://dx.doi.org/10.1046/j.1440-1681.2000.03326.x] [PMID: 10972544]
[43]
Azarias, G.; Perreten, H.; Lengacher, S.; Poburko, D.; Demaurex, N.; Magistretti, P.J.; Chatton, J.Y. Glutamate transport decreases mitochondrial pH and modulates oxidative metabolism in astrocytes. J. Neurosci., 2011, 31(10), 3550-3559.
[http://dx.doi.org/10.1523/JNEUROSCI.4378-10.2011] [PMID: 21389211]
[44]
Surin, A.M.; Gorbacheva, L.R.; Savinkova, I.G.; Sharipov, R.R.; Khodorov, B.I.; Pinelis, V.G. Study on ATP concentration changes in cytosol of individual cultured neurons during glutamate-induced deregulation of calcium homeostasis. Biochemistry (Mosc.), 2014, 79(2), 146-157.
[http://dx.doi.org/10.1134/S0006297914020084] [PMID: 24794730]
[45]
Garland, J.M.; Halestrap, A. Energy metabolism during apoptosis. Bcl-2 promotes survival in hematopoietic cells induced to apoptose by growth factor withdrawal by stabilizing a form of metabolic arrest. J. Biol. Chem., 1997, 272(8), 4680-4688.
[http://dx.doi.org/10.1074/jbc.272.8.4680] [PMID: 9030519]
[46]
Miyamoto, S.; Howes, A.L.; Adams, J.W.; Dorn, G.W., II; Brown, J.H. Ca2+ dysregulation induces mitochondrial depolarization and apoptosis: role of Na+/Ca2+ exchanger and AKT. J. Biol. Chem., 2005, 280(46), 38505-38512.
[http://dx.doi.org/10.1074/jbc.M505223200] [PMID: 16061478]
[47]
Wang, Z.; Wang, W.; Shao, Z.; Gao, B.; Li, J.; Ma, J.; Li, J.; Che, H.; Zhang, W. Eukaryotic expression and purification of anti-epilepsy peptide of Buthus martensii Karsch and its protein interactions. Mol. Cell. Biochem., 2009, 330(1-2), 97-104.
[http://dx.doi.org/10.1007/s11010-009-0104-7] [PMID: 19370317]
[48]
Suárez, F.; Zhao, Q.; Monaghan, D.T.; Jane, D.E.; Jones, S.; Gibb, A.J. Functional heterogeneity of NMDA receptors in rat substantia nigra pars compacta and reticulata neurones. Eur. J. Neurosci., 2010, 32(3), 359-367.
[http://dx.doi.org/10.1111/j.1460-9568.2010.07298.x] [PMID: 20618827]
[49]
Touyz, R.M.; Tabet, F.; Schiffrin, E.L. Redox-dependent signalling by angiotensin II and vascular remodelling in hypertension. Clin. Exp. Pharmacol. Physiol., 2003, 30(11), 860-866.
[http://dx.doi.org/10.1046/j.1440-1681.2003.03930.x] [PMID: 14678251]
[50]
Lapp, D.W.; Zhang, S.S.; Barnstable, C.J. Stat3 mediates LIF-induced protection of astrocytes against toxic ROS by upregu-lating the UPC2 mRNA pool. Glia, 2014, 62(2), 159-170.
[http://dx.doi.org/10.1002/glia.22594] [PMID: 24307565]
[51]
Wiseman, A. Dietary alkyl thiol free radicals (RSS) can be as toxic as reactive oxygen species (ROS). Med. Hypotheses, 2004, 63(4), 667-670.
[http://dx.doi.org/10.1016/j.mehy.2004.03.021] [PMID: 15325013]
[52]
Trist, B.G.; Hare, D.J.; Double, K.L. A proposed mechanism for neurodegeneration in movement disorders characterized by metal dyshomeostasis and oxidative stress. Cell Chem. Biol., 2018, 25(7), 807-816.
[http://dx.doi.org/10.1016/j.chembiol.2018.05.004] [PMID: 29861271]
[53]
Gandhi, S.; Abramov, A.Y. Mechanism of oxidative stress in neurodegeneration. Oxid. Med. Cell. Longev., 2012.2012428010
[http://dx.doi.org/10.1155/2012/428010] [PMID: 22685618]
[54]
Barber, S.C.; Mead, R.J.; Shaw, P.J. Oxidative stress in ALS: a mechanism of neurodegeneration and a therapeutic target. Biochim. Biophys. Acta, 2006, 1762(11-12), 1051-1067.
[http://dx.doi.org/10.1016/j.bbadis.2006.03.008] [PMID: 16713195]
[55]
Musiek, E.S.; Milne, G.L.; McLaughlin, B.; Morrow, J.D. Cyclopentenone eicosanoids as mediators of neurodegenera-tion: a pathogenic mechanism of oxidative stress-mediated and cyclooxygenase-mediated neurotoxicity. Brain Pathol., 2005, 15(2), 149-158.
[56]
Patten, D.A.; Germain, M.; Kelly, M.A.; Slack, R.S. Reactive oxygen species: stuck in the middle of neurodegeneration. J. Alzheimers Dis., 2010, 20(Suppl. 2), S357-S367.
[http://dx.doi.org/10.3233/JAD-2010-100498] [PMID: 20421690]
[57]
Bolisetty, S.; Jaimes, E.A. Mitochondria and reactive oxygen species: physiology and pathophysiology. Int. J. Mol. Sci., 2013, 14(3), 6306-6344.
[http://dx.doi.org/10.3390/ijms14036306] [PMID: 23528859]
[58]
Liu, Y.; Imlay, J.A. Cell death from antibiotics without the involvement of reactive oxygen species. Science, 2013, 339(6124), 1210-1213.
[http://dx.doi.org/10.1126/science.1232751] [PMID: 23471409]
[59]
St-Pierre, J.; Drori, S.; Uldry, M.; Silvaggi, J.M.; Rhee, J.; Jäger, S.; Handschin, C.; Zheng, K.; Lin, J.; Yang, W.; Simon, D.K.; Bachoo, R.; Spiegelman, B.M. Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell, 2006, 127(2), 397-408.
[http://dx.doi.org/10.1016/j.cell.2006.09.024] [PMID: 17055439]
[60]
Pham, C.G.; Bubici, C.; Zazzeroni, F.; Papa, S.; Jones, J.; Alvarez, K.; Jayawardena, S.; De Smaele, E.; Cong, R.; Beaumont, C.; Torti, F.M.; Torti, S.V.; Franzoso, G. Ferritin heavy chain upregulation by NF-kappaB inhibits TNFalpha-induced apoptosis by suppressing reactive oxygen species. Cell, 2004, 119(4), 529-542.
[http://dx.doi.org/10.1016/j.cell.2004.10.017] [PMID: 15537542]
[61]
Koppisetti, S.; Jenigiri, B.; Terron, M.P.; Tengattini, S.; Tamura, H.; Flores, L.J.; Tan, D.X.; Reiter, R.J. Reactive oxygen species and the hypomotility of the gall bladder as targets for the treatment of gallstones with melatonin: a review. Dig. Dis. Sci., 2008, 53(10), 2592-2603.
[http://dx.doi.org/10.1007/s10620-007-0195-5] [PMID: 18338264]
[62]
Hippeli, S.; Elstner, E.F. OH-radical-type reactive oxygen species: a short review on the mechanisms of OH-radical- and peroxynitrite toxicity. Z. Natforsch. C J. Biosci., 1997, 52(9-10), 555-563.
[http://dx.doi.org/10.1515/znc-1997-9-1001] [PMID: 9373992]
[63]
Fantel, A.G. Reactive oxygen species in developmental toxicity: review and hypothesis. Teratology, 1996, 53(3), 196-217.
[http://dx.doi.org/10.1002/(SICI)1096-9926(199603)53:3<196:AID-TERA7>3.0.CO;2-2] [PMID: 8761887]
[64]
Irani, K. Oxidant signaling in vascular cell growth, death, and survival: a review of the roles of reactive oxygen species in smooth muscle and endothelial cell mitogenic and apoptotic signaling. Circ. Res., 2000, 87(3), 179-183.
[http://dx.doi.org/10.1161/01.RES.87.3.179] [PMID: 10926866]
[65]
Dasuri, K.; Zhang, L.; Keller, J.N. Oxidative stress, neurodegeneration, and the balance of protein degradation and protein synthesis. Free Radic. Biol. Med., 2013, 62, 170-185.
[http://dx.doi.org/10.1016/j.freeradbiomed.2012.09.016] [PMID: 23000246]
[66]
Yang, X.; Wang, Y.; Zhang, Y.; Lee, W.H.; Zhang, Y. Rich diversity and potency of skin antioxidant peptides revealed a novel molecular basis for high-altitude adaptation of amphibians. Sci. Rep., 2016, 6, 19866.
[http://dx.doi.org/10.1038/srep19866] [PMID: 26813022]
[67]
Yang, X.; Lee, W.H.; Zhang, Y. Extremely abundant antimicrobial peptides existed in the skins of nine kinds of Chinese odorous frogs. J. Proteome Res., 2012, 11(1), 306-319.
[http://dx.doi.org/10.1021/pr200782u] [PMID: 22029824]
[68]
Giasson, B.I.; Duda, J.E.; Murray, I.V.; Chen, Q.; Souza, J.M.; Hurtig, H.I.; Ischiropoulos, H.; Trojanowski, J.Q.; Lee, V.M. Oxidative damage linked to neurodegeneration by selective alpha-synuclein nitration in synucleinopathy lesions. Science, 2000, 290(5493), 985-989.
[http://dx.doi.org/10.1126/science.290.5493.985] [PMID: 11062131]
[69]
Dias, V.; Junn, E.; Mouradian, M.M. The role of oxidative stress in Parkinson’s disease. J. Parkinsons Dis., 2013, 3(4), 461-491.
[PMID: 24252804]
[70]
Hwang, O. Role of oxidative stress in Parkinson’s disease. Exp. Neurobiol., 2013, 22(1), 11-17.
[http://dx.doi.org/10.5607/en.2013.22.1.11] [PMID: 23585717]
[71]
Baillet, A.; Chanteperdrix, V.; Trocmé, C.; Casez, P.; Garrel, C.; Besson, G. The role of oxidative stress in amyotrophic lateral sclerosis and Parkinson’s disease. Neurochem. Res., 2010, 35(10), 1530-1537.
[http://dx.doi.org/10.1007/s11064-010-0212-5] [PMID: 20535556]
[72]
Ray, P.D.; Huang, B.W.; Tsuji, Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell. Signal., 2012, 24(5), 981-990.
[http://dx.doi.org/10.1016/j.cellsig.2012.01.008] [PMID: 22286106]
[73]
Butterfield, D.A.; Castegna, A.; Lauderback, C.M.; Drake, J. Evidence that amyloid beta-peptide-induced lipid peroxidation and its sequelae in Alzheimer’s disease brain contribute to neuronal death. Neurobiol. Aging, 2002, 23(5), 655-664.
[http://dx.doi.org/10.1016/S0197-4580(01)00340-2] [PMID: 12392766]
[74]
Mena, N.P.; Urrutia, P.J.; Lourido, F.; Carrasco, C.M.; Núñez, M.T. Mitochondrial iron homeostasis and its dysfunctions in neurodegenerative disorders. Mitochondrion, 2015, 21, 92-105.
[http://dx.doi.org/10.1016/j.mito.2015.02.001] [PMID: 25667951]
[75]
Hroudová, J.; Singh, N.; Fišar, Z. Mitochondrial dysfunctions in neurodegenerative diseases: relevance to Alzheimer’s disease. BioMed Res. Int., 2014.2014175062
[http://dx.doi.org/10.1155/2014/175062] [PMID: 24900954]
[76]
Zuo, L.; Hemmelgarn, B.T.; Chuang, C.C.; Best, T.M. The role of oxidative stress-induced epigenetic alterations in amyloid-β production in Alzheimer’s Disease. Oxid. Med. Cell. Longev., 2015, 2015604658
[http://dx.doi.org/10.1155/2015/604658] [PMID: 26543520]
[77]
Giasson, B.I.; Jakes, R.; Goedert, M.; Duda, J.E.; Leight, S.; Trojanowski, J.Q.; Lee, V.M. A panel of epitope-specific antibodies detects protein domains distributed throughout human alpha-synuclein in Lewy bodies of Parkinson’s disease. J. Neurosci. Res., 2000, 59(4), 528-533.
[http://dx.doi.org/10.1002/(SICI)1097-4547(20000215)59:4<528:AID-JNR8>3.0.CO;2-0] [PMID: 10679792]
[78]
Reynolds, M.R.; Berry, R.W.; Binder, L.I. Site-specific nitration and oxidative dityrosine bridging of the tau protein by peroxynitrite: implications for Alzheimer’s disease. Biochemistry, 2005, 44(5), 1690-1700.
[http://dx.doi.org/10.1021/bi047982v] [PMID: 15683253]
[79]
Horiguchi, T.; Uryu, K.; Giasson, B.I.; Ischiropoulos, H. LightFoot, R.; Bellmann, C.; Richter-Landsberg, C.; Lee, V.M.; Trojanowski, J.Q. Nitration of tau protein is linked to neurodegeneration in tauopathies. Am. J. Pathol., 2003, 163(3), 1021-1031.
[http://dx.doi.org/10.1016/S0002-9440(10)63462-1] [PMID: 12937143]
[80]
Cordier-Ochsenbein, F.; Guerois, R.; Russo-Marie, F.; Neumann, J.M.; Sanson, A. Exploring the folding pathways of annexin I, a multidomain protein. II. Hierarchy in domain folding propensities may govern the folding process. J. Mol. Biol., 1998, 279(5), 1177-1185.
[http://dx.doi.org/10.1006/jmbi.1998.1828] [PMID: 9642093]
[81]
Anfinsen, C.B. Principles that govern the folding of protein chains. Science, 1973, 181(4096), 223-230.
[http://dx.doi.org/10.1126/science.181.4096.223] [PMID: 4124164]
[82]
Herczenik, E.; Gebbink, M.F. Molecular and cellular aspects of protein misfolding and disease. FASEB J., 2008, 22(7), 2115-2133.
[http://dx.doi.org/10.1096/fj.07-099671] [PMID: 18303094]
[83]
Berke, S.J.; Paulson, H.L. Protein aggregation and the ubiquitin proteasome pathway: gaining the UPPer hand on neurodegen-eration. Curr. Opin. Genet. Dev., 2003, 13(3), 253-261.
[http://dx.doi.org/10.1016/S0959-437X(03)00053-4] [PMID: 12787787]
[84]
Friedrich, R.P.; Tepper, K.; Rönicke, R.; Soom, M.; Westermann, M.; Reymann, K.; Kaether, C.; Fändrich, M. Mechanism of amyloid plaque formation suggests an intracellular basis of Abeta pathogenicity. Proc. Natl. Acad. Sci. USA, 2010, 107(5), 1942-1947.
[http://dx.doi.org/10.1073/pnas.0904532106] [PMID: 20133839]
[85]
Glenner, G.G.; Wong, C.W. Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. 1984. Biochem. Biophys. Res. Commun., 2012, 425(3), 534-539.
[http://dx.doi.org/10.1016/j.bbrc.2012.08.020] [PMID: 22925670]
[86]
Polymeropoulos, M.H.; Lavedan, C.; Leroy, E.; Ide, S.E.; Dehejia, A.; Dutra, A.; Pike, B.; Root, H.; Rubenstein, J.; Boyer, R.; Stenroos, E.S.; Chandrasekharappa, S.; Athanassiadou, A.; Papapetropoulos, T.; Johnson, W.G.; Lazzarini, A.M.; Duvoisin, R.C.; Di Iorio, G.; Golbe, L.I.; Nussbaum, R.L. Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science, 1997, 276(5321), 2045-2047.
[http://dx.doi.org/10.1126/science.276.5321.2045] [PMID: 9197268]
[87]
Davies, S.W.; Turmaine, M.; Cozens, B.A.; DiFiglia, M.; Sharp, A.H.; Ross, C.A.; Scherzinger, E.; Wanker, E.E.; Mangiarini, L.; Bates, G.P. Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell, 1997, 90(3), 537-548.
[http://dx.doi.org/10.1016/S0092-8674(00)80513-9] [PMID: 9267033]
[88]
DiFiglia, M.; Sapp, E.; Chase, K.O.; Davies, S.W.; Bates, G.P.; Vonsattel, J.P.; Aronin, N. Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science, 1997, 277(5334), 1990-1993.
[http://dx.doi.org/10.1126/science.277.5334.1990] [PMID: 9302293]
[89]
Johannsen, D.L.; Ravussin, E. The role of mitochondria in health and disease. Curr. Opin. Pharmacol., 2009, 9(6), 780-786.
[http://dx.doi.org/10.1016/j.coph.2009.09.002] [PMID: 19796990]
[90]
Green, D.R.; Kroemer, G. The pathophysiology of mitochondrial cell death. Science, 2004, 305(5684), 626-629.
[http://dx.doi.org/10.1126/science.1099320] [PMID: 15286356]
[91]
Wegierski, T.; Kuznicki, J. Neuronal calcium signaling via store-operated channels in health and disease. Cell Calcium, 2018, 74, 102-111.
[http://dx.doi.org/10.1016/j.ceca.2018.07.001] [PMID: 30015245]
[92]
Singh, A.; Verma, P.; Balaji, G.; Samantaray, S.; Mohanakumar, K.P. Nimodipine, an L-type calcium channel blocker attenuates mitochondrial dysfunctions to protect against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinsonism in mice. Neurochem. Int., 2016, 99, 221-232.
[http://dx.doi.org/10.1016/j.neuint.2016.07.003] [PMID: 27395789]
[93]
Buendia, I.; Tenti, G.; Michalska, P.; Méndez-López, I.; Luengo, E.; Satriani, M.; Padín-Nogueira, F.; López, M.G.; Ramos, M.T.; García, A.G.; Menéndez, J.C.; León, R. ITH14001, a CGP37157-nimodipine hybrid designed to regulate calcium homeostasis and oxidative stress, exerts neuroprotection in cerebral ischemia. ACS Chem. Neurosci., 2017, 8(1), 67-81.
[http://dx.doi.org/10.1021/acschemneuro.6b00181] [PMID: 27731633]
[94]
Shen, A.N.; Cummings, C.; Hoffman, D.; Pope, D.; Arnold, M.; Newland, M.C. Aging, motor function, and sensitivity to calcium channel blockers: an investigation using chronic methylmercury exposure. Behav. Brain Res., 2016, 315, 103-114.
[http://dx.doi.org/10.1016/j.bbr.2016.07.049] [PMID: 27481695]
[95]
McGeer, P.L.; Rogers, J. Anti-inflammatory agents as a therapeutic approach to Alzheimer’s disease. Neurology, 1992, 42(2), 447-449.
[http://dx.doi.org/10.1212/WNL.42.2.447] [PMID: 1736183]
[96]
Koutsouras, G.W.; Ramos, R.L.; Martinez, L.R. Role of microglia in fungal infections of the central nervous system. Virulence, 2017, 8(6), 705-718.
[http://dx.doi.org/10.1080/21505594.2016.1261789] [PMID: 27858519]
[97]
Yamasaki, R. [Role of microglia in inflammatory demyelination lesion in the central nervous system Rinsho Shinkeigaku, 2014, 54(12), 981-983.
[http://dx.doi.org/ 10.5692/clinicalneurol.54.981] [PMID: 25672686]
[98]
Selkoe, D.J. Alzheimer’s disease is a synaptic failure. Science, 2002, 298(5594), 789-791.
[http://dx.doi.org/10.1126/science.1074069] [PMID: 12399581]
[99]
Fuentealba, J.; Dibarrart, A.J.; Fuentes-Fuentes, M.C.; Saez-Orellana, F.; Quiñones, K.; Guzmán, L.; Perez, C.; Becerra, J.; Aguayo, L.G. Synaptic failure and adenosine triphosphate imbalance induced by amyloid-β aggregates are prevented by blueberry-enriched polyphenols extract. J. Neurosci. Res., 2011, 89(9), 1499-1508.
[http://dx.doi.org/10.1002/jnr.22679] [PMID: 21647937]
[100]
Nimmrich, V.; Ebert, U. Is Alzheimer’s disease a result of presynaptic failure? Synaptic dysfunctions induced by oligomeric beta-amyloid. Rev. Neurosci., 2009, 20(1), 1-12.
[http://dx.doi.org/10.1515/REVNEURO.2009.20.1.1] [PMID: 19526730]
[101]
Calo, L.; Wegrzynowicz, M.; Santivañez-Perez, J.; Grazia Spillantini, M. Synaptic failure and α-synuclein. Mov. Disord., 2016, 31(2), 169-177.
[http://dx.doi.org/10.1002/mds.26479] [PMID: 26790375]
[102]
Parodi, J.; Sepúlveda, F.J.; Roa, J.; Opazo, C.; Inestrosa, N.C.; Aguayo, L.G. Beta-amyloid causes depletion of synaptic vesicles leading to neurotransmission failure. J. Biol. Chem., 2010, 285(4), 2506-2514.
[http://dx.doi.org/10.1074/jbc.M109.030023] [PMID: 19915004]
[103]
Bellucci, A.; Mercuri, N.B.; Venneri, A.; Faustini, G.; Longhena, F.; Pizzi, M.; Missale, C.; Spano, P. Review: Parkinson’s disease: from synaptic loss to connectome dysfunction. Neuropathol. Appl. Neurobiol., 2016, 42(1), 77-94.
[http://dx.doi.org/10.1111/nan.12297] [PMID: 26613567]
[104]
Picconi, B.; Piccoli, G.; Calabresi, P. Synaptic dysfunction in Parkinson’s disease. Adv. Exp. Med. Biol., 2012, 970, 553-572.
[http://dx.doi.org/10.1007/978-3-7091-0932-8_24] [PMID: 22351072]
[105]
Bagetta, V.; Ghiglieri, V.; Sgobio, C.; Calabresi, P.; Picconi, B. Synaptic dysfunction in Parkinson’s disease. Biochem. Soc. Trans., 2010, 38(2), 493-497.
[http://dx.doi.org/10.1042/BST0380493] [PMID: 20298209]
[106]
Sepers, M.D.; Raymond, L.A. Mechanisms of synaptic dysfunction and excitotoxicity in Huntington’s disease. Drug Discov. Today, 2014, 19(7), 990-996.
[http://dx.doi.org/10.1016/j.drudis.2014.02.006] [PMID: 24603212]
[107]
Forero, D.A.; Casadesus, G.; Perry, G.; Arboleda, H. Synaptic dysfunction and oxidative stress in Alzheimer’s disease: emerging mechanisms. J. Cell. Mol. Med., 2006, 10(3), 796-805.
[http://dx.doi.org/10.1111/j.1582-4934.2006.tb00439.x] [PMID: 16989739]
[108]
Benarroch, E.E. Glutamatergic synaptic plasticity and dysfunction in Alzheimer disease: emerging mechanisms. Neurology, 2018, 91(3), 125-132.
[http://dx.doi.org/10.1212/WNL.0000000000005807] [PMID: 29898976]
[109]
Criscuolo, C.; Fabiani, C.; Cerri, E.; Domenici, L. Synaptic dysfunction in Alzheimer’s Disease and glaucoma: from common degenerative mechanisms toward neuroprotection. Front. Cell. Neurosci., 2017, 11, 53.
[http://dx.doi.org/10.3389/fncel.2017.00053] [PMID: 28289378]
[110]
Rowan, M.J.; Klyubin, I.; Wang, Q.; Hu, N.W.; Anwyl, R. Synaptic memory mechanisms: Alzheimer’s disease amyloid beta-peptide-induced dysfunction. Biochem. Soc. Trans., 2007, 35(Pt 5), 1219-1223.
[http://dx.doi.org/10.1042/BST0351219] [PMID: 17956317]
[111]
Kirstein-Miles, J.; Morimoto, R.I. Caenorhabditis elegans as a model system to study intercompartmental proteostasis: Interrelation of mitochondrial function, longevity, and neurodegenerative diseases. Dev. Dyn., 2010, 239(5), 1529-1538.
[http://dx.doi.org/10.1002/dvdy.22292] [PMID: 20419784]
[112]
Elobeid, A.; Libard, S.; Leino, M.; Popova, S.N.; Alafuzoff, I. Altered Proteins in the Aging Brain. J. Neuropathol. Exp. Neurol., 2016, 75(4), 316-325.
[http://dx.doi.org/10.1093/jnen/nlw002] [PMID: 26979082]
[113]
de Souza, J.M.; Goncalves, B.D.C.; Gomez, M.V.; Vieira, L.B.; Ribeiro, F.M. Animal toxins as therapeutic tools to treat neurodegenerative diseases. Front. Pharmacol., 2018, 9, 145.
[http://dx.doi.org/10.3389/fphar.2018.00145] [PMID: 29527170]
[114]
Herskind, A.M.; McGue, M.; Holm, N.V.; Sørensen, T.I.; Harvald, B.; Vaupel, J.W. The heritability of human longevity: a population-based study of 2872 Danish twin pairs born 1870-1900. Hum. Genet., 1996, 97(3), 319-323.
[http://dx.doi.org/10.1007/BF02185763] [PMID: 8786073]
[115]
Terman, A.; Kurz, T.; Navratil, M.; Arriaga, E.A.; Brunk, U.T. Mitochondrial turnover and aging of long-lived postmitotic cells: the mitochondrial-lysosomal axis theory of aging. Antioxid. Redox Signal., 2010, 12(4), 503-535.
[http://dx.doi.org/10.1089/ars.2009.2598] [PMID: 19650712]
[116]
Brunk, U.T.; Terman, A. The mitochondrial-lysosomal axis theory of aging: accumulation of damaged mitochondria as a result of imperfect autophagocytosis. Eur. J. Biochem., 2002, 269(8), 1996-2002.
[http://dx.doi.org/10.1046/j.1432-1033.2002.02869.x] [PMID: 11985575]
[117]
Hernandez, D.G.; Nalls, M.A.; Gibbs, J.R.; Arepalli, S.; van der Brug, M.; Chong, S.; Moore, M.; Longo, D.L.; Cookson, M.R.; Traynor, B.J.; Singleton, A.B. Distinct DNA methylation changes highly correlated with chronological age in the human brain. Hum. Mol. Genet., 2011, 20(6), 1164-1172.
[http://dx.doi.org/10.1093/hmg/ddq561] [PMID: 21216877]
[118]
Johnson, S.C.; Dong, X.; Vijg, J.; Suh, Y. Genetic evidence for common pathways in human age-related diseases. Aging Cell, 2015, 14(5), 809-817.
[http://dx.doi.org/10.1111/acel.12362] [PMID: 26077337]
[119]
Jenwitheesuk, A.; Nopparat, C.; Mukda, S.; Wongchitrat, P.; Govitrapong, P. Melatonin regulates aging and neurodegeneration through energy metabolism, epigenetics, autophagy and circadian rhythm pathways. Int. J. Mol. Sci., 2014, 15(9), 16848-16884.
[http://dx.doi.org/10.3390/ijms150916848] [PMID: 25247581]
[120]
Lee, S.T.; Kim, M. Aging and neurodegeneration. Molecular mechanisms of neuronal loss in Huntington’s disease. Mech. Ageing Dev., 2006, 127(5), 432-435.
[http://dx.doi.org/10.1016/j.mad.2006.01.022] [PMID: 16527334]
[121]
Maynard, S.; Fang, E.F.; Scheibye-Knudsen, M.; Croteau, D.L.; Bohr, V.A. DNA damage, DNA repair, aging, and neurodegeneration. Cold Spring Harb. Perspect. Med., 2015, 5(10)a025130
[http://dx.doi.org/10.1101/cshperspect.a025130] [PMID: 26385091]
[122]
Porder, S. Coevolution of life and landscapes. Proc. Natl. Acad. Sci. USA, 2014, 111(9), 3207-3208.
[http://dx.doi.org/10.1073/pnas.1400954111] [PMID: 24556990]
[123]
Lazzaro, B.P. Rolff, J. Immunology. Danger, microbes, and homeostasis. Science, 2011, 332(6025), 43-44.
[http://dx.doi.org/10.1126/science.1200486] [PMID: 21454776]
[124]
Yoshida, T.; Jones, L.E.; Ellner, S.P.; Fussmann, G.F.; Hairston, N.G., Jr Rapid evolution drives ecological dynamics in a predator-prey system. Nature, 2003, 424(6946), 303-306.
[http://dx.doi.org/10.1038/nature01767] [PMID: 12867979]
[125]
Russell, F.E. Poisonous and venomous marine animals and their toxins. Ann. N. Y. Acad. Sci., 1975, 245, 57-64.
[http://dx.doi.org/10.1111/j.1749-6632.1975.tb26833.x] [PMID: 242249]
[126]
Bradley, S.J.; Riaz, S.A.; Tobin, A.B. Employing novel animal models in the design of clinically efficacious GPCR ligands. Curr. Opin. Cell Biol., 2014, 27, 117-125.
[http://dx.doi.org/10.1016/j.ceb.2013.12.002] [PMID: 24680437]
[127]
Wickenden, A.; Priest, B.; Erdemli, G. Ion channel drug discovery: challenges and future directions. Future Med. Chem., 2012, 4(5), 661-679.
[http://dx.doi.org/10.4155/fmc.12.4] [PMID: 22458684]
[128]
Wootten, D.; Christopoulos, A.; Sexton, P.M. Emerging paradigms in GPCR allostery: implications for drug discovery. Nat. Rev. Drug Discov., 2013, 12(8), 630-644.
[http://dx.doi.org/10.1038/nrd4052] [PMID: 23903222]
[129]
Zhang, Y. Why do we study animal toxins? Zool. Res., 2015, 36(4), 183-222.
[PMID: 26228472]
[130]
Casewell, N.R.; Wüster, W.; Vonk, F.J.; Harrison, R.A.; Fry, B.G. Complex cocktails: the evolutionary novelty of venoms. Trends Ecol. Evol. (Amst.), 2013, 28(4), 219-229.
[http://dx.doi.org/10.1016/j.tree.2012.10.020] [PMID: 23219381]
[131]
Fry, B.G.; Roelants, K.; Champagne, D.E.; Scheib, H.; Tyndall, J.D.; King, G.F.; Nevalainen, T.J.; Norman, J.A.; Lewis, R.J.; Norton, R.S.; Renjifo, C.; de la Vega, R.C. The toxicogenomic multiverse: convergent recruitment of proteins into animal venoms. Annu. Rev. Genomics Hum. Genet., 2009, 10, 483-511.
[http://dx.doi.org/10.1146/annurev.genom.9.081307.164356] [PMID: 19640225]
[132]
Haddad, V., Jr; Martins, I.A. Frequency and gravity of human envenomations caused by marine catfish (suborder siluroidei): a clinical and epidemiological study. Toxicon, 2006, 47(8), 838-843.
[http://dx.doi.org/10.1016/j.toxicon.2006.02.005] [PMID: 16713609]
[133]
Abroug, F.; Ouanes-Besbes, L.; Bouchoucha, S. Scorpion envenomation: from a neglected to a helpful disease? Intensive Care Med., 2019, 45(1), 72-74.
[http://dx.doi.org/10.1007/s00134-018-5226-5] [PMID: 29846746]
[134]
Comellas, A.P.; Pesce, L.M. Scorpion envenomation. N. Engl. J. Med., 2014, 371(16), 1558.
[PMID: 25317886]
[135]
Chippaux, J.P. Estimating the global burden of snakebite can help to improve management. PLoS Med., 2008, 5(11)e221
[http://dx.doi.org/10.1371/journal.pmed.0050221] [PMID: 18986211]
[136]
Kasturiratne, A.; Wickremasinghe, A.R.; de Silva, N.; Gunawardena, N.K.; Pathmeswaran, A.; Premaratna, R.; Savioli, L.; Lalloo, D.G.; de Silva, H.J. The global burden of snakebite: a literature analysis and modelling based on regional estimates of envenoming and deaths. PLoS Med., 2008, 5(11)e218
[http://dx.doi.org/10.1371/journal.pmed.0050218] [PMID: 18986210]
[137]
Cohen, S.; Levi-Montalcini, R. A nerve growth-stimulating factor isolated from snake venom. Proc. Natl. Acad. Sci. USA, 1956, 42(9), 571-574.
[http://dx.doi.org/10.1073/pnas.42.9.571] [PMID: 16589907]
[138]
Rocha e Silva, M.; Beraldo, W.T.; Rosenfeld, G. Bradykinin, a hypotensive and smooth muscle stimulating factor released from plasma globulin by snake venoms and by trypsin. Am. J. Physiol., 1949, 156(2), 261-273.
[http://dx.doi.org/10.1152/ajplegacy.1949.156.2.261] [PMID: 18127230]
[139]
Dutertre, S.; Lewis, R.J. Use of venom peptides to probe ion channel structure and function. J. Biol. Chem., 2010, 285(18), 13315-13320.
[http://dx.doi.org/10.1074/jbc.R109.076596] [PMID: 20189991]
[140]
Banerjee, A.; Lee, A.; Campbell, E.; Mackinnon, R. Structure of a pore-blocking toxin in complex with a eukaryotic voltagedependent K(+) channel. eLife 2013, 2e00594.
[http://dx.doi.org/10.7554/eLife.00594] [PMID: 23705070]
[141]
MacKinnon, R. Determination of the subunit stoichiometry of a voltage-activated potassium channel. Nature, 1991, 350(6315), 232-235.
[http://dx.doi.org/10.1038/350232a0] [PMID: 1706481]
[142]
Hidalgo, P.; MacKinnon, R. Revealing the architecture of a K+ channel pore through mutant cycles with a peptide inhibitor. Science, 1995, 268(5208), 307-310.
[http://dx.doi.org/10.1126/science.7716527] [PMID: 7716527]
[143]
MacKinnon, R. Potassium channels. FEBS Lett., 2003, 555(1), 62-65.
[http://dx.doi.org/10.1016/S0014-5793(03)01104-9] [PMID: 14630320]
[144]
Deval, E.; Gasull, X.; Noël, J.; Salinas, M.; Baron, A.; Diochot, S.; Lingueglia, E. Acid-sensing ion channels (ASICs): pharmacology and implication in pain. Pharmacol. Ther., 2010, 128(3), 549-558.
[http://dx.doi.org/10.1016/j.pharmthera.2010.08.006] [PMID: 20807551]
[145]
Baron, A.; Diochot, S.; Salinas, M.; Deval, E.; Noel, J.; Lingueglia, E. Venom toxins in the exploration of molecular, physiological and pathophysiological functions of acid-sensing ion channels. Toxicon, 2013, 75, 187-204.
[http://dx.doi.org/10.1016/j.toxicon.2013.04.008] [PMID: 23624383]
[146]
Bohlen, C.J.; Chesler, A.T.; Sharif-Naeini, R.; Medzihradszky, K.F.; Zhou, S.; King, D.; Sánchez, E.E.; Burlingame, A.L.; Basbaum, A.I.; Julius, D. A heteromeric Texas coral snake toxin targets acid-sensing ion channels to produce pain. Nature, 2011, 479(7373), 410-414.
[http://dx.doi.org/10.1038/nature10607] [PMID: 22094702]
[147]
Baconguis, I.; Bohlen, C.J.; Goehring, A.; Julius, D.; Gouaux, E. X-ray structure of acid-sensing ion channel 1-snake toxin complex reveals open state of a Na(+)-selective channel. Cell, 2014, 156(4), 717-729.
[http://dx.doi.org/10.1016/j.cell.2014.01.011] [PMID: 24507937]
[148]
Diochot, S.; Baron, A.; Salinas, M.; Douguet, D.; Scarzello, S.; Dabert-Gay, A.S.; Debayle, D.; Friend, V.; Alloui, A.; Lazdunski, M.; Lingueglia, E. Black mamba venom peptides target acid-sensing ion channels to abolish pain. Nature, 2012, 490(7421), 552-555.
[http://dx.doi.org/10.1038/nature11494] [PMID: 23034652]
[149]
Wen, M.; Guo, X.; Sun, P.; Xiao, L.; Li, J.; Xiong, Y.; Bao, J.; Xue, T.; Zhang, L.; Tian, C. Site-specific fluorescence spectrum detection and characterization of hASIC1a channels upon toxin mambalgin-1 binding in live mammalian cells. Chem. Commun. (Camb.), 2015, 51(38), 8153-8156.
[http://dx.doi.org/10.1039/C5CC01418B] [PMID: 25873388]
[150]
Schroeder, C.I.; Rash, L.D.; Vila-Farrés, X.; Rosengren, K.J.; Mobli, M.; King, G.F.; Alewood, P.F.; Craik, D.J.; Durek, T. Chemical synthesis, 3D structure, and ASIC binding site of the toxin mambalgin-2. Angew. Chem. Int. Ed. Engl., 2014, 53(4), 1017-1020.
[http://dx.doi.org/10.1002/anie.201308898] [PMID: 24323786]
[151]
Salinas, M.; Besson, T.; Delettre, Q.; Diochot, S.; Boulakirba, S.; Douguet, D.; Lingueglia, E. Binding site and inhibitory mechanism of the mambalgin-2 pain-relieving peptide on acid-sensing ion channel 1a. J. Biol. Chem., 2014, 289(19), 13363-13373.
[http://dx.doi.org/10.1074/jbc.M114.561076] [PMID: 24695733]
[152]
Serrano, S.M. The long road of research on snake venom serine proteinases. Toxicon, 2013, 62, 19-26.
[http://dx.doi.org/10.1016/j.toxicon.2012.09.003] [PMID: 23010164]
[153]
Parry, M.A.; Jacob, U.; Huber, R.; Wisner, A.; Bon, C.; Bode, W. The crystal structure of the novel snake venom plasminogen activator TSV-PA: a prototype structure for snake venom serine proteinases. Structure, 1998, 6(9), 1195-1206.
[http://dx.doi.org/10.1016/S0969-2126(98)00119-1] [PMID: 9753698]
[154]
Watson, S.P.; Herbert, J.M.; Pollitt, A.Y. GPVI and CLEC-2 in hemostasis and vascular integrity. J. Thromb. Haemost., 2010, 8(7), 1456-1467.
[http://dx.doi.org/10.1111/j.1538-7836.2010.03875.x] [PMID: 20345705]
[155]
Prado-Franceschi, J.; Brazil, O.V. Convulxin, a new toxin from the venom of the South American rattlesnake Crotalus durissus terrificus. Toxicon, 1981, 19(6), 875-887.
[http://dx.doi.org/10.1016/0041-0101(81)90085-4] [PMID: 7336450]
[156]
Clemetson, J.M.; Polgar, J.; Magnenat, E.; Wells, T.N.; Clemetson, K.J. The platelet collagen receptor glycoprotein VI is a member of the immunoglobulin superfamily closely related to FcalphaR and the natural killer receptors. J. Biol. Chem., 1999, 274(41), 29019-29024.
[http://dx.doi.org/10.1074/jbc.274.41.29019] [PMID: 10506151]
[157]
Bourgeois, E.A.; Subramaniam, S.; Cheng, T.Y.; De Jong, A.; Layre, E.; Ly, D.; Salimi, M.; Legaspi, A.; Modlin, R.L.; Salio, M.; Cerundolo, V.; Moody, D.B.; Ogg, G. Bee venom processes human skin lipids for presentation by CD1a. J. Exp. Med., 2015, 212(2), 149-163.
[http://dx.doi.org/10.1084/jem.20141505] [PMID: 25584012]
[158]
Palm, N.W.; Rosenstein, R.K.; Medzhitov, R. Allergic host defences. Nature, 2012, 484(7395), 465-472.
[http://dx.doi.org/10.1038/nature11047] [PMID: 22538607]
[159]
Palm, N.W.; Rosenstein, R.K.; Yu, S.; Schenten, D.D.; Florsheim, E.; Medzhitov, R. Bee venom phospholipase A2 induces a primary type 2 response that is dependent on the receptor ST2 and confers protective immunity. Immunity, 2013, 39(5), 976-985.
[http://dx.doi.org/10.1016/j.immuni.2013.10.006] [PMID: 24210353]
[160]
Marichal, T.; Starkl, P.; Reber, L.L.; Kalesnikoff, J.; Oettgen, H.C.; Tsai, M.; Metz, M.; Galli, S.J. A beneficial role for immunoglobulin E in host defense against honeybee venom. Immunity, 2013, 39(5), 963-975.
[http://dx.doi.org/10.1016/j.immuni.2013.10.005] [PMID: 24210352]
[161]
Machkour-M’Rabet, S.; Hénaut, Y.; Winterton, P.; Rojo, R. A case of zootherapy with the tarantula Brachypelma vagans Ausserer, 1875 in traditional medicine of the Chol Mayan ethnic group in Mexico. J. Ethnobiol. Ethnomed., 2011, 7, 12.
[http://dx.doi.org/10.1186/1746-4269-7-12] [PMID: 21450096]
[162]
Reid, P.F. Alpha-cobratoxin as a possible therapy for multiple sclerosis: a review of the literature leading to its development for this application. Crit. Rev. Immunol., 2007, 27(4), 291-302.
[http://dx.doi.org/10.1615/CritRevImmunol.v27.i4.10] [PMID: 18197810]
[163]
Reid, P.F. Cobra venom: A review of the old alternative to opiate analgesics. Altern. Ther. Health Med., 2011, 17(1), 58-71.
[PMID: 21614945]
[164]
Michalsen, A.; Lüdtke, R.; Cesur, O.; Afra, D.; Musial, F.; Baecker, M.; Fink, M.; Dobos, G.J. Effectiveness of leech therapy in women with symptomatic arthrosis of the first carpometacarpal joint: a randomized controlled trial. Pain, 2008, 137(2), 452-459.
[http://dx.doi.org/10.1016/j.pain.2008.03.012] [PMID: 18407413]
[165]
Nouri, M.; Karimi-Yarandi, K.; Etezadi, F.; Amirjamshidi, A. Leech therapy for pain relief: rational behind a notion. Surg. Neurol. Int., 2012, 3, 159.
[http://dx.doi.org/10.4103/2152-7806.105098] [PMID: 23372975]
[166]
Meng, Z.; Yang, P.; Shen, Y.; Bei, W.; Zhang, Y.; Ge, Y.; Newman, R.A.; Cohen, L.; Liu, L.; Thornton, B.; Chang, D.Z.; Liao, Z.; Kurzrock, R. Pilot study of huachansu in patients with hepatocellular carcinoma, nonsmall-cell lung cancer, or pancreatic cancer. Cancer, 2009, 115(22), 5309-5318.
[http://dx.doi.org/10.1002/cncr.24602] [PMID: 19701908]
[167]
Wang, Z.J.; Sun, L.; Heinbockel, T. Resibufogenin and cinobufagin activate central neurons through an ouabain-like action. PLoS One, 2014, 9(11)e113272
[http://dx.doi.org/10.1371/journal.pone.0113272] [PMID: 25420080]
[168]
Peigneur, S.; Tytgat, J. Toxins in drug discovery and pharmacology. Toxins (Basel), 2018, 10(3)E126
[http://dx.doi.org/10.3390/toxins10030126] [PMID: 29547537]
[169]
Harvey, A.L. Toxins and drug discovery. Toxicon, 2014, 92, 193-200.
[http://dx.doi.org/10.1016/j.toxicon.2014.10.020]
[170]
Hodgson, W.C.; Isbister, G.K. The application of toxins and venoms to cardiovascular drug discovery. Curr. Opin. Pharmacol., 2009, 9(2), 173-176.
[http://dx.doi.org/10.1016/j.coph.2008.11.007] [PMID: 19111508]
[171]
King, G.F. Venoms as a platform for human drugs: translating toxins into therapeutics. Expert Opin. Biol. Ther., 2011, 11(11), 1469-1484.
[http://dx.doi.org/10.1517/14712598.2011.621940] [PMID: 21939428]
[172]
Cushman, D.W.; Ondetti, M.A. History of the design of captopril and related inhibitors of angiotensin converting enzyme. Hypertension, 1991, 17(4), 589-592.
[http://dx.doi.org/10.1161/01.HYP.17.4.589] [PMID: 2013486]
[173]
McCleary, R.J.; Kini, R.M. Non-enzymatic proteins from snake venoms: a gold mine of pharmacological tools and drug leads. Toxicon, 2013, 62, 56-74.
[http://dx.doi.org/10.1016/j.toxicon.2012.09.008] [PMID: 23058997]
[174]
Scarborough, R.M.; Naughton, M.A.; Teng, W.; Rose, J.W.; Phillips, D.R.; Nannizzi, L.; Arfsten, A.; Campbell, A.M.; Charo, I.F. Design of potent and specific integrin antagonists. Peptide antagonists with high specificity for glycoprotein IIb-IIIa. J. Biol. Chem., 1993, 268(2), 1066-1073.
[PMID: 8419315]
[175]
Scarborough, R.M. Development of eptifibatide. Am. Heart J., 1999, 138(6 Pt 1), 1093-1104.
[http://dx.doi.org/10.1016/S0002-8703(99)70075-X] [PMID: 10577440]
[176]
Scarborough, R.M.; Rose, J.W.; Hsu, M.A.; Phillips, D.R.; Fried, V.A.; Campbell, A.M.; Nannizzi, L.; Charo, I.F. Barbourin. A GPIIb-IIIa-specific integrin antagonist from the venom of Sistrurus m. barbouri. J. Biol. Chem., 1991, 266(15), 9359-9362.
[PMID: 2033037]
[177]
Lynch, J.J., Jr; Cook, J.J.; Sitko, G.R.; Holahan, M.A.; Ramjit, D.R.; Mellott, M.J.; Stranieri, M.T.; Stabilito, I.I.; Zhang, G.; Lynch, R.J. Nonpeptide glycoprotein IIb/IIIa inhibitors. 5. Antithrombotic effects of MK-0383. J. Pharmacol. Exp. Ther., 1995, 272(1), 20-32.
[PMID: 7815334]
[178]
Saudek, V.; Atkinson, R.A.; Pelton, J.T. Three-dimensional structure of echistatin, the smallest active RGD protein. Biochemistry, 1991, 30(30), 7369-7372.
[http://dx.doi.org/10.1021/bi00244a003] [PMID: 1854743]
[179]
Xu, T.L.; Jiang, X.T.; Hua, W.Y.; Ni, P.Z.; Pei, Y.M. Design and synthesis of amidino-tyrosine derivatives as non-peptide fibrinogen receptor antagonists. Bioorg. Med. Chem. Lett., 1999, 9(14), 1933-1936.
[http://dx.doi.org/10.1016/S0960-894X(99)00308-X] [PMID: 10450956]
[180]
Egbertson, M.S.; Chang, C.T.; Duggan, M.E.; Gould, R.J.; Halczenko, W.; Hartman, G.D.; Laswell, W.L.; Lynch, J.J., Jr; Lynch, R.J.; Manno, P.D. Non-peptide fibrinogen receptor antagonists. 2. Optimization of a tyrosine template as a mimic for Arg-Gly-Asp. J. Med. Chem., 1994, 37(16), 2537-2551.
[http://dx.doi.org/10.1021/jm00042a007] [PMID: 8057299]
[181]
Maraganore, J.M.; Bourdon, P.; Jablonski, J.; Ramachandran, K.L.; Fenton, J.W., II Design and characterization of hirulogs: a novel class of bivalent peptide inhibitors of thrombin. Biochemistry, 1990, 29(30), 7095-7101.
[http://dx.doi.org/10.1021/bi00482a021] [PMID: 2223763]
[182]
Coppens, M.; Eikelboom, J.W.; Gustafsson, D.; Weitz, J.I.; Hirsh, J. Translational success stories: development of direct thrombin inhibitors. Circ. Res., 2012, 111(7), 920-929.
[http://dx.doi.org/10.1161/CIRCRESAHA.112.264903] [PMID: 22982873]
[183]
Olivera, B.M.; Gray, W.R.; Zeikus, R.; McIntosh, J.M.; Varga, J.; Rivier, J.; de Santos, V.; Cruz, L.J. Peptide neurotoxins from fish-hunting cone snails. Science, 1985, 230(4732), 1338-1343.
[http://dx.doi.org/10.1126/science.4071055] [PMID: 4071055]
[184]
Pope, J.E.; Deer, T.R. Ziconotide: a clinical update and pharmacologic review. Expert Opin. Pharmacother., 2013, 14(7), 957-966.
[http://dx.doi.org/10.1517/14656566.2013.784269] [PMID: 23537340]
[185]
Irwin, D.M. Origin and convergent evolution of exendin genes. Gen. Comp. Endocrinol., 2012, 175(1), 27-33.
[http://dx.doi.org/10.1016/j.ygcen.2011.11.025] [PMID: 22137915]
[186]
Eng, J.; Kleinman, W.A.; Singh, L.; Singh, G.; Raufman, J.P. Isolation and characterization of exendin-4, an exendin-3 analogue, from Heloderma suspectum venom. Further evidence for an exendin receptor on dispersed acini from guinea pig pancreas. J. Biol. Chem., 1992, 267(11), 7402-7405.
[PMID: 1313797]
[187]
Göke, R.; Fehmann, H.C.; Linn, T.; Schmidt, H.; Krause, M.; Eng, J.; Göke, B. Exendin-4 is a high potency agonist and truncated exendin-(9-39)-amide an antagonist at the glucagon-like peptide 1-(7-36)-amide receptor of insulin-secreting beta-cells. J. Biol. Chem., 1993, 268(26), 19650-19655.
[PMID: 8396143]
[188]
Aviles-Olmos, I.; Dickson, J.; Kefalopoulou, Z.; Djamshidian, A.; Kahan, J.; Ell, P.; Whitton, P.; Wyse, R.; Isaacs, T.; Lees, A.; Limousin, P.; Foltynie, T. Motor and cognitive advantages persist 12 months after exenatide exposure in Parkinson’s disease. J. Parkinsons Dis., 2014, 4(3), 337-344.
[http://dx.doi.org/10.3233/JPD-140364] [PMID: 24662192]
[189]
Foltynie, T.; Aviles-Olmos, I. Exenatide as a potential treatment for patients with Parkinson’s disease: first steps into the clinic. Alzheimers Dement., 2014, 10(1)(Suppl.), S38-S46.
[http://dx.doi.org/10.1016/j.jalz.2013.12.005] [PMID: 24529524]
[190]
Parkes, D.G.; Mace, K.F.; Trautmann, M.E. Discovery and development of exenatide: the first antidiabetic agent to leverage the multiple benefits of the incretin hormone, GLP-1. Expert Opin. Drug Discov., 2013, 8(2), 219-244.
[http://dx.doi.org/10.1517/17460441.2013.741580] [PMID: 23231438]
[191]
Hunter, K.; Hölscher, C. Drugs developed to treat diabetes, liraglutide and lixisenatide, cross the blood brain barrier and enhance neurogenesis. BMC Neurosci., 2012, 13, 33.
[http://dx.doi.org/10.1186/1471-2202-13-33] [PMID: 22443187]
[192]
Athauda, D.; Maclagan, K.; Skene, S.S.; Bajwa-Joseph, M.; Letchford, D.; Chowdhury, K.; Hibbert, S.; Budnik, N.; Zampedri, L.; Dickson, J.; Li, Y.; Aviles-Olmos, I.; Warner, T.T.; Limousin, P.; Lees, A.J.; Greig, N.H.; Tebbs, S.; Foltynie, T. Exenatide once weekly versus placebo in Parkinson’s disease: a randomised, double-blind, placebo-controlled trial. Lancet, 2017, 390(10103), 1664-1675.
[http://dx.doi.org/10.1016/S0140-6736(17)31585-4] [PMID: 28781108]
[193]
Athauda, D.; Foltynie, T. The glucagon-like peptide 1 (GLP) receptor as a therapeutic target in Parkinson’s disease: mechanisms of action. Drug Discov. Today, 2016, 21(5), 802-818.
[http://dx.doi.org/10.1016/j.drudis.2016.01.013] [PMID: 26851597]
[194]
Fan, R.; Li, X.; Gu, X.; Chan, J.C.; Xu, G. Exendin-4 protects pancreatic beta cells from human islet amyloid polypeptide-induced cell damage: potential involvement of AKT and mitochondria biogenesis. Diabetes Obes. Metab., 2010, 12(9), 815-824.
[http://dx.doi.org/10.1111/j.1463-1326.2010.01238.x] [PMID: 20649634]
[195]
Schapira, A.H. Mitochondria in the aetiology and pathogenesis of Parkinson’s disease. Lancet Neurol., 2008, 7(1), 97-109.
[http://dx.doi.org/10.1016/S1474-4422(07)70327-7] [PMID: 18093566]
[196]
Chen, Y.; Zhang, Y.; Li, L.; Hölscher, C. Neuroprotective effects of geniposide in the MPTP mouse model of Parkinson’s disease. Eur. J. Pharmacol., 2015, 768, 21-27.
[http://dx.doi.org/10.1016/j.ejphar.2015.09.029] [PMID: 26409043]
[197]
Li, Y.; Perry, T.; Kindy, M.S.; Harvey, B.K.; Tweedie, D.; Holloway, H.W.; Powers, K.; Shen, H.; Egan, J.M.; Sambamurti, K.; Brossi, A.; Lahiri, D.K.; Mattson, M.P.; Hoffer, B.J.; Wang, Y.; Greig, N.H. GLP-1 receptor stimulation preserves primary cortical and dopaminergic neurons in cellular and rodent models of stroke and Parkinsonism. Proc. Natl. Acad. Sci. USA, 2009, 106(4), 1285-1290.
[http://dx.doi.org/10.1073/pnas.0806720106] [PMID: 19164583]
[198]
Li, Y.; Tweedie, D.; Mattson, M.P.; Holloway, H.W.; Greig, N.H. Enhancing the GLP-1 receptor signaling pathway leads to proliferation and neuroprotection in human neuroblastoma cells. J. Neurochem., 2010, 113(6), 1621-1631.
[http://dx.doi.org/10.1111/j.1471-4159.2010.06731.x] [PMID: 20374430]
[199]
Xie, Z.; Enkhjargal, B.; Wu, L.; Zhou, K.; Sun, C.; Hu, X.; Gospodarev, V.; Tang, J.; You, C.; Zhang, J.H. Exendin-4 attenuates neuronal death via GLP-1R/PI3K/Akt pathway in early brain injury after subarachnoid hemorrhage in rats. Neuropharmacology, 2018, 128, 142-151.
[http://dx.doi.org/10.1016/j.neuropharm.2017.09.040] [PMID: 28986282]
[200]
Perry, T.; Haughey, N.J.; Mattson, M.P.; Egan, J.M.; Greig, N.H. Protection and reversal of excitotoxic neuronal damage by glucagon-like peptide-1 and exendin-4. J. Pharmacol. Exp. Ther., 2002, 302(3), 881-888.
[http://dx.doi.org/10.1124/jpet.102.037481] [PMID: 12183643]
[201]
Bassil, F.; Canron, M.H.; Vital, A.; Bezard, E.; Li, Y.; Greig, N.H.; Gulyani, S.; Kapogiannis, D.; Fernagut, P.O.; Meissner, W.G. Insulin resistance and exendin-4 treatment for multiple system atrophy. Brain, 2017, 140(5), 1420-1436.
[http://dx.doi.org/10.1093/brain/awx044] [PMID: 28334990]
[202]
Raab, E.L.; Vuguin, P.M.; Stoffers, D.A.; Simmons, R.A. Neonatal exendin-4 treatment reduces oxidative stress and prevents hepatic insulin resistance in intrauterine growth-retarded rats. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2009, 297(6), R1785-R1794.
[http://dx.doi.org/10.1152/ajpregu.00519.2009] [PMID: 19846744]
[203]
Xu, W.; Yang, Y.; Yuan, G.; Zhu, W.; Ma, D.; Hu, S. Exendin-4, a glucagon-like peptide-1 receptor agonist, reduces Alzheimer disease-associated tau hyperphosphorylation in the hippocampus of rats with type 2 diabetes. J. Investig. Med., 2015, 63(2), 267-272.
[http://dx.doi.org/10.1097/JIM.0000000000000129] [PMID: 25479064]
[204]
Kim, S.; Moon, M.; Park, S. Exendin-4 protects dopaminergic neurons by inhibition of microglial activation and matrix metalloproteinase-3 expression in an animal model of Parkinson’s disease. J. Endocrinol., 2009, 202(3), 431-439.
[http://dx.doi.org/10.1677/JOE-09-0132] [PMID: 19570816]
[205]
Harkavyi, A.; Abuirmeileh, A.; Lever, R.; Kingsbury, A.E.; Biggs, C.S.; Whitton, P.S. Glucagon-like peptide 1 receptor stimulation reverses key deficits in distinct rodent models of Parkinson’s disease. J. Neuroinflammation, 2008, 5, 19.
[http://dx.doi.org/10.1186/1742-2094-5-19] [PMID: 18492290]
[206]
Kim, S.; Jeong, J.; Jung, H.S.; Kim, B.; Kim, Y.E.; Lim, D.S.; Kim, S.D.; Song, Y.S. Anti-inflammatory effect of glucagon like peptide-1 receptor agonist, exendin-4, through modulation of IB1/JIP1 Expression and JNK signaling in stroke. Exp. Neurobiol., 2017, 26(4), 227-239.
[http://dx.doi.org/10.5607/en.2017.26.4.227] [PMID: 28912645]
[207]
Kim, D.S.; Choi, H.I.; Wang, Y.; Luo, Y.; Hoffer, B.J.; Greig, N.H. A new treatment strategy for Parkinson’s Disease through the gut-brain axis: the glucagon-like peptide-1 receptor pathway. Cell Transplant., 2017, 26(9), 1560-1571.
[http://dx.doi.org/10.1177/0963689717721234] [PMID: 29113464]
[208]
Athauda, D.; Foltynie, T. Protective effects of the GLP-1 mimetic exendin-4 in Parkinson’s disease. Neuropharmacology,, 2018, 136(Pt B), 260-270.
[http://dx.doi.org/10.1016/j.neuropharm.2017.09.023] [PMID: 28927992]
[209]
Zieminska, E.; Matyja, E.; Kozlowska, H.; Stafiej, A.; Lazarewicz, J.W. Excitotoxic neuronal injury in acute homocysteine neurotoxicity: role of calcium and mitochondrial alterations. Neurochem. Int., 2006, 48(6-7), 491-497.
[http://dx.doi.org/10.1016/j.neuint.2005.12.023] [PMID: 16513213]
[210]
Choi, D.W. Calcium and excitotoxic neuronal injury. Ann. N. Y. Acad. Sci., 1994, 747, 162-171.
[http://dx.doi.org/10.1111/j.1749-6632.1994.tb44407.x] [PMID: 7847669]
[211]
Wheeler, D.B.; Randall, A.; Tsien, R.W. Roles of N-type and Q-type Ca2+ channels in supporting hippocampal synaptic transmission. Science, 1994, 264(5155), 107-111.
[http://dx.doi.org/10.1126/science.7832825] [PMID: 7832825]
[212]
Choi, D.W. Calcium: still center-stage in hypoxic-ischemic neuronal death. Trends Neurosci., 1995, 18(2), 58-60.
[http://dx.doi.org/10.1016/0166-2236(95)80018-W] [PMID: 7537408]
[213]
Uchitel, O.D. Toxins affecting calcium channels in neurons. Toxicon, 1997, 35(8), 1161-1191.
[http://dx.doi.org/10.1016/S0041-0101(96)00210-3] [PMID: 9278968]
[214]
Pringle, A.K.; Benham, C.D.; Sim, L.; Kennedy, J.; Iannotti, F.; Sundstrom, L.E. Selective N-type calcium channel antagonist omega conotoxin MVIIA is neuroprotective against hypoxic neurodegeneration in organotypic hippocampal-slice cultures. Stroke, 1996, 27(11), 2124-2130.
[http://dx.doi.org/10.1161/01.STR.27.11.2124] [PMID: 8898826]
[215]
Olivera, B.M.; Cruz, L.J.; de Santos, V.; LeCheminant, G.W.; Griffin, D.; Zeikus, R.; McIntosh, J.M.; Galyean, R.; Varga, J.; Gray, W.R. Neuronal calcium channel antagonists. Discrimination between calcium channel subtypes using omega-conotoxin from Conus magus venom. Biochemistry, 1987, 26(8), 2086-2090.
[http://dx.doi.org/10.1021/bi00382a004] [PMID: 2441741]
[216]
Valentino, K.; Newcomb, R.; Gadbois, T.; Singh, T.; Bowersox, S.; Bitner, S.; Justice, A.; Yamashiro, D.; Hoffman, B.B.; Ciaranello, R. A selective N-type calcium channel antagonist protects against neuronal loss after global cerebral ischemia. Proc. Natl. Acad. Sci. USA, 1993, 90(16), 7894-7897.
[http://dx.doi.org/10.1073/pnas.90.16.7894] [PMID: 8102803]
[217]
Zhao, Q.; Smith, M.L.; Siesjö, B.K. The omega-conopeptide SNX-111, an N-type calcium channel blocker, dramatically ameliorates brain damage due to transient focal ischaemia. Acta Physiol. Scand., 1994, 150(4), 459-461.
[http://dx.doi.org/10.1111/j.1748-1716.1994.tb09713.x] [PMID: 8036915]
[218]
Bowersox, S.S.; Singh, T.; Luther, R.R. Selective blockade of N-type voltage-sensitive calcium channels protects against brain injury after transient focal cerebral ischemia in rats. Brain Res., 1997, 747(2), 343-347.
[http://dx.doi.org/10.1016/S0006-8993(96)01325-X] [PMID: 9046013]
[219]
Xiong, Y.; Peterson, P.L.; Verweij, B.H.; Vinas, F.C.; Muizelaar, J.P.; Lee, C.P. Mitochondrial dysfunction after experimental traumatic brain injury: combined efficacy of SNX-111 and U-101033E. J. Neurotrauma, 1998, 15(7), 531-544.
[http://dx.doi.org/10.1089/neu.1998.15.531] [PMID: 9674556]
[220]
Takizawa, S.; Matsushima, K.; Fujita, H.; Nanri, K.; Ogawa, S.; Shinohara, Y. A selective N-type calcium channel antagonist reduces extracellular glutamate release and infarct volume in focal cerebral ischemia. J. Cereb. Blood Flow Metab., 1995, 15(4), 611-618.
[http://dx.doi.org/10.1038/jcbfm.1995.75] [PMID: 7790409]
[221]
Buchan, A.M.; Gertler, S.Z.; Li, H.; Xue, D.; Huang, Z.G.; Chaundy, K.E.; Barnes, K.; Lesiuk, H.J. A selective N-type Ca(2+)-channel blocker prevents CA1 injury 24 h following severe forebrain ischemia and reduces infarction following focal ischemia. J. Cereb. Blood Flow Metab., 1994, 14(6), 903-910.
[http://dx.doi.org/10.1038/jcbfm.1994.121] [PMID: 7929655]
[222]
Perez-Pinzon, M.A.; Yenari, M.A.; Sun, G.H.; Kunis, D.M.; Steinberg, G.K. SNX-111, a novel, presynaptic N-type calcium channel antagonist, is neuroprotective against focal cerebral ischemia in rabbits. J. Neurol. Sci., 1997, 153(1), 25-31.
[http://dx.doi.org/10.1016/S0022-510X(97)00196-2] [PMID: 9455974]
[223]
Bowersox, S.; Mandema, J.; Tarczy-Hornoch, K.; Miljanich, G.; Luther, R.R. Pharmacokinetics of SNX-111, a selective N-type calcium channel blocker, in rats and cynomolgus monkeys. Drug Metab. Dispos., 1997, 25(3), 379-383.
[PMID: 9172958]
[224]
Heading, C.E. Ziconotide (Elan Pharmaceuticals). IDrugs, 2001, 4(3), 339-350.
[PMID: 16025393]
[225]
McGivern, J.G. Ziconotide: a review of its pharmacology and use in the treatment of pain. Neuropsychiatr. Dis. Treat., 2007, 3(1), 69-85.
[http://dx.doi.org/10.2147/nedt.2007.3.1.69] [PMID: 19300539]
[226]
Smith, H.S.; Deer, T.R. Safety and efficacy of intrathecal ziconotide in the management of severe chronic pain. Ther. Clin. Risk Manag., 2009, 5(3), 521-534.
[http://dx.doi.org/10.2147/TCRM.S4438] [PMID: 19707262]
[227]
Hillyard, D.R.; Monje, V.D.; Mintz, I.M.; Bean, B.P.; Nadasdi, L.; Ramachandran, J.; Miljanich, G.; Azimi-Zoonooz, A.; McIntosh, J.M.; Cruz, L.J. A new Conus peptide ligand for mammalian presynaptic Ca2+ channels. Neuron, 1992, 9(1), 69-77.
[http://dx.doi.org/10.1016/0896-6273(92)90221-X] [PMID: 1352986]
[228]
Liu, H.; De Waard, M.; Scott, V.E.; Gurnett, C.A.; Lennon, V.A.; Campbell, K.P. Identification of three subunits of the high affinity omega-conotoxin MVIIC-sensitive Ca2+ channel. J. Biol. Chem., 1996, 271(23), 13804-13810.
[http://dx.doi.org/10.1074/jbc.271.23.13804] [PMID: 8662888]
[229]
Imaizumi, T.; Kocsis, J.D.; Waxman, S.G. The role of voltage-gated Ca2+ channels in anoxic injury of spinal cord white matter. Brain Res., 1999, 817(1-2), 84-92.
[http://dx.doi.org/10.1016/S0006-8993(98)01214-1] [PMID: 9889329]
[230]
Oliveira, K.M.; Lavor, M.S.; Silva, C.M.; Fukushima, F.B.; Rosado, I.R.; Silva, J.F.; Martins, B.C.; Guimarães, L.B.; Gomez, M.V.; Melo, M.M.; Melo, e.g Omega-conotoxin MVIIC attenuates neuronal apoptosis in vitro and improves significant recovery after spinal cord injury in vivo in rats. Int. J. Clin. Exp. Pathol., 2014, 7(7), 3524-3536.
[PMID: 25120731]
[231]
Madden, K.P.; Clark, W.M.; Marcoux, F.W.; Probert, A.W., Jr; Weber, M.L.; Rivier, J.; Zivin, J.A. Treatment with conotoxin, an ‘N-type’ calcium channel blocker, in neuronal hypoxic-ischemic injury. Brain Res., 1990, 537(1-2), 256-262.
[http://dx.doi.org/10.1016/0006-8993(90)90366-J] [PMID: 2085777]
[232]
Wang, X.; Treistman, S.N.; Lemos, J.R. Two types of high-threshold calcium currents inhibited by omega-conotoxin in nerve terminals of rat neurohypophysis. J. Physiol., 1992, 445, 181-199.
[http://dx.doi.org/10.1113/jphysiol.1992.sp018919] [PMID: 1323666]
[233]
Reis, H.J.; Prado, M.A.; Kalapothakis, E.; Cordeiro, M.N.; Diniz, C.R.; De Marco, L.A.; Gomez, M.V.; Romano-Silva, M.A. Inhibition of glutamate uptake by a polypeptide toxin (phoneutriatoxin 3-4) from the spider Phoneutria nigriventer. Biochem. J., 1999, 343(Pt 2), 413-418.
[http://dx.doi.org/10.1042/bj3430413] [PMID: 10510308]
[234]
Pinheiro, A.C.; Gomez, R.S.; Massensini, A.R.; Cordeiro, M.N.; Richardson, M.; Romano-Silva, M.A.; Prado, M.A.; De Marco, L.; Gomez, M.V. Neuroprotective effect on brain injury by neurotoxins from the spider Phoneutria nigriventer. Neurochem. Int., 2006, 49(5), 543-547.
[http://dx.doi.org/10.1016/j.neuint.2006.04.009] [PMID: 16759753]
[235]
Guatimosim, C.; Romano-Silva, M.A.; Cruz, J.S.; Beirão, P.S.; Kalapothakis, E.; Moraes-Santos, T.; Cordeiro, M.N.; Diniz, C.R.; Gomez, M.V.; Prado, M.A. A toxin from the spider Phoneutria nigriventer that blocks calcium channels coupled to exocytosis. Br. J. Pharmacol., 1997, 122(3), 591-597.
[http://dx.doi.org/10.1038/sj.bjp.0701381] [PMID: 9351520]
[236]
Miranda, D.M.; Romano-Silva, M.A.; Kalapothakis, E.; Diniz, C.R.; Cordeiro, M.N.; Santos, T.M.; Prado, M.A.; Gomez, M.V. Phoneutria nigriventer toxins block tityustoxin-induced calcium influx in synaptosomes. Neuroreport, 1998, 9(7), 1371-1373.
[http://dx.doi.org/10.1097/00001756-199805110-00022] [PMID: 9631431]
[237]
Pinheiro, A.C.; da Silva, A.J.; Prado, M.A. Cordeiro, Mdo.N.; Richardson, M.; Batista, M.C.; de Castro Junior, C.J.; Massensini, A.R.; Guatimosim, C.; Romano-Silva, M.A.; Kushmerick, C.; Gomez, M.V. Phoneutria spider toxins block ischemia-induced glutamate release, neuronal death, and loss of neurotransmission in hippocampus. Hippocampus, 2009, 19(11), 1123-1129.
[http://dx.doi.org/10.1002/hipo.20580] [PMID: 19370546]
[238]
Liang, S.P.; Zhang, D.Y.; Pan, X.; Chen, Q.; Zhou, P.A. Properties and amino acid sequence of huwentoxin-I, a neurotoxin purified from the venom of the Chinese bird spider Selenocosmia huwena. Toxicon, 1993, 31(8), 969-978.
[PMID: 8212049]
[239]
Wang, Y.R.; Liu, R.Y.; Wang, L.C.; Mao, H.F.; Chen, J.Q. Effect of Huwentoxin-I on the Fas and TNF apoptosis path-way in the hippocampus of rat with global cerebral ischemia. Toxicon, 2007, 50(8), 1085-1094.
[http://dx.doi.org/10.1016/j.toxicon.2007.07.020] [PMID: 17900647]
[240]
Cordeiro Mdo, N.; de Figueiredo, S.G.; Valentim Ado, C.; Diniz, C.R.; von Eickstedt, V.R.; Gilroy, J.; Richardson, M. Purification and amino acid sequences of six Tx3 type neurotoxins from the venom of the Brazilian ‘armed’ spider Phoneutria nigriventer (Keys). Toxicon, 1993, 31(1), 35-42.
[PMID: 8446961]
[241]
de Souza, A.H.; Lima, M.C.; Drewes, C.C.; da Silva, J.F.; Torres, K.C.; Pereira, E.M.; de Castro, C.J. Junior; Vieira, L.B.; Cordeiro, M.N.; Richardson, M.; Gomez, R.S. Romano-Silva, M.A.; Ferreira, J.; Gomez, M.V. Antiallodynic effect and side effects of Phα1β, a neurotoxin from the spider Phoneutria nigriventer: comparison with ω -conotoxin MVIIA and morphine. Toxicon, 2011, 58(8), 626-633.
[http://dx.doi.org/10.1016/j.toxicon.2011.09.008] [PMID: 21967810]
[242]
Rigo, F.K.; Dalmolin, G.D.; Trevisan, G.; Tonello, R.; Silva, M.A.; Rossato, M.F.; Klafke, J.Z. Cordeiro, Mdo.N.; Castro Junior, C.J.; Montijo, D.; Gomez, M.V.; Ferreira, J. Effect of ω-conotoxin MVIIA and Phα1β on paclitaxel-induced acute and chronic pain. Pharmacol. Biochem. Behav., 2013, 114-115, 16-22.
[http://dx.doi.org/10.1016/j.pbb.2013.10.014] [PMID: 24148893]
[243]
Rigo, F.K.; Trevisan, G.; Rosa, F.; Dalmolin, G.D.; Otuki, M.F.; Cueto, A.P.; de Castro, Junior, C.J.; Romano-Silva, M.A. Cordeiro, Mdo.N.; Richardson, M.; Ferreira, J.; Gomez, M.V. Spider peptide Phα1β induces analgesic effect in a model of cancer pain. Cancer Sci., 2013, 104(9), 1226-1230.
[http://dx.doi.org/10.1111/cas.12209] [PMID: 23718272]
[244]
Rigo, F.K.; Trevisan, G.; De Pra, S.D.; Cordeiro, M.N.; Borges, M.H.; Silva, J.F.; Santa Cecilia, F.V.; de Souza, A.H.; de Oliveira Adamante, G.; Milioli, A.M.; de Castro, C.J. Junior; Ferreira, J.; Gomez, M.V. The spider toxin Phalpha1beta recombinant possesses strong analgesic activity. Toxicon, 2017, 133, 145-152.
[http://dx.doi.org/10.1016/j.toxicon.2017.05.018] [PMID: 28526335]
[245]
Silva, R.B.M.; Greggio, S.; Venturin, G.T.; da Costa, J.C.; Gomez, M.V.; Campos, M.M. Beneficial effects of the calcium channel blocker CTK 01512-2 in a mouse model of multiple sclerosis. Mol. Neurobiol., 2018, 55(12), 9307-9327.
[http://dx.doi.org/10.1007/s12035-018-1049-1] [PMID: 29667130]
[246]
Astrup, J.; Symon, L.; Branston, N.M.; Lassen, N.A. Cortical evoked potential and extracellular K+ and H+ at critical levels of brain ischemia. Stroke, 1977, 8(1), 51-57.
[http://dx.doi.org/10.1161/01.STR.8.1.51] [PMID: 13521]
[247]
Xiong, Z.G.; Zhu, X.M.; Chu, X.P.; Minami, M.; Hey, J.; Wei, W.L.; MacDonald, J.F.; Wemmie, J.A.; Price, M.P.; Welsh, M.J.; Simon, R.P. Neuroprotection in ischemia: blocking calcium-permeable acid-sensing ion channels. Cell, 2004, 118(6), 687-698.
[http://dx.doi.org/10.1016/j.cell.2004.08.026] [PMID: 15369669]
[248]
Li, M.; Inoue, K.; Branigan, D.; Kratzer, E.; Hansen, J.C.; Chen, J.W.; Simon, R.P.; Xiong, Z.G. Acid-sensing ion channels in acidosis-induced injury of human brain neurons. J. Cereb. Blood Flow Metab., 2010, 30(6), 1247-1260.
[http://dx.doi.org/10.1038/jcbfm.2010.30] [PMID: 20216553]
[249]
Arias, R.L.; Sung, M.L.; Vasylyev, D.; Zhang, M.Y.; Albinson, K.; Kubek, K.; Kagan, N.; Beyer, C.; Lin, Q.; Dwyer, J.M.; Zaleska, M.M.; Bowlby, M.R.; Dunlop, J.; Monaghan, M. Amiloride is neuroprotective in an MPTP model of Parkinson’s disease. Neurobiol. Dis., 2008, 31(3), 334-341.
[http://dx.doi.org/10.1016/j.nbd.2008.05.008] [PMID: 18606547]
[250]
Pignataro, G.; Simon, R.P.; Xiong, Z.G. Prolonged activation of ASIC1a and the time window for neuroprotection in cerebral ischaemia. Brain, 2007, 130(Pt 1), 151-158.
[http://dx.doi.org/10.1093/brain/awl325] [PMID: 17114797]
[251]
Yang, Z.J.; Ni, X.; Carter, E.L.; Kibler, K.; Martin, L.J.; Koehler, R.C. Neuroprotective effect of acid-sensing ion channel inhibitor psalmotoxin-1 after hypoxia-ischemia in newborn piglet striatum. Neurobiol. Dis., 2011, 43(2), 446-454.
[http://dx.doi.org/10.1016/j.nbd.2011.04.018] [PMID: 21558004]
[252]
Escoubas, P.; De Weille, J.R.; Lecoq, A.; Diochot, S.; Waldmann, R.; Champigny, G.; Moinier, D.; Ménez, A.; Lazdunski, M. Isolation of a tarantula toxin specific for a class of proton-gated Na+ channels. J. Biol. Chem., 2000, 275(33), 25116-25121.
[http://dx.doi.org/10.1074/jbc.M003643200] [PMID: 10829030]
[253]
Saez, N.J.; Mobli, M.; Bieri, M.; Chassagnon, I.R.; Malde, A.K.; Gamsjaeger, R.; Mark, A.E.; Gooley, P.R.; Rash, L.D.; King, G.F. A dynamic pharmacophore drives the interaction between Psalmotoxin-1 and the putative drug target acid-sensing ion channel 1a. Mol. Pharmacol., 2011, 80(5), 796-808.
[http://dx.doi.org/10.1124/mol.111.072207] [PMID: 21825095]
[254]
McCarthy, C.A.; Rash, L.D.; Chassagnon, I.R.; King, G.F.; Widdop, R.E. PcTx1 affords neuroprotection in a conscious model of stroke in hypertensive rats via selective inhibition of ASIC1a. Neuropharmacology, 2015, 99, 650-657.
[http://dx.doi.org/10.1016/j.neuropharm.2015.08.040] [PMID: 26320544]
[255]
Sun, X.; Jin, J.; Zhang, J.G.; Qi, L.; Braun, F.K.; Zhang, X.D.; Xu, F. Expression of acid-sensing ion channels in nucleus pulposus cells of the human intervertebral disk is regulated by non-steroid anti-inflammatory drugs. Acta Biochim. Biophys. Sin. (Shanghai), 2014, 46(9), 774-781.
[http://dx.doi.org/10.1093/abbs/gmu067] [PMID: 25079679]
[256]
Zhou, R.P.; Ni, W.L.; Dai, B.B.; Wu, X.S.; Wang, Z.S.; Xie, Y.Y.; Wang, Z.Q.; Yang, W.J.; Ge, J.F.; Hu, W.; Chen, F.H. ASIC2a overexpression enhances the protective effect of PcTx1 and APETx2 against acidosis-induced articular chondrocyte apoptosis and cytotoxicity. Gene, 2018, 642, 230-240.
[http://dx.doi.org/10.1016/j.gene.2017.11.034] [PMID: 29141196]
[257]
Chassagnon, I.R.; McCarthy, C.A.; Chin, Y.K.; Pineda, S.S.; Keramidas, A.; Mobli, M.; Pham, V.; De Silva, T.M.; Lynch, J.W.; Widdop, R.E.; Rash, L.D.; King, G.F. Potent neuroprotection after stroke afforded by a double-knot spider-venom peptide that inhibits acid-sensing ion channel 1a. Proc. Natl. Acad. Sci. USA, 2017, 114(14), 3750-3755.
[http://dx.doi.org/10.1073/pnas.1614728114] [PMID: 28320941]
[258]
Liao, Q.; Li, S.; Siu, S.W.I.; Yang, B.; Huang, C.; Chan, J.Y.; Morlighem, J.R.L.; Wong, C.T.T.; Rádis-Baptista, G.; Lee, S.M. Novel kunitz-like peptides discovered in the Zoanthid Palythoa caribaeorum through transcriptome sequencing. J. Proteome Res., 2018, 17(2), 891-902.
[http://dx.doi.org/10.1021/acs.jproteome.7b00686] [PMID: 29285938]
[259]
Jones, R.M.; Bulaj, G. Conotoxins - new vistas for peptide therapeutics. Curr. Pharm. Des., 2000, 6(12), 1249-1285.
[http://dx.doi.org/10.2174/1381612003399653] [PMID: 10903392]
[260]
Harvey, A.L.; Bradley, K.N.; Cochran, S.A.; Rowan, e.g.; Pratt, J.A.; Quillfeldt, J.A.; Jerusalinsky, D.A. What can toxins tell us for drug discovery? Toxicon, 1998, 36(11), 1635-1640.
[http://dx.doi.org/10.1016/S0041-0101(98)00156-1]
[261]
Dauer, W.; Przedborski, S. Parkinson’s disease: mechanisms and models. Neuron, 2003, 39(6), 889-909.
[http://dx.doi.org/10.1016/S0896-6273(03)00568-3] [PMID: 12971891]
[262]
Isacson, O. Models of repair mechanisms for future treatment modalities of Parkinson’s disease. Brain Res. Bull., 2002, 57(6), 839-846.
[http://dx.doi.org/10.1016/S0361-9230(01)00773-0] [PMID: 12031282]
[263]
Jucker, M. The benefits and limitations of animal models for translational research in neurodegenerative diseases. Nat. Med., 2010, 16(11), 1210-1214.
[http://dx.doi.org/10.1038/nm.2224] [PMID: 21052075]
[264]
Fahnert, B. Using folding promoting agents in recombinant protein production: a review. Methods Mol. Biol., 2012, 824, 3-36.
[http://dx.doi.org/10.1007/978-1-61779-433-9_1] [PMID: 22160891]
[265]
Fahnert, B. Folding-promoting agents in recombinant protein production. Methods Mol. Biol., 2004, 267, 53-74.
[PMID: 15269415]
[266]
Rosano, G.L.; Ceccarelli, E.A. Recombinant protein expression in Escherichia coli: advances and challenges. Front. Microbiol., 2014, 5, 172.
[http://dx.doi.org/10.3389/fmicb.2014.00172] [PMID: 24860555]
[267]
Stefan, A.; Ceccarelli, A.; Conte, E.; Monton Silva, A.; Hochkoeppler, A. The multifaceted benefits of protein co-expression in Escherichia coli. J. Vis. Exp., 2015, (96) 10.3791/52431
[http://dx.doi.org/10.3791/52431] [PMID: 25742393]
[268]
Khan, K.H. Gene expression in mammalian cells and its applications. Adv. Pharm. Bull., 2013, 3(2), 257-263.
[PMID: 24312845]
[269]
Miranda, L.P.; Alewood, P.F. Accelerated chemical synthesis of peptides and small proteins. Proc. Natl. Acad. Sci. USA, 1999, 96(4), 1181-1186.
[http://dx.doi.org/10.1073/pnas.96.4.1181] [PMID: 9989998]
[270]
Münzker, L.; Oddo, A.; Hansen, P.R. Chemical synthesis of antimicrobial peptides. Methods Mol. Biol., 2017, 1548, 35-49.
[http://dx.doi.org/10.1007/978-1-4939-6737-7_3] [PMID: 28013495]
[271]
Yan, L.Z.; Dawson, P.E. Synthesis of peptides and proteins without cysteine residues by native chemical ligation combined with desulfurization. J. Am. Chem. Soc., 2001, 123(4), 526-533.
[http://dx.doi.org/10.1021/ja003265m] [PMID: 11456564]
[272]
Engelhard, M. Quest for the chemical synthesis of proteins. J. Pept. Sci., 2016, 22(5), 246-251.
[http://dx.doi.org/10.1002/psc.2880]
[273]
Hojo, H. Recent progress in the chemical synthesis of proteins. Curr. Opin. Struct. Biol., 2014, 26, 16-23.
[http://dx.doi.org/10.1016/j.sbi.2014.03.002] [PMID: 24681507]
[274]
Nilsson, B.L.; Soellner, M.B.; Raines, R.T. Chemical synthesis of proteins. Annu. Rev. Biophys. Biomol. Struct., 2005, 34, 91-118.
[http://dx.doi.org/10.1146/annurev.biophys.34.040204.144700] [PMID: 15869385]
[275]
Ferreira, S.H.; Bartelt, D.C.; Greene, L.J. Isolation of bradykinin-potentiating peptides from Bothrops jararaca venom. Biochemistry, 1970, 9(13), 2583-2593.
[http://dx.doi.org/10.1021/bi00815a005] [PMID: 4317874]
[276]
Cushman, D.W.; Ondetti, M.A. Inhibitors of angiotensin-converting enzyme. Prog. Med. Chem., 1980, 17, 41-104.
[http://dx.doi.org/10.1016/S0079-6468(08)70157-7] [PMID: 6273970]
[277]
Gentilella, R.; Bianchi, C.; Rossi, A.; Rotella, C.M. Exenatide: a review from pharmacology to clinical practice. Diabetes Obes. Metab., 2009, 11(6), 544-556.
[http://dx.doi.org/10.1111/j.1463-1326.2008.01018.x] [PMID: 19383034]
[278]
Nielsen, L.L.; Baron, A.D. Pharmacology of exenatide (synthetic exendin-4) for the treatment of type 2 diabetes. Curr. Opin. Investig. Drugs, 2003, 4(4), 401-405.
[PMID: 12808878]
[279]
Furman, B.L. The development of Byetta (exenatide) from the venom of the Gila monster as an anti-diabetic agent. Toxicon, 2012, 59(4), 464-471.
[http://dx.doi.org/10.1016/j.toxicon.2010.12.016] [PMID: 21194543]
[280]
Triplitt, C.; Chiquette, E. Exenatide: from the Gila monster to the pharmacy. J. Am. Pharm. Assoc. (2003), 2006, 46(1), 44-52.
[http://dx.doi.org/10.1331/154434506775268698] [PMID: 16529340]
[281]
Garsky, V.M.; Lumma, P.K.; Freidinger, R.M.; Pitzenberger, S.M.; Randall, W.C.; Veber, D.F.; Gould, R.J.; Friedman, P.A. Chemical synthesis of echistatin, a potent inhibitor of platelet aggregation from Echis carinatus: synthesis and biological activity of selected analogs. Proc. Natl. Acad. Sci. USA, 1989, 86(11), 4022-4026.
[http://dx.doi.org/10.1073/pnas.86.11.4022] [PMID: 2726764]
[282]
Hashemzadeh, M.; Furukawa, M.; Goldsberry, S.; Movahed, M.R. Chemical structures and mode of action of intravenous glycoprotein IIb/IIIa receptor blockers: a review. Exp. Clin. Cardiol., 2008, 13(4), 192-197.
[PMID: 19343166]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy