Review Article

动物毒肽作为抗神经退行性疾病新疗法的宝藏

卷 26, 期 25, 2019

页: [4749 - 4774] 页: 26

弟呕挨: 10.2174/0929867325666181031122438

价格: $65

摘要

背景:神经退行性疾病,例如阿尔茨海默氏病,帕金森氏病和脑缺血性中风,给患者和医疗系统带来了巨大的社会经济负担。 然而,针对这些疾病的药物仍然不能令人满意,因此迫切需要开发新颖和有效的候选药物。 方法:动物毒素在蛋白质和多肽上均表现出丰富的多样性,在生物医学药物开发中起着至关重要的作用。 作为一种分子工具,动物毒素肽不仅有助于阐明许多关键的生理过程,而且还导致了新药和临床疗法的发现。 结果:最近,从有毒动物中鉴定出毒素肽,例如有毒动物。 已显示蜘蛛毒液中的艾塞那肽,齐考诺肽,Hi1a和PcTx1可以阻断特定的离子通道,减轻炎症,减少蛋白质聚集,调节谷氨酸和神经递质水平并增加神经保护因子。 结论:因此,毒液的成分作为缓解或减少神经变性的候选药物具有相当大的能力。 这篇综述重点介绍了评估不同动物毒素(尤其是肽)作为治疗不同神经退行性疾病和病症的有前途的治疗工具的研究。

关键词: 动物毒素,小肽,分子机制,治疗方法,神经退行性疾病,兴奋性毒性

[1]
The Huntington’s Disease Collaborative Research Group. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell, 1993, 72(6), 971-983.
[http://dx.doi.org/10.1016/0092-8674(93)90585-E] [PMID: 8458085]
[2]
Sisodia, S.S.; Koo, E.H.; Beyreuther, K.; Unterbeck, A.; Price, D.L. Evidence that beta-amyloid protein in Alzheimer’s disease is not derived by normal processing. Science, 1990, 248(4954), 492-495.
[http://dx.doi.org/10.1126/science.1691865] [PMID: 1691865]
[3]
Roberson, E.D.; Mucke, L. 100 years and counting: prospects for defeating Alzheimer’s disease. Science, 2006, 314(5800), 781-784.
[http://dx.doi.org/10.1126/science.1132813] [PMID: 17082448]
[4]
Lang, A.E.; Lozano, A.M. Parkinson’s disease. First of two parts. N. Engl. J. Med., 1998, 339(15), 1044-1053.
[http://dx.doi.org/10.1056/NEJM199810083391506] [PMID: 9761807]
[5]
Perry, G.; Zhu, X.; Smith, M.A.; Sorensen, A.; Avila, J. Preface. Alzheimer’s disease: advances for a new century. J. Alzheimers Dis., 2013, 33(Suppl. 1), S1.
[http://dx.doi.org/10.3233/JAD-2012-129045] [PMID: 23397602]
[6]
Holtzman, D.M.; Morris, J.C.; Goate, A.M. Alzheimer’s disease: the challenge of the second century. Sci. Transl. Med., 2011, 3(77), 77sr1.
[http://dx.doi.org/10.1126/scitranslmed.3002369] [PMID: 21471435]
[7]
Goedert, M.; Spillantini, M.G. A century of Alzheimer’s disease. Science, 2006, 314(5800), 777-781.
[http://dx.doi.org/10.1126/science.1132814] [PMID: 17082447]
[8]
Kalogeris, T.; Baines, C.P.; Krenz, M.; Korthuis, R.J. Cell biology of ischemia/reperfusion injury. Int. Rev. Cell Mol. Biol., 2012, 298, 229-317.
[http://dx.doi.org/10.1016/B978-0-12-394309-5.00006-7] [PMID: 22878108]
[9]
Yan, M.H.; Wang, X.; Zhu, X. Mitochondrial defects and oxidative stress in Alzheimer disease and Parkinson disease. Free Radic. Biol. Med., 2013, 62, 90-101.
[http://dx.doi.org/10.1016/j.freeradbiomed.2012.11.014] [PMID: 23200807]
[10]
Kroemer, G.; Galluzzi, L.; Vandenabeele, P.; Abrams, J.; Alnemri, E.S.; Baehrecke, E.H.; Blagosklonny, M.V.; El-Deiry, W.S.; Golstein, P.; Green, D.R.; Hengartner, M.; Knight, R.A.; Kumar, S.; Lipton, S.A.; Malorni, W.; Nuñez, G.; Peter, M.E.; Tschopp, J.; Yuan, J.; Piacentini, M.; Zhivotovsky, B.; Melino, G. Nomenclature Committee on Cell Death 2009. Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ., 2009, 16(1), 3-11.
[http://dx.doi.org/10.1038/cdd.2008.150] [PMID: 18846107]
[11]
Kerr, J.F.; Wyllie, A.H.; Currie, A.R. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer, 1972, 26(4), 239-257.
[http://dx.doi.org/10.1038/bjc.1972.33] [PMID: 4561027]
[12]
Elmore, S. Apoptosis: a review of programmed cell death. Toxicol. Pathol., 2007, 35(4), 495-516.
[http://dx.doi.org/10.1080/01926230701320337] [PMID: 17562483]
[13]
Zhang, X.; Chen, Y.; Jenkins, L.W.; Kochanek, P.M.; Clark, R.S. Bench-to-bedside review: apoptosis/programmed cell death triggered by traumatic brain injury. Crit. Care, 2005, 9(1), 66-75.
[http://dx.doi.org/10.1186/cc2950] [PMID: 15693986]
[14]
Thornberry, N.A.; Lazebnik, Y. Caspases: enemies within. Science, 1998, 281(5381), 1312-1316.
[http://dx.doi.org/10.1126/science.281.5381.1312] [PMID: 9721091]
[15]
Shi, Y. Mechanisms of caspase activation and inhibition during apoptosis. Mol. Cell, 2002, 9(3), 459-470.
[http://dx.doi.org/10.1016/S1097-2765(02)00482-3] [PMID: 11931755]
[16]
Kanno, S.; Tomizawa, A.; Ohtake, T.; Koiwai, K.; Ujibe, M.; Ishikawa, M. Naringenin-induced apoptosis via activation of NF-kappaB and necrosis involving the loss of ATP in human promyeloleukemia HL-60 cells. Toxicol. Lett., 2006, 166(2), 131-139.
[http://dx.doi.org/10.1016/j.toxlet.2006.06.005] [PMID: 16860949]
[17]
Araya, J.; Hara, H.; Kuwano, K. Autophagy in the pathogenesis of pulmonary disease. Intern. Med., 2013, 52(20), 2295-2303.
[http://dx.doi.org/10.2169/internalmedicine.52.1118] [PMID: 24126389]
[18]
Levine, B.; Kroemer, G. Autophagy in the pathogenesis of disease. Cell, 2008, 132(1), 27-42.
[http://dx.doi.org/10.1016/j.cell.2007.12.018] [PMID: 18191218]
[19]
Booth, L.A.; Tavallai, S.; Hamed, H.A.; Cruickshanks, N.; Dent, P. The role of cell signalling in the crosstalk between autophagy and apoptosis. Cell. Signal., 2014, 26(3), 549-555.
[http://dx.doi.org/10.1016/j.cellsig.2013.11.028] [PMID: 24308968]
[20]
Lin, W.; Xu, G. Autophagy: a role in the apoptosis, survival, inflammation, and development of the retina. Ophthalmic Res., 2019, 61(2), 65-72.
[PMID: 29694961]
[21]
He, G.; Ma, Y.; Zhu, Y.; Yong, L.; Liu, X.; Wang, P.; Liang, C.; Yang, C.; Zhao, Z.; Hai, B.; Pan, X.; Liu, Z.; Liu, X.; Mao, C. Cross talk between autophagy and apoptosis contributes to ZnO nanoparticle-induced human osteosarcoma cell death. Adv. Healthc. Mater., 2018, 7(17)e1800332
[http://dx.doi.org/10.1002/adhm.201800332] [PMID: 29900694]
[22]
Sendler, M.; Mayerle, J.; Lerch, M.M. Necrosis, apoptosis, necroptosis, pyroptosis: it matters how acinar cells die during pancreatitis. Cell. Mol. Gastroenterol. Hepatol., 2016, 2(4), 407-408.
[http://dx.doi.org/10.1016/j.jcmgh.2016.05.007] [PMID: 28174728]
[23]
Lekshmi, A.; Varadarajan, S.N.; Lupitha, S.S.; Indira, D.; Mathew, K.A.; Chandrasekharan Nair, A.; Nair, M.; Prasad, T.; Sekar, H.; Gopalakrishnan, A.K.; Murali, A.; Santhoshkumar, T.R. A quantitative real-time approach for discriminating apoptosis and necrosis. Cell Death Discov., 2017, 3, 16101.
[http://dx.doi.org/10.1038/cddiscovery.2016.101] [PMID: 28179996]
[24]
Ekshyyan, O.; Aw, T.Y. Apoptosis: a key in neurodegenerative disorders. Curr. Neurovasc. Res., 2004, 1(4), 355-371.
[http://dx.doi.org/10.2174/1567202043362018] [PMID: 16181084]
[25]
Linnik, M.D. Role of apoptosis in acute neurodegenerative disorders. Restor. Neurol. Neurosci., 1996, 9(4), 219-225.
[PMID: 21551910]
[26]
Mochizuki, H.; Goto, K.; Mori, H.; Mizuno, Y. Histochemical detection of apoptosis in Parkinson’s disease. J. Neurol. Sci., 1996, 137(2), 120-123.
[http://dx.doi.org/10.1016/0022-510X(95)00336-Z] [PMID: 8782165]
[27]
Tymianski, M.; Wallace, M.C.; Spigelman, I.; Uno, M.; Carlen, P.L.; Tator, C.H.; Charlton, M.P. Cell-permeant Ca2+ chelators reduce early excitotoxic and ischemic neuronal injury in vitro and in vivo. Neuron, 1993, 11(2), 221-235.
[http://dx.doi.org/10.1016/0896-6273(93)90180-Y] [PMID: 8102532]
[28]
Yoneda, S.; Tanaka, E.; Goto, W.; Ota, T.; Hara, H. Topiramate reduces excitotoxic and ischemic injury in the rat retina. Brain Res., 2003, 967(1-2), 257-266.
[http://dx.doi.org/10.1016/S0006-8993(03)02270-4] [PMID: 12650986]
[29]
Mazzone, G.L.; Veeraraghavan, P.; Gonzalez-Inchauspe, C.; Nistri, A.; Uchitel, O.D. ASIC channel inhibition enhances excitotoxic neuronal death in an in vitro model of spinal cord injury. Neuroscience, 2017, 343, 398-410.
[http://dx.doi.org/10.1016/j.neuroscience.2016.12.008] [PMID: 28003157]
[30]
Pansiot, J.; Pham, H.; Dalous, J.; Chevenne, D.; Colella, M.; Schwendimann, L.; Fafouri, A.; Mairesse, J.; Moretti, R.; Schang, A.L.; Charriaut-Marlangue, C.; Gressens, P.; Baud, O. Glial response to 17β-estradiol in neonatal rats with excitotoxic brain injury. Exp. Neurol., 2016, 282, 56-65.
[http://dx.doi.org/10.1016/j.expneurol.2016.05.024] [PMID: 27222132]
[31]
Tekkök, S.B.; Ye, Z.; Ransom, B.R. Excitotoxic mechanisms of ischemic injury in myelinated white matter. J. Cereb. Blood Flow Metab., 2007, 27(9), 1540-1552.
[http://dx.doi.org/10.1038/sj.jcbfm.9600455] [PMID: 17299453]
[32]
Yu, C.G.; Yezierski, R.P. Activation of the ERK1/2 signaling cascade by excitotoxic spinal cord injury. Brain Res. Mol. Brain Res., 2005, 138(2), 244-255.
[http://dx.doi.org/10.1016/j.molbrainres.2005.04.013] [PMID: 15922485]
[33]
Kushnareva, Y.E.; Wiley, S.E.; Ward, M.W.; Andreyev, A.Y.; Murphy, A.N. Excitotoxic injury to mitochondria isolated from cultured neurons. J. Biol. Chem., 2005, 280(32), 28894-28902.
[http://dx.doi.org/10.1074/jbc.M503090200] [PMID: 15932874]
[34]
Irimia, A.; Goh, S.M.; Wade, A.C.; Patel, K.; Vespa, P.M.; Van Horn, J.D. Traumatic brain injury severity, neuropathophysiology, and clinical outcome: insights from multimodal neuroimaging. Front. Neurol., 2017, 8, 530.
[http://dx.doi.org/10.3389/fneur.2017.00530] [PMID: 29051745]
[35]
Quillinan, N.; Herson, P.S.; Traystman, R.J. Neuropathophysiology of brain injury. Anesthesiol. Clin., 2016, 34(3), 453-464.
[http://dx.doi.org/10.1016/j.anclin.2016.04.011] [PMID: 27521191]
[36]
Lau, A.; Tymianski, M. Glutamate receptors, neurotoxicity and neurodegeneration. Pflugers Arch., 2010, 460(2), 525-542.
[http://dx.doi.org/10.1007/s00424-010-0809-1] [PMID: 20229265]
[37]
Wollmuth, L.P. Ion permeation in ionotropic glutamate receptors: still dynamic after all these years. Curr. Opin. Physiol., 2018, 2, 36-41.
[http://dx.doi.org/10.1016/j.cophys.2017.12.003] [PMID: 29607422]
[38]
Scheefhals, N.; MacGillavry, H.D. Functional organization of postsynaptic glutamate receptors. Mol. Cell. Neurosci., 2018, 91, 82-94.
[http://dx.doi.org/10.1016/j.mcn.2018.05.002] [PMID: 29777761]
[39]
Lian, Y.N.; Lu, Q.; Chang, J.L.; Zhang, Y. The role of glutamate and its receptors in central nervous system in stress-induced hyperalgesia. Int. J. Neurosci., 2018, 128(3), 283-290.
[http://dx.doi.org/10.1080/00207454.2017.1387112] [PMID: 28969521]
[40]
Chomova, M.; Zitnanova, I. Look into brain energy crisis and membrane pathophysiology in ischemia and reperfusion. Stress, 2016, 19(4), 341-348.
[http://dx.doi.org/10.1080/10253890.2016.1174848] [PMID: 27095435]
[41]
Raichle, M.E. The pathophysiology of brain ischemia. Ann. Neurol., 1983, 13(1), 2-10.
[http://dx.doi.org/10.1002/ana.410130103] [PMID: 6299175]
[42]
Pepe, S. Mitochondrial function in ischaemia and reperfusion of the ageing heart. Clin. Exp. Pharmacol. Physiol., 2000, 27(9), 745-750.
[http://dx.doi.org/10.1046/j.1440-1681.2000.03326.x] [PMID: 10972544]
[43]
Azarias, G.; Perreten, H.; Lengacher, S.; Poburko, D.; Demaurex, N.; Magistretti, P.J.; Chatton, J.Y. Glutamate transport decreases mitochondrial pH and modulates oxidative metabolism in astrocytes. J. Neurosci., 2011, 31(10), 3550-3559.
[http://dx.doi.org/10.1523/JNEUROSCI.4378-10.2011] [PMID: 21389211]
[44]
Surin, A.M.; Gorbacheva, L.R.; Savinkova, I.G.; Sharipov, R.R.; Khodorov, B.I.; Pinelis, V.G. Study on ATP concentration changes in cytosol of individual cultured neurons during glutamate-induced deregulation of calcium homeostasis. Biochemistry (Mosc.), 2014, 79(2), 146-157.
[http://dx.doi.org/10.1134/S0006297914020084] [PMID: 24794730]
[45]
Garland, J.M.; Halestrap, A. Energy metabolism during apoptosis. Bcl-2 promotes survival in hematopoietic cells induced to apoptose by growth factor withdrawal by stabilizing a form of metabolic arrest. J. Biol. Chem., 1997, 272(8), 4680-4688.
[http://dx.doi.org/10.1074/jbc.272.8.4680] [PMID: 9030519]
[46]
Miyamoto, S.; Howes, A.L.; Adams, J.W.; Dorn, G.W., II; Brown, J.H. Ca2+ dysregulation induces mitochondrial depolarization and apoptosis: role of Na+/Ca2+ exchanger and AKT. J. Biol. Chem., 2005, 280(46), 38505-38512.
[http://dx.doi.org/10.1074/jbc.M505223200] [PMID: 16061478]
[47]
Wang, Z.; Wang, W.; Shao, Z.; Gao, B.; Li, J.; Ma, J.; Li, J.; Che, H.; Zhang, W. Eukaryotic expression and purification of anti-epilepsy peptide of Buthus martensii Karsch and its protein interactions. Mol. Cell. Biochem., 2009, 330(1-2), 97-104.
[http://dx.doi.org/10.1007/s11010-009-0104-7] [PMID: 19370317]
[48]
Suárez, F.; Zhao, Q.; Monaghan, D.T.; Jane, D.E.; Jones, S.; Gibb, A.J. Functional heterogeneity of NMDA receptors in rat substantia nigra pars compacta and reticulata neurones. Eur. J. Neurosci., 2010, 32(3), 359-367.
[http://dx.doi.org/10.1111/j.1460-9568.2010.07298.x] [PMID: 20618827]
[49]
Touyz, R.M.; Tabet, F.; Schiffrin, E.L. Redox-dependent signalling by angiotensin II and vascular remodelling in hypertension. Clin. Exp. Pharmacol. Physiol., 2003, 30(11), 860-866.
[http://dx.doi.org/10.1046/j.1440-1681.2003.03930.x] [PMID: 14678251]
[50]
Lapp, D.W.; Zhang, S.S.; Barnstable, C.J. Stat3 mediates LIF-induced protection of astrocytes against toxic ROS by upregu-lating the UPC2 mRNA pool. Glia, 2014, 62(2), 159-170.
[http://dx.doi.org/10.1002/glia.22594] [PMID: 24307565]
[51]
Wiseman, A. Dietary alkyl thiol free radicals (RSS) can be as toxic as reactive oxygen species (ROS). Med. Hypotheses, 2004, 63(4), 667-670.
[http://dx.doi.org/10.1016/j.mehy.2004.03.021] [PMID: 15325013]
[52]
Trist, B.G.; Hare, D.J.; Double, K.L. A proposed mechanism for neurodegeneration in movement disorders characterized by metal dyshomeostasis and oxidative stress. Cell Chem. Biol., 2018, 25(7), 807-816.
[http://dx.doi.org/10.1016/j.chembiol.2018.05.004] [PMID: 29861271]
[53]
Gandhi, S.; Abramov, A.Y. Mechanism of oxidative stress in neurodegeneration. Oxid. Med. Cell. Longev., 2012.2012428010
[http://dx.doi.org/10.1155/2012/428010] [PMID: 22685618]
[54]
Barber, S.C.; Mead, R.J.; Shaw, P.J. Oxidative stress in ALS: a mechanism of neurodegeneration and a therapeutic target. Biochim. Biophys. Acta, 2006, 1762(11-12), 1051-1067.
[http://dx.doi.org/10.1016/j.bbadis.2006.03.008] [PMID: 16713195]
[55]
Musiek, E.S.; Milne, G.L.; McLaughlin, B.; Morrow, J.D. Cyclopentenone eicosanoids as mediators of neurodegenera-tion: a pathogenic mechanism of oxidative stress-mediated and cyclooxygenase-mediated neurotoxicity. Brain Pathol., 2005, 15(2), 149-158.
[56]
Patten, D.A.; Germain, M.; Kelly, M.A.; Slack, R.S. Reactive oxygen species: stuck in the middle of neurodegeneration. J. Alzheimers Dis., 2010, 20(Suppl. 2), S357-S367.
[http://dx.doi.org/10.3233/JAD-2010-100498] [PMID: 20421690]
[57]
Bolisetty, S.; Jaimes, E.A. Mitochondria and reactive oxygen species: physiology and pathophysiology. Int. J. Mol. Sci., 2013, 14(3), 6306-6344.
[http://dx.doi.org/10.3390/ijms14036306] [PMID: 23528859]
[58]
Liu, Y.; Imlay, J.A. Cell death from antibiotics without the involvement of reactive oxygen species. Science, 2013, 339(6124), 1210-1213.
[http://dx.doi.org/10.1126/science.1232751] [PMID: 23471409]
[59]
St-Pierre, J.; Drori, S.; Uldry, M.; Silvaggi, J.M.; Rhee, J.; Jäger, S.; Handschin, C.; Zheng, K.; Lin, J.; Yang, W.; Simon, D.K.; Bachoo, R.; Spiegelman, B.M. Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell, 2006, 127(2), 397-408.
[http://dx.doi.org/10.1016/j.cell.2006.09.024] [PMID: 17055439]
[60]
Pham, C.G.; Bubici, C.; Zazzeroni, F.; Papa, S.; Jones, J.; Alvarez, K.; Jayawardena, S.; De Smaele, E.; Cong, R.; Beaumont, C.; Torti, F.M.; Torti, S.V.; Franzoso, G. Ferritin heavy chain upregulation by NF-kappaB inhibits TNFalpha-induced apoptosis by suppressing reactive oxygen species. Cell, 2004, 119(4), 529-542.
[http://dx.doi.org/10.1016/j.cell.2004.10.017] [PMID: 15537542]
[61]
Koppisetti, S.; Jenigiri, B.; Terron, M.P.; Tengattini, S.; Tamura, H.; Flores, L.J.; Tan, D.X.; Reiter, R.J. Reactive oxygen species and the hypomotility of the gall bladder as targets for the treatment of gallstones with melatonin: a review. Dig. Dis. Sci., 2008, 53(10), 2592-2603.
[http://dx.doi.org/10.1007/s10620-007-0195-5] [PMID: 18338264]
[62]
Hippeli, S.; Elstner, E.F. OH-radical-type reactive oxygen species: a short review on the mechanisms of OH-radical- and peroxynitrite toxicity. Z. Natforsch. C J. Biosci., 1997, 52(9-10), 555-563.
[http://dx.doi.org/10.1515/znc-1997-9-1001] [PMID: 9373992]
[63]
Fantel, A.G. Reactive oxygen species in developmental toxicity: review and hypothesis. Teratology, 1996, 53(3), 196-217.
[http://dx.doi.org/10.1002/(SICI)1096-9926(199603)53:3<196:AID-TERA7>3.0.CO;2-2] [PMID: 8761887]
[64]
Irani, K. Oxidant signaling in vascular cell growth, death, and survival: a review of the roles of reactive oxygen species in smooth muscle and endothelial cell mitogenic and apoptotic signaling. Circ. Res., 2000, 87(3), 179-183.
[http://dx.doi.org/10.1161/01.RES.87.3.179] [PMID: 10926866]
[65]
Dasuri, K.; Zhang, L.; Keller, J.N. Oxidative stress, neurodegeneration, and the balance of protein degradation and protein synthesis. Free Radic. Biol. Med., 2013, 62, 170-185.
[http://dx.doi.org/10.1016/j.freeradbiomed.2012.09.016] [PMID: 23000246]
[66]
Yang, X.; Wang, Y.; Zhang, Y.; Lee, W.H.; Zhang, Y. Rich diversity and potency of skin antioxidant peptides revealed a novel molecular basis for high-altitude adaptation of amphibians. Sci. Rep., 2016, 6, 19866.
[http://dx.doi.org/10.1038/srep19866] [PMID: 26813022]
[67]
Yang, X.; Lee, W.H.; Zhang, Y. Extremely abundant antimicrobial peptides existed in the skins of nine kinds of Chinese odorous frogs. J. Proteome Res., 2012, 11(1), 306-319.
[http://dx.doi.org/10.1021/pr200782u] [PMID: 22029824]
[68]
Giasson, B.I.; Duda, J.E.; Murray, I.V.; Chen, Q.; Souza, J.M.; Hurtig, H.I.; Ischiropoulos, H.; Trojanowski, J.Q.; Lee, V.M. Oxidative damage linked to neurodegeneration by selective alpha-synuclein nitration in synucleinopathy lesions. Science, 2000, 290(5493), 985-989.
[http://dx.doi.org/10.1126/science.290.5493.985] [PMID: 11062131]
[69]
Dias, V.; Junn, E.; Mouradian, M.M. The role of oxidative stress in Parkinson’s disease. J. Parkinsons Dis., 2013, 3(4), 461-491.
[PMID: 24252804]
[70]
Hwang, O. Role of oxidative stress in Parkinson’s disease. Exp. Neurobiol., 2013, 22(1), 11-17.
[http://dx.doi.org/10.5607/en.2013.22.1.11] [PMID: 23585717]
[71]
Baillet, A.; Chanteperdrix, V.; Trocmé, C.; Casez, P.; Garrel, C.; Besson, G. The role of oxidative stress in amyotrophic lateral sclerosis and Parkinson’s disease. Neurochem. Res., 2010, 35(10), 1530-1537.
[http://dx.doi.org/10.1007/s11064-010-0212-5] [PMID: 20535556]
[72]
Ray, P.D.; Huang, B.W.; Tsuji, Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell. Signal., 2012, 24(5), 981-990.
[http://dx.doi.org/10.1016/j.cellsig.2012.01.008] [PMID: 22286106]
[73]
Butterfield, D.A.; Castegna, A.; Lauderback, C.M.; Drake, J. Evidence that amyloid beta-peptide-induced lipid peroxidation and its sequelae in Alzheimer’s disease brain contribute to neuronal death. Neurobiol. Aging, 2002, 23(5), 655-664.
[http://dx.doi.org/10.1016/S0197-4580(01)00340-2] [PMID: 12392766]
[74]
Mena, N.P.; Urrutia, P.J.; Lourido, F.; Carrasco, C.M.; Núñez, M.T. Mitochondrial iron homeostasis and its dysfunctions in neurodegenerative disorders. Mitochondrion, 2015, 21, 92-105.
[http://dx.doi.org/10.1016/j.mito.2015.02.001] [PMID: 25667951]
[75]
Hroudová, J.; Singh, N.; Fišar, Z. Mitochondrial dysfunctions in neurodegenerative diseases: relevance to Alzheimer’s disease. BioMed Res. Int., 2014.2014175062
[http://dx.doi.org/10.1155/2014/175062] [PMID: 24900954]
[76]
Zuo, L.; Hemmelgarn, B.T.; Chuang, C.C.; Best, T.M. The role of oxidative stress-induced epigenetic alterations in amyloid-β production in Alzheimer’s Disease. Oxid. Med. Cell. Longev., 2015, 2015604658
[http://dx.doi.org/10.1155/2015/604658] [PMID: 26543520]
[77]
Giasson, B.I.; Jakes, R.; Goedert, M.; Duda, J.E.; Leight, S.; Trojanowski, J.Q.; Lee, V.M. A panel of epitope-specific antibodies detects protein domains distributed throughout human alpha-synuclein in Lewy bodies of Parkinson’s disease. J. Neurosci. Res., 2000, 59(4), 528-533.
[http://dx.doi.org/10.1002/(SICI)1097-4547(20000215)59:4<528:AID-JNR8>3.0.CO;2-0] [PMID: 10679792]
[78]
Reynolds, M.R.; Berry, R.W.; Binder, L.I. Site-specific nitration and oxidative dityrosine bridging of the tau protein by peroxynitrite: implications for Alzheimer’s disease. Biochemistry, 2005, 44(5), 1690-1700.
[http://dx.doi.org/10.1021/bi047982v] [PMID: 15683253]
[79]
Horiguchi, T.; Uryu, K.; Giasson, B.I.; Ischiropoulos, H. LightFoot, R.; Bellmann, C.; Richter-Landsberg, C.; Lee, V.M.; Trojanowski, J.Q. Nitration of tau protein is linked to neurodegeneration in tauopathies. Am. J. Pathol., 2003, 163(3), 1021-1031.
[http://dx.doi.org/10.1016/S0002-9440(10)63462-1] [PMID: 12937143]
[80]
Cordier-Ochsenbein, F.; Guerois, R.; Russo-Marie, F.; Neumann, J.M.; Sanson, A. Exploring the folding pathways of annexin I, a multidomain protein. II. Hierarchy in domain folding propensities may govern the folding process. J. Mol. Biol., 1998, 279(5), 1177-1185.
[http://dx.doi.org/10.1006/jmbi.1998.1828] [PMID: 9642093]
[81]
Anfinsen, C.B. Principles that govern the folding of protein chains. Science, 1973, 181(4096), 223-230.
[http://dx.doi.org/10.1126/science.181.4096.223] [PMID: 4124164]
[82]
Herczenik, E.; Gebbink, M.F. Molecular and cellular aspects of protein misfolding and disease. FASEB J., 2008, 22(7), 2115-2133.
[http://dx.doi.org/10.1096/fj.07-099671] [PMID: 18303094]
[83]
Berke, S.J.; Paulson, H.L. Protein aggregation and the ubiquitin proteasome pathway: gaining the UPPer hand on neurodegen-eration. Curr. Opin. Genet. Dev., 2003, 13(3), 253-261.
[http://dx.doi.org/10.1016/S0959-437X(03)00053-4] [PMID: 12787787]
[84]
Friedrich, R.P.; Tepper, K.; Rönicke, R.; Soom, M.; Westermann, M.; Reymann, K.; Kaether, C.; Fändrich, M. Mechanism of amyloid plaque formation suggests an intracellular basis of Abeta pathogenicity. Proc. Natl. Acad. Sci. USA, 2010, 107(5), 1942-1947.
[http://dx.doi.org/10.1073/pnas.0904532106] [PMID: 20133839]
[85]
Glenner, G.G.; Wong, C.W. Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. 1984. Biochem. Biophys. Res. Commun., 2012, 425(3), 534-539.
[http://dx.doi.org/10.1016/j.bbrc.2012.08.020] [PMID: 22925670]
[86]
Polymeropoulos, M.H.; Lavedan, C.; Leroy, E.; Ide, S.E.; Dehejia, A.; Dutra, A.; Pike, B.; Root, H.; Rubenstein, J.; Boyer, R.; Stenroos, E.S.; Chandrasekharappa, S.; Athanassiadou, A.; Papapetropoulos, T.; Johnson, W.G.; Lazzarini, A.M.; Duvoisin, R.C.; Di Iorio, G.; Golbe, L.I.; Nussbaum, R.L. Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science, 1997, 276(5321), 2045-2047.
[http://dx.doi.org/10.1126/science.276.5321.2045] [PMID: 9197268]
[87]
Davies, S.W.; Turmaine, M.; Cozens, B.A.; DiFiglia, M.; Sharp, A.H.; Ross, C.A.; Scherzinger, E.; Wanker, E.E.; Mangiarini, L.; Bates, G.P. Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell, 1997, 90(3), 537-548.
[http://dx.doi.org/10.1016/S0092-8674(00)80513-9] [PMID: 9267033]
[88]
DiFiglia, M.; Sapp, E.; Chase, K.O.; Davies, S.W.; Bates, G.P.; Vonsattel, J.P.; Aronin, N. Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science, 1997, 277(5334), 1990-1993.
[http://dx.doi.org/10.1126/science.277.5334.1990] [PMID: 9302293]
[89]
Johannsen, D.L.; Ravussin, E. The role of mitochondria in health and disease. Curr. Opin. Pharmacol., 2009, 9(6), 780-786.
[http://dx.doi.org/10.1016/j.coph.2009.09.002] [PMID: 19796990]
[90]
Green, D.R.; Kroemer, G. The pathophysiology of mitochondrial cell death. Science, 2004, 305(5684), 626-629.
[http://dx.doi.org/10.1126/science.1099320] [PMID: 15286356]
[91]
Wegierski, T.; Kuznicki, J. Neuronal calcium signaling via store-operated channels in health and disease. Cell Calcium, 2018, 74, 102-111.
[http://dx.doi.org/10.1016/j.ceca.2018.07.001] [PMID: 30015245]
[92]
Singh, A.; Verma, P.; Balaji, G.; Samantaray, S.; Mohanakumar, K.P. Nimodipine, an L-type calcium channel blocker attenuates mitochondrial dysfunctions to protect against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinsonism in mice. Neurochem. Int., 2016, 99, 221-232.
[http://dx.doi.org/10.1016/j.neuint.2016.07.003] [PMID: 27395789]
[93]
Buendia, I.; Tenti, G.; Michalska, P.; Méndez-López, I.; Luengo, E.; Satriani, M.; Padín-Nogueira, F.; López, M.G.; Ramos, M.T.; García, A.G.; Menéndez, J.C.; León, R. ITH14001, a CGP37157-nimodipine hybrid designed to regulate calcium homeostasis and oxidative stress, exerts neuroprotection in cerebral ischemia. ACS Chem. Neurosci., 2017, 8(1), 67-81.
[http://dx.doi.org/10.1021/acschemneuro.6b00181] [PMID: 27731633]
[94]
Shen, A.N.; Cummings, C.; Hoffman, D.; Pope, D.; Arnold, M.; Newland, M.C. Aging, motor function, and sensitivity to calcium channel blockers: an investigation using chronic methylmercury exposure. Behav. Brain Res., 2016, 315, 103-114.
[http://dx.doi.org/10.1016/j.bbr.2016.07.049] [PMID: 27481695]
[95]
McGeer, P.L.; Rogers, J. Anti-inflammatory agents as a therapeutic approach to Alzheimer’s disease. Neurology, 1992, 42(2), 447-449.
[http://dx.doi.org/10.1212/WNL.42.2.447] [PMID: 1736183]
[96]
Koutsouras, G.W.; Ramos, R.L.; Martinez, L.R. Role of microglia in fungal infections of the central nervous system. Virulence, 2017, 8(6), 705-718.
[http://dx.doi.org/10.1080/21505594.2016.1261789] [PMID: 27858519]
[97]
Yamasaki, R. [Role of microglia in inflammatory demyelination lesion in the central nervous system Rinsho Shinkeigaku, 2014, 54(12), 981-983.
[http://dx.doi.org/ 10.5692/clinicalneurol.54.981] [PMID: 25672686]
[98]
Selkoe, D.J. Alzheimer’s disease is a synaptic failure. Science, 2002, 298(5594), 789-791.
[http://dx.doi.org/10.1126/science.1074069] [PMID: 12399581]
[99]
Fuentealba, J.; Dibarrart, A.J.; Fuentes-Fuentes, M.C.; Saez-Orellana, F.; Quiñones, K.; Guzmán, L.; Perez, C.; Becerra, J.; Aguayo, L.G. Synaptic failure and adenosine triphosphate imbalance induced by amyloid-β aggregates are prevented by blueberry-enriched polyphenols extract. J. Neurosci. Res., 2011, 89(9), 1499-1508.
[http://dx.doi.org/10.1002/jnr.22679] [PMID: 21647937]
[100]
Nimmrich, V.; Ebert, U. Is Alzheimer’s disease a result of presynaptic failure? Synaptic dysfunctions induced by oligomeric beta-amyloid. Rev. Neurosci., 2009, 20(1), 1-12.
[http://dx.doi.org/10.1515/REVNEURO.2009.20.1.1] [PMID: 19526730]
[101]
Calo, L.; Wegrzynowicz, M.; Santivañez-Perez, J.; Grazia Spillantini, M. Synaptic failure and α-synuclein. Mov. Disord., 2016, 31(2), 169-177.
[http://dx.doi.org/10.1002/mds.26479] [PMID: 26790375]
[102]
Parodi, J.; Sepúlveda, F.J.; Roa, J.; Opazo, C.; Inestrosa, N.C.; Aguayo, L.G. Beta-amyloid causes depletion of synaptic vesicles leading to neurotransmission failure. J. Biol. Chem., 2010, 285(4), 2506-2514.
[http://dx.doi.org/10.1074/jbc.M109.030023] [PMID: 19915004]
[103]
Bellucci, A.; Mercuri, N.B.; Venneri, A.; Faustini, G.; Longhena, F.; Pizzi, M.; Missale, C.; Spano, P. Review: Parkinson’s disease: from synaptic loss to connectome dysfunction. Neuropathol. Appl. Neurobiol., 2016, 42(1), 77-94.
[http://dx.doi.org/10.1111/nan.12297] [PMID: 26613567]
[104]
Picconi, B.; Piccoli, G.; Calabresi, P. Synaptic dysfunction in Parkinson’s disease. Adv. Exp. Med. Biol., 2012, 970, 553-572.
[http://dx.doi.org/10.1007/978-3-7091-0932-8_24] [PMID: 22351072]
[105]
Bagetta, V.; Ghiglieri, V.; Sgobio, C.; Calabresi, P.; Picconi, B. Synaptic dysfunction in Parkinson’s disease. Biochem. Soc. Trans., 2010, 38(2), 493-497.
[http://dx.doi.org/10.1042/BST0380493] [PMID: 20298209]
[106]
Sepers, M.D.; Raymond, L.A. Mechanisms of synaptic dysfunction and excitotoxicity in Huntington’s disease. Drug Discov. Today, 2014, 19(7), 990-996.
[http://dx.doi.org/10.1016/j.drudis.2014.02.006] [PMID: 24603212]
[107]
Forero, D.A.; Casadesus, G.; Perry, G.; Arboleda, H. Synaptic dysfunction and oxidative stress in Alzheimer’s disease: emerging mechanisms. J. Cell. Mol. Med., 2006, 10(3), 796-805.
[http://dx.doi.org/10.1111/j.1582-4934.2006.tb00439.x] [PMID: 16989739]
[108]
Benarroch, E.E. Glutamatergic synaptic plasticity and dysfunction in Alzheimer disease: emerging mechanisms. Neurology, 2018, 91(3), 125-132.
[http://dx.doi.org/10.1212/WNL.0000000000005807] [PMID: 29898976]
[109]
Criscuolo, C.; Fabiani, C.; Cerri, E.; Domenici, L. Synaptic dysfunction in Alzheimer’s Disease and glaucoma: from common degenerative mechanisms toward neuroprotection. Front. Cell. Neurosci., 2017, 11, 53.
[http://dx.doi.org/10.3389/fncel.2017.00053] [PMID: 28289378]
[110]
Rowan, M.J.; Klyubin, I.; Wang, Q.; Hu, N.W.; Anwyl, R. Synaptic memory mechanisms: Alzheimer’s disease amyloid beta-peptide-induced dysfunction. Biochem. Soc. Trans., 2007, 35(Pt 5), 1219-1223.
[http://dx.doi.org/10.1042/BST0351219] [PMID: 17956317]
[111]
Kirstein-Miles, J.; Morimoto, R.I. Caenorhabditis elegans as a model system to study intercompartmental proteostasis: Interrelation of mitochondrial function, longevity, and neurodegenerative diseases. Dev. Dyn., 2010, 239(5), 1529-1538.
[http://dx.doi.org/10.1002/dvdy.22292] [PMID: 20419784]
[112]
Elobeid, A.; Libard, S.; Leino, M.; Popova, S.N.; Alafuzoff, I. Altered Proteins in the Aging Brain. J. Neuropathol. Exp. Neurol., 2016, 75(4), 316-325.
[http://dx.doi.org/10.1093/jnen/nlw002] [PMID: 26979082]
[113]
de Souza, J.M.; Goncalves, B.D.C.; Gomez, M.V.; Vieira, L.B.; Ribeiro, F.M. Animal toxins as therapeutic tools to treat neurodegenerative diseases. Front. Pharmacol., 2018, 9, 145.
[http://dx.doi.org/10.3389/fphar.2018.00145] [PMID: 29527170]
[114]
Herskind, A.M.; McGue, M.; Holm, N.V.; Sørensen, T.I.; Harvald, B.; Vaupel, J.W. The heritability of human longevity: a population-based study of 2872 Danish twin pairs born 1870-1900. Hum. Genet., 1996, 97(3), 319-323.
[http://dx.doi.org/10.1007/BF02185763] [PMID: 8786073]
[115]
Terman, A.; Kurz, T.; Navratil, M.; Arriaga, E.A.; Brunk, U.T. Mitochondrial turnover and aging of long-lived postmitotic cells: the mitochondrial-lysosomal axis theory of aging. Antioxid. Redox Signal., 2010, 12(4), 503-535.
[http://dx.doi.org/10.1089/ars.2009.2598] [PMID: 19650712]
[116]
Brunk, U.T.; Terman, A. The mitochondrial-lysosomal axis theory of aging: accumulation of damaged mitochondria as a result of imperfect autophagocytosis. Eur. J. Biochem., 2002, 269(8), 1996-2002.
[http://dx.doi.org/10.1046/j.1432-1033.2002.02869.x] [PMID: 11985575]
[117]
Hernandez, D.G.; Nalls, M.A.; Gibbs, J.R.; Arepalli, S.; van der Brug, M.; Chong, S.; Moore, M.; Longo, D.L.; Cookson, M.R.; Traynor, B.J.; Singleton, A.B. Distinct DNA methylation changes highly correlated with chronological age in the human brain. Hum. Mol. Genet., 2011, 20(6), 1164-1172.
[http://dx.doi.org/10.1093/hmg/ddq561] [PMID: 21216877]
[118]
Johnson, S.C.; Dong, X.; Vijg, J.; Suh, Y. Genetic evidence for common pathways in human age-related diseases. Aging Cell, 2015, 14(5), 809-817.
[http://dx.doi.org/10.1111/acel.12362] [PMID: 26077337]
[119]
Jenwitheesuk, A.; Nopparat, C.; Mukda, S.; Wongchitrat, P.; Govitrapong, P. Melatonin regulates aging and neurodegeneration through energy metabolism, epigenetics, autophagy and circadian rhythm pathways. Int. J. Mol. Sci., 2014, 15(9), 16848-16884.
[http://dx.doi.org/10.3390/ijms150916848] [PMID: 25247581]
[120]
Lee, S.T.; Kim, M. Aging and neurodegeneration. Molecular mechanisms of neuronal loss in Huntington’s disease. Mech. Ageing Dev., 2006, 127(5), 432-435.
[http://dx.doi.org/10.1016/j.mad.2006.01.022] [PMID: 16527334]
[121]
Maynard, S.; Fang, E.F.; Scheibye-Knudsen, M.; Croteau, D.L.; Bohr, V.A. DNA damage, DNA repair, aging, and neurodegeneration. Cold Spring Harb. Perspect. Med., 2015, 5(10)a025130
[http://dx.doi.org/10.1101/cshperspect.a025130] [PMID: 26385091]
[122]
Porder, S. Coevolution of life and landscapes. Proc. Natl. Acad. Sci. USA, 2014, 111(9), 3207-3208.
[http://dx.doi.org/10.1073/pnas.1400954111] [PMID: 24556990]
[123]
Lazzaro, B.P. Rolff, J. Immunology. Danger, microbes, and homeostasis. Science, 2011, 332(6025), 43-44.
[http://dx.doi.org/10.1126/science.1200486] [PMID: 21454776]
[124]
Yoshida, T.; Jones, L.E.; Ellner, S.P.; Fussmann, G.F.; Hairston, N.G., Jr Rapid evolution drives ecological dynamics in a predator-prey system. Nature, 2003, 424(6946), 303-306.
[http://dx.doi.org/10.1038/nature01767] [PMID: 12867979]
[125]
Russell, F.E. Poisonous and venomous marine animals and their toxins. Ann. N. Y. Acad. Sci., 1975, 245, 57-64.
[http://dx.doi.org/10.1111/j.1749-6632.1975.tb26833.x] [PMID: 242249]
[126]
Bradley, S.J.; Riaz, S.A.; Tobin, A.B. Employing novel animal models in the design of clinically efficacious GPCR ligands. Curr. Opin. Cell Biol., 2014, 27, 117-125.
[http://dx.doi.org/10.1016/j.ceb.2013.12.002] [PMID: 24680437]
[127]
Wickenden, A.; Priest, B.; Erdemli, G. Ion channel drug discovery: challenges and future directions. Future Med. Chem., 2012, 4(5), 661-679.
[http://dx.doi.org/10.4155/fmc.12.4] [PMID: 22458684]
[128]
Wootten, D.; Christopoulos, A.; Sexton, P.M. Emerging paradigms in GPCR allostery: implications for drug discovery. Nat. Rev. Drug Discov., 2013, 12(8), 630-644.
[http://dx.doi.org/10.1038/nrd4052] [PMID: 23903222]
[129]
Zhang, Y. Why do we study animal toxins? Zool. Res., 2015, 36(4), 183-222.
[PMID: 26228472]
[130]
Casewell, N.R.; Wüster, W.; Vonk, F.J.; Harrison, R.A.; Fry, B.G. Complex cocktails: the evolutionary novelty of venoms. Trends Ecol. Evol. (Amst.), 2013, 28(4), 219-229.
[http://dx.doi.org/10.1016/j.tree.2012.10.020] [PMID: 23219381]
[131]
Fry, B.G.; Roelants, K.; Champagne, D.E.; Scheib, H.; Tyndall, J.D.; King, G.F.; Nevalainen, T.J.; Norman, J.A.; Lewis, R.J.; Norton, R.S.; Renjifo, C.; de la Vega, R.C. The toxicogenomic multiverse: convergent recruitment of proteins into animal venoms. Annu. Rev. Genomics Hum. Genet., 2009, 10, 483-511.
[http://dx.doi.org/10.1146/annurev.genom.9.081307.164356] [PMID: 19640225]
[132]
Haddad, V., Jr; Martins, I.A. Frequency and gravity of human envenomations caused by marine catfish (suborder siluroidei): a clinical and epidemiological study. Toxicon, 2006, 47(8), 838-843.
[http://dx.doi.org/10.1016/j.toxicon.2006.02.005] [PMID: 16713609]
[133]
Abroug, F.; Ouanes-Besbes, L.; Bouchoucha, S. Scorpion envenomation: from a neglected to a helpful disease? Intensive Care Med., 2019, 45(1), 72-74.
[http://dx.doi.org/10.1007/s00134-018-5226-5] [PMID: 29846746]
[134]
Comellas, A.P.; Pesce, L.M. Scorpion envenomation. N. Engl. J. Med., 2014, 371(16), 1558.
[PMID: 25317886]
[135]
Chippaux, J.P. Estimating the global burden of snakebite can help to improve management. PLoS Med., 2008, 5(11)e221
[http://dx.doi.org/10.1371/journal.pmed.0050221] [PMID: 18986211]
[136]
Kasturiratne, A.; Wickremasinghe, A.R.; de Silva, N.; Gunawardena, N.K.; Pathmeswaran, A.; Premaratna, R.; Savioli, L.; Lalloo, D.G.; de Silva, H.J. The global burden of snakebite: a literature analysis and modelling based on regional estimates of envenoming and deaths. PLoS Med., 2008, 5(11)e218
[http://dx.doi.org/10.1371/journal.pmed.0050218] [PMID: 18986210]
[137]
Cohen, S.; Levi-Montalcini, R. A nerve growth-stimulating factor isolated from snake venom. Proc. Natl. Acad. Sci. USA, 1956, 42(9), 571-574.
[http://dx.doi.org/10.1073/pnas.42.9.571] [PMID: 16589907]
[138]
Rocha e Silva, M.; Beraldo, W.T.; Rosenfeld, G. Bradykinin, a hypotensive and smooth muscle stimulating factor released from plasma globulin by snake venoms and by trypsin. Am. J. Physiol., 1949, 156(2), 261-273.
[http://dx.doi.org/10.1152/ajplegacy.1949.156.2.261] [PMID: 18127230]
[139]
Dutertre, S.; Lewis, R.J. Use of venom peptides to probe ion channel structure and function. J. Biol. Chem., 2010, 285(18), 13315-13320.
[http://dx.doi.org/10.1074/jbc.R109.076596] [PMID: 20189991]
[140]
Banerjee, A.; Lee, A.; Campbell, E.; Mackinnon, R. Structure of a pore-blocking toxin in complex with a eukaryotic voltagedependent K(+) channel. eLife 2013, 2e00594.
[http://dx.doi.org/10.7554/eLife.00594] [PMID: 23705070]
[141]
MacKinnon, R. Determination of the subunit stoichiometry of a voltage-activated potassium channel. Nature, 1991, 350(6315), 232-235.
[http://dx.doi.org/10.1038/350232a0] [PMID: 1706481]
[142]
Hidalgo, P.; MacKinnon, R. Revealing the architecture of a K+ channel pore through mutant cycles with a peptide inhibitor. Science, 1995, 268(5208), 307-310.
[http://dx.doi.org/10.1126/science.7716527] [PMID: 7716527]
[143]
MacKinnon, R. Potassium channels. FEBS Lett., 2003, 555(1), 62-65.
[http://dx.doi.org/10.1016/S0014-5793(03)01104-9] [PMID: 14630320]
[144]
Deval, E.; Gasull, X.; Noël, J.; Salinas, M.; Baron, A.; Diochot, S.; Lingueglia, E. Acid-sensing ion channels (ASICs): pharmacology and implication in pain. Pharmacol. Ther., 2010, 128(3), 549-558.
[http://dx.doi.org/10.1016/j.pharmthera.2010.08.006] [PMID: 20807551]
[145]
Baron, A.; Diochot, S.; Salinas, M.; Deval, E.; Noel, J.; Lingueglia, E. Venom toxins in the exploration of molecular, physiological and pathophysiological functions of acid-sensing ion channels. Toxicon, 2013, 75, 187-204.
[http://dx.doi.org/10.1016/j.toxicon.2013.04.008] [PMID: 23624383]
[146]
Bohlen, C.J.; Chesler, A.T.; Sharif-Naeini, R.; Medzihradszky, K.F.; Zhou, S.; King, D.; Sánchez, E.E.; Burlingame, A.L.; Basbaum, A.I.; Julius, D. A heteromeric Texas coral snake toxin targets acid-sensing ion channels to produce pain. Nature, 2011, 479(7373), 410-414.
[http://dx.doi.org/10.1038/nature10607] [PMID: 22094702]
[147]
Baconguis, I.; Bohlen, C.J.; Goehring, A.; Julius, D.; Gouaux, E. X-ray structure of acid-sensing ion channel 1-snake toxin complex reveals open state of a Na(+)-selective channel. Cell, 2014, 156(4), 717-729.
[http://dx.doi.org/10.1016/j.cell.2014.01.011] [PMID: 24507937]
[148]
Diochot, S.; Baron, A.; Salinas, M.; Douguet, D.; Scarzello, S.; Dabert-Gay, A.S.; Debayle, D.; Friend, V.; Alloui, A.; Lazdunski, M.; Lingueglia, E. Black mamba venom peptides target acid-sensing ion channels to abolish pain. Nature, 2012, 490(7421), 552-555.
[http://dx.doi.org/10.1038/nature11494] [PMID: 23034652]
[149]
Wen, M.; Guo, X.; Sun, P.; Xiao, L.; Li, J.; Xiong, Y.; Bao, J.; Xue, T.; Zhang, L.; Tian, C. Site-specific fluorescence spectrum detection and characterization of hASIC1a channels upon toxin mambalgin-1 binding in live mammalian cells. Chem. Commun. (Camb.), 2015, 51(38), 8153-8156.
[http://dx.doi.org/10.1039/C5CC01418B] [PMID: 25873388]
[150]
Schroeder, C.I.; Rash, L.D.; Vila-Farrés, X.; Rosengren, K.J.; Mobli, M.; King, G.F.; Alewood, P.F.; Craik, D.J.; Durek, T. Chemical synthesis, 3D structure, and ASIC binding site of the toxin mambalgin-2. Angew. Chem. Int. Ed. Engl., 2014, 53(4), 1017-1020.
[http://dx.doi.org/10.1002/anie.201308898] [PMID: 24323786]
[151]
Salinas, M.; Besson, T.; Delettre, Q.; Diochot, S.; Boulakirba, S.; Douguet, D.; Lingueglia, E. Binding site and inhibitory mechanism of the mambalgin-2 pain-relieving peptide on acid-sensing ion channel 1a. J. Biol. Chem., 2014, 289(19), 13363-13373.
[http://dx.doi.org/10.1074/jbc.M114.561076] [PMID: 24695733]
[152]
Serrano, S.M. The long road of research on snake venom serine proteinases. Toxicon, 2013, 62, 19-26.
[http://dx.doi.org/10.1016/j.toxicon.2012.09.003] [PMID: 23010164]
[153]
Parry, M.A.; Jacob, U.; Huber, R.; Wisner, A.; Bon, C.; Bode, W. The crystal structure of the novel snake venom plasminogen activator TSV-PA: a prototype structure for snake venom serine proteinases. Structure, 1998, 6(9), 1195-1206.
[http://dx.doi.org/10.1016/S0969-2126(98)00119-1] [PMID: 9753698]
[154]
Watson, S.P.; Herbert, J.M.; Pollitt, A.Y. GPVI and CLEC-2 in hemostasis and vascular integrity. J. Thromb. Haemost., 2010, 8(7), 1456-1467.
[http://dx.doi.org/10.1111/j.1538-7836.2010.03875.x] [PMID: 20345705]
[155]
Prado-Franceschi, J.; Brazil, O.V. Convulxin, a new toxin from the venom of the South American rattlesnake Crotalus durissus terrificus. Toxicon, 1981, 19(6), 875-887.
[http://dx.doi.org/10.1016/0041-0101(81)90085-4] [PMID: 7336450]
[156]
Clemetson, J.M.; Polgar, J.; Magnenat, E.; Wells, T.N.; Clemetson, K.J. The platelet collagen receptor glycoprotein VI is a member of the immunoglobulin superfamily closely related to FcalphaR and the natural killer receptors. J. Biol. Chem., 1999, 274(41), 29019-29024.
[http://dx.doi.org/10.1074/jbc.274.41.29019] [PMID: 10506151]
[157]
Bourgeois, E.A.; Subramaniam, S.; Cheng, T.Y.; De Jong, A.; Layre, E.; Ly, D.; Salimi, M.; Legaspi, A.; Modlin, R.L.; Salio, M.; Cerundolo, V.; Moody, D.B.; Ogg, G. Bee venom processes human skin lipids for presentation by CD1a. J. Exp. Med., 2015, 212(2), 149-163.
[http://dx.doi.org/10.1084/jem.20141505] [PMID: 25584012]
[158]
Palm, N.W.; Rosenstein, R.K.; Medzhitov, R. Allergic host defences. Nature, 2012, 484(7395), 465-472.
[http://dx.doi.org/10.1038/nature11047] [PMID: 22538607]
[159]
Palm, N.W.; Rosenstein, R.K.; Yu, S.; Schenten, D.D.; Florsheim, E.; Medzhitov, R. Bee venom phospholipase A2 induces a primary type 2 response that is dependent on the receptor ST2 and confers protective immunity. Immunity, 2013, 39(5), 976-985.
[http://dx.doi.org/10.1016/j.immuni.2013.10.006] [PMID: 24210353]
[160]
Marichal, T.; Starkl, P.; Reber, L.L.; Kalesnikoff, J.; Oettgen, H.C.; Tsai, M.; Metz, M.; Galli, S.J. A beneficial role for immunoglobulin E in host defense against honeybee venom. Immunity, 2013, 39(5), 963-975.
[http://dx.doi.org/10.1016/j.immuni.2013.10.005] [PMID: 24210352]
[161]
Machkour-M’Rabet, S.; Hénaut, Y.; Winterton, P.; Rojo, R. A case of zootherapy with the tarantula Brachypelma vagans Ausserer, 1875 in traditional medicine of the Chol Mayan ethnic group in Mexico. J. Ethnobiol. Ethnomed., 2011, 7, 12.
[http://dx.doi.org/10.1186/1746-4269-7-12] [PMID: 21450096]
[162]
Reid, P.F. Alpha-cobratoxin as a possible therapy for multiple sclerosis: a review of the literature leading to its development for this application. Crit. Rev. Immunol., 2007, 27(4), 291-302.
[http://dx.doi.org/10.1615/CritRevImmunol.v27.i4.10] [PMID: 18197810]
[163]
Reid, P.F. Cobra venom: A review of the old alternative to opiate analgesics. Altern. Ther. Health Med., 2011, 17(1), 58-71.
[PMID: 21614945]
[164]
Michalsen, A.; Lüdtke, R.; Cesur, O.; Afra, D.; Musial, F.; Baecker, M.; Fink, M.; Dobos, G.J. Effectiveness of leech therapy in women with symptomatic arthrosis of the first carpometacarpal joint: a randomized controlled trial. Pain, 2008, 137(2), 452-459.
[http://dx.doi.org/10.1016/j.pain.2008.03.012] [PMID: 18407413]
[165]
Nouri, M.; Karimi-Yarandi, K.; Etezadi, F.; Amirjamshidi, A. Leech therapy for pain relief: rational behind a notion. Surg. Neurol. Int., 2012, 3, 159.
[http://dx.doi.org/10.4103/2152-7806.105098] [PMID: 23372975]
[166]
Meng, Z.; Yang, P.; Shen, Y.; Bei, W.; Zhang, Y.; Ge, Y.; Newman, R.A.; Cohen, L.; Liu, L.; Thornton, B.; Chang, D.Z.; Liao, Z.; Kurzrock, R. Pilot study of huachansu in patients with hepatocellular carcinoma, nonsmall-cell lung cancer, or pancreatic cancer. Cancer, 2009, 115(22), 5309-5318.
[http://dx.doi.org/10.1002/cncr.24602] [PMID: 19701908]
[167]
Wang, Z.J.; Sun, L.; Heinbockel, T. Resibufogenin and cinobufagin activate central neurons through an ouabain-like action. PLoS One, 2014, 9(11)e113272
[http://dx.doi.org/10.1371/journal.pone.0113272] [PMID: 25420080]
[168]
Peigneur, S.; Tytgat, J. Toxins in drug discovery and pharmacology. Toxins (Basel), 2018, 10(3)E126
[http://dx.doi.org/10.3390/toxins10030126] [PMID: 29547537]
[169]
Harvey, A.L. Toxins and drug discovery. Toxicon, 2014, 92, 193-200.
[http://dx.doi.org/10.1016/j.toxicon.2014.10.020]
[170]
Hodgson, W.C.; Isbister, G.K. The application of toxins and venoms to cardiovascular drug discovery. Curr. Opin. Pharmacol., 2009, 9(2), 173-176.
[http://dx.doi.org/10.1016/j.coph.2008.11.007] [PMID: 19111508]
[171]
King, G.F. Venoms as a platform for human drugs: translating toxins into therapeutics. Expert Opin. Biol. Ther., 2011, 11(11), 1469-1484.
[http://dx.doi.org/10.1517/14712598.2011.621940] [PMID: 21939428]
[172]
Cushman, D.W.; Ondetti, M.A. History of the design of captopril and related inhibitors of angiotensin converting enzyme. Hypertension, 1991, 17(4), 589-592.
[http://dx.doi.org/10.1161/01.HYP.17.4.589] [PMID: 2013486]
[173]
McCleary, R.J.; Kini, R.M. Non-enzymatic proteins from snake venoms: a gold mine of pharmacological tools and drug leads. Toxicon, 2013, 62, 56-74.
[http://dx.doi.org/10.1016/j.toxicon.2012.09.008] [PMID: 23058997]
[174]
Scarborough, R.M.; Naughton, M.A.; Teng, W.; Rose, J.W.; Phillips, D.R.; Nannizzi, L.; Arfsten, A.; Campbell, A.M.; Charo, I.F. Design of potent and specific integrin antagonists. Peptide antagonists with high specificity for glycoprotein IIb-IIIa. J. Biol. Chem., 1993, 268(2), 1066-1073.
[PMID: 8419315]
[175]
Scarborough, R.M. Development of eptifibatide. Am. Heart J., 1999, 138(6 Pt 1), 1093-1104.
[http://dx.doi.org/10.1016/S0002-8703(99)70075-X] [PMID: 10577440]
[176]
Scarborough, R.M.; Rose, J.W.; Hsu, M.A.; Phillips, D.R.; Fried, V.A.; Campbell, A.M.; Nannizzi, L.; Charo, I.F. Barbourin. A GPIIb-IIIa-specific integrin antagonist from the venom of Sistrurus m. barbouri. J. Biol. Chem., 1991, 266(15), 9359-9362.
[PMID: 2033037]
[177]
Lynch, J.J., Jr; Cook, J.J.; Sitko, G.R.; Holahan, M.A.; Ramjit, D.R.; Mellott, M.J.; Stranieri, M.T.; Stabilito, I.I.; Zhang, G.; Lynch, R.J. Nonpeptide glycoprotein IIb/IIIa inhibitors. 5. Antithrombotic effects of MK-0383. J. Pharmacol. Exp. Ther., 1995, 272(1), 20-32.
[PMID: 7815334]
[178]
Saudek, V.; Atkinson, R.A.; Pelton, J.T. Three-dimensional structure of echistatin, the smallest active RGD protein. Biochemistry, 1991, 30(30), 7369-7372.
[http://dx.doi.org/10.1021/bi00244a003] [PMID: 1854743]
[179]
Xu, T.L.; Jiang, X.T.; Hua, W.Y.; Ni, P.Z.; Pei, Y.M. Design and synthesis of amidino-tyrosine derivatives as non-peptide fibrinogen receptor antagonists. Bioorg. Med. Chem. Lett., 1999, 9(14), 1933-1936.
[http://dx.doi.org/10.1016/S0960-894X(99)00308-X] [PMID: 10450956]
[180]
Egbertson, M.S.; Chang, C.T.; Duggan, M.E.; Gould, R.J.; Halczenko, W.; Hartman, G.D.; Laswell, W.L.; Lynch, J.J., Jr; Lynch, R.J.; Manno, P.D. Non-peptide fibrinogen receptor antagonists. 2. Optimization of a tyrosine template as a mimic for Arg-Gly-Asp. J. Med. Chem., 1994, 37(16), 2537-2551.
[http://dx.doi.org/10.1021/jm00042a007] [PMID: 8057299]
[181]
Maraganore, J.M.; Bourdon, P.; Jablonski, J.; Ramachandran, K.L.; Fenton, J.W., II Design and characterization of hirulogs: a novel class of bivalent peptide inhibitors of thrombin. Biochemistry, 1990, 29(30), 7095-7101.
[http://dx.doi.org/10.1021/bi00482a021] [PMID: 2223763]
[182]
Coppens, M.; Eikelboom, J.W.; Gustafsson, D.; Weitz, J.I.; Hirsh, J. Translational success stories: development of direct thrombin inhibitors. Circ. Res., 2012, 111(7), 920-929.
[http://dx.doi.org/10.1161/CIRCRESAHA.112.264903] [PMID: 22982873]
[183]
Olivera, B.M.; Gray, W.R.; Zeikus, R.; McIntosh, J.M.; Varga, J.; Rivier, J.; de Santos, V.; Cruz, L.J. Peptide neurotoxins from fish-hunting cone snails. Science, 1985, 230(4732), 1338-1343.
[http://dx.doi.org/10.1126/science.4071055] [PMID: 4071055]
[184]
Pope, J.E.; Deer, T.R. Ziconotide: a clinical update and pharmacologic review. Expert Opin. Pharmacother., 2013, 14(7), 957-966.
[http://dx.doi.org/10.1517/14656566.2013.784269] [PMID: 23537340]
[185]
Irwin, D.M. Origin and convergent evolution of exendin genes. Gen. Comp. Endocrinol., 2012, 175(1), 27-33.
[http://dx.doi.org/10.1016/j.ygcen.2011.11.025] [PMID: 22137915]
[186]
Eng, J.; Kleinman, W.A.; Singh, L.; Singh, G.; Raufman, J.P. Isolation and characterization of exendin-4, an exendin-3 analogue, from Heloderma suspectum venom. Further evidence for an exendin receptor on dispersed acini from guinea pig pancreas. J. Biol. Chem., 1992, 267(11), 7402-7405.
[PMID: 1313797]
[187]
Göke, R.; Fehmann, H.C.; Linn, T.; Schmidt, H.; Krause, M.; Eng, J.; Göke, B. Exendin-4 is a high potency agonist and truncated exendin-(9-39)-amide an antagonist at the glucagon-like peptide 1-(7-36)-amide receptor of insulin-secreting beta-cells. J. Biol. Chem., 1993, 268(26), 19650-19655.
[PMID: 8396143]
[188]
Aviles-Olmos, I.; Dickson, J.; Kefalopoulou, Z.; Djamshidian, A.; Kahan, J.; Ell, P.; Whitton, P.; Wyse, R.; Isaacs, T.; Lees, A.; Limousin, P.; Foltynie, T. Motor and cognitive advantages persist 12 months after exenatide exposure in Parkinson’s disease. J. Parkinsons Dis., 2014, 4(3), 337-344.
[http://dx.doi.org/10.3233/JPD-140364] [PMID: 24662192]
[189]
Foltynie, T.; Aviles-Olmos, I. Exenatide as a potential treatment for patients with Parkinson’s disease: first steps into the clinic. Alzheimers Dement., 2014, 10(1)(Suppl.), S38-S46.
[http://dx.doi.org/10.1016/j.jalz.2013.12.005] [PMID: 24529524]
[190]
Parkes, D.G.; Mace, K.F.; Trautmann, M.E. Discovery and development of exenatide: the first antidiabetic agent to leverage the multiple benefits of the incretin hormone, GLP-1. Expert Opin. Drug Discov., 2013, 8(2), 219-244.
[http://dx.doi.org/10.1517/17460441.2013.741580] [PMID: 23231438]
[191]
Hunter, K.; Hölscher, C. Drugs developed to treat diabetes, liraglutide and lixisenatide, cross the blood brain barrier and enhance neurogenesis. BMC Neurosci., 2012, 13, 33.
[http://dx.doi.org/10.1186/1471-2202-13-33] [PMID: 22443187]
[192]
Athauda, D.; Maclagan, K.; Skene, S.S.; Bajwa-Joseph, M.; Letchford, D.; Chowdhury, K.; Hibbert, S.; Budnik, N.; Zampedri, L.; Dickson, J.; Li, Y.; Aviles-Olmos, I.; Warner, T.T.; Limousin, P.; Lees, A.J.; Greig, N.H.; Tebbs, S.; Foltynie, T. Exenatide once weekly versus placebo in Parkinson’s disease: a randomised, double-blind, placebo-controlled trial. Lancet, 2017, 390(10103), 1664-1675.
[http://dx.doi.org/10.1016/S0140-6736(17)31585-4] [PMID: 28781108]
[193]
Athauda, D.; Foltynie, T. The glucagon-like peptide 1 (GLP) receptor as a therapeutic target in Parkinson’s disease: mechanisms of action. Drug Discov. Today, 2016, 21(5), 802-818.
[http://dx.doi.org/10.1016/j.drudis.2016.01.013] [PMID: 26851597]
[194]
Fan, R.; Li, X.; Gu, X.; Chan, J.C.; Xu, G. Exendin-4 protects pancreatic beta cells from human islet amyloid polypeptide-induced cell damage: potential involvement of AKT and mitochondria biogenesis. Diabetes Obes. Metab., 2010, 12(9), 815-824.
[http://dx.doi.org/10.1111/j.1463-1326.2010.01238.x] [PMID: 20649634]
[195]
Schapira, A.H. Mitochondria in the aetiology and pathogenesis of Parkinson’s disease. Lancet Neurol., 2008, 7(1), 97-109.
[http://dx.doi.org/10.1016/S1474-4422(07)70327-7] [PMID: 18093566]
[196]
Chen, Y.; Zhang, Y.; Li, L.; Hölscher, C. Neuroprotective effects of geniposide in the MPTP mouse model of Parkinson’s disease. Eur. J. Pharmacol., 2015, 768, 21-27.
[http://dx.doi.org/10.1016/j.ejphar.2015.09.029] [PMID: 26409043]
[197]
Li, Y.; Perry, T.; Kindy, M.S.; Harvey, B.K.; Tweedie, D.; Holloway, H.W.; Powers, K.; Shen, H.; Egan, J.M.; Sambamurti, K.; Brossi, A.; Lahiri, D.K.; Mattson, M.P.; Hoffer, B.J.; Wang, Y.; Greig, N.H. GLP-1 receptor stimulation preserves primary cortical and dopaminergic neurons in cellular and rodent models of stroke and Parkinsonism. Proc. Natl. Acad. Sci. USA, 2009, 106(4), 1285-1290.
[http://dx.doi.org/10.1073/pnas.0806720106] [PMID: 19164583]
[198]
Li, Y.; Tweedie, D.; Mattson, M.P.; Holloway, H.W.; Greig, N.H. Enhancing the GLP-1 receptor signaling pathway leads to proliferation and neuroprotection in human neuroblastoma cells. J. Neurochem., 2010, 113(6), 1621-1631.
[http://dx.doi.org/10.1111/j.1471-4159.2010.06731.x] [PMID: 20374430]
[199]
Xie, Z.; Enkhjargal, B.; Wu, L.; Zhou, K.; Sun, C.; Hu, X.; Gospodarev, V.; Tang, J.; You, C.; Zhang, J.H. Exendin-4 attenuates neuronal death via GLP-1R/PI3K/Akt pathway in early brain injury after subarachnoid hemorrhage in rats. Neuropharmacology, 2018, 128, 142-151.
[http://dx.doi.org/10.1016/j.neuropharm.2017.09.040] [PMID: 28986282]
[200]
Perry, T.; Haughey, N.J.; Mattson, M.P.; Egan, J.M.; Greig, N.H. Protection and reversal of excitotoxic neuronal damage by glucagon-like peptide-1 and exendin-4. J. Pharmacol. Exp. Ther., 2002, 302(3), 881-888.
[http://dx.doi.org/10.1124/jpet.102.037481] [PMID: 12183643]
[201]
Bassil, F.; Canron, M.H.; Vital, A.; Bezard, E.; Li, Y.; Greig, N.H.; Gulyani, S.; Kapogiannis, D.; Fernagut, P.O.; Meissner, W.G. Insulin resistance and exendin-4 treatment for multiple system atrophy. Brain, 2017, 140(5), 1420-1436.
[http://dx.doi.org/10.1093/brain/awx044] [PMID: 28334990]
[202]
Raab, E.L.; Vuguin, P.M.; Stoffers, D.A.; Simmons, R.A. Neonatal exendin-4 treatment reduces oxidative stress and prevents hepatic insulin resistance in intrauterine growth-retarded rats. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2009, 297(6), R1785-R1794.
[http://dx.doi.org/10.1152/ajpregu.00519.2009] [PMID: 19846744]
[203]
Xu, W.; Yang, Y.; Yuan, G.; Zhu, W.; Ma, D.; Hu, S. Exendin-4, a glucagon-like peptide-1 receptor agonist, reduces Alzheimer disease-associated tau hyperphosphorylation in the hippocampus of rats with type 2 diabetes. J. Investig. Med., 2015, 63(2), 267-272.
[http://dx.doi.org/10.1097/JIM.0000000000000129] [PMID: 25479064]
[204]
Kim, S.; Moon, M.; Park, S. Exendin-4 protects dopaminergic neurons by inhibition of microglial activation and matrix metalloproteinase-3 expression in an animal model of Parkinson’s disease. J. Endocrinol., 2009, 202(3), 431-439.
[http://dx.doi.org/10.1677/JOE-09-0132] [PMID: 19570816]
[205]
Harkavyi, A.; Abuirmeileh, A.; Lever, R.; Kingsbury, A.E.; Biggs, C.S.; Whitton, P.S. Glucagon-like peptide 1 receptor stimulation reverses key deficits in distinct rodent models of Parkinson’s disease. J. Neuroinflammation, 2008, 5, 19.
[http://dx.doi.org/10.1186/1742-2094-5-19] [PMID: 18492290]
[206]
Kim, S.; Jeong, J.; Jung, H.S.; Kim, B.; Kim, Y.E.; Lim, D.S.; Kim, S.D.; Song, Y.S. Anti-inflammatory effect of glucagon like peptide-1 receptor agonist, exendin-4, through modulation of IB1/JIP1 Expression and JNK signaling in stroke. Exp. Neurobiol., 2017, 26(4), 227-239.
[http://dx.doi.org/10.5607/en.2017.26.4.227] [PMID: 28912645]
[207]
Kim, D.S.; Choi, H.I.; Wang, Y.; Luo, Y.; Hoffer, B.J.; Greig, N.H. A new treatment strategy for Parkinson’s Disease through the gut-brain axis: the glucagon-like peptide-1 receptor pathway. Cell Transplant., 2017, 26(9), 1560-1571.
[http://dx.doi.org/10.1177/0963689717721234] [PMID: 29113464]
[208]
Athauda, D.; Foltynie, T. Protective effects of the GLP-1 mimetic exendin-4 in Parkinson’s disease. Neuropharmacology,, 2018, 136(Pt B), 260-270.
[http://dx.doi.org/10.1016/j.neuropharm.2017.09.023] [PMID: 28927992]
[209]
Zieminska, E.; Matyja, E.; Kozlowska, H.; Stafiej, A.; Lazarewicz, J.W. Excitotoxic neuronal injury in acute homocysteine neurotoxicity: role of calcium and mitochondrial alterations. Neurochem. Int., 2006, 48(6-7), 491-497.
[http://dx.doi.org/10.1016/j.neuint.2005.12.023] [PMID: 16513213]
[210]
Choi, D.W. Calcium and excitotoxic neuronal injury. Ann. N. Y. Acad. Sci., 1994, 747, 162-171.
[http://dx.doi.org/10.1111/j.1749-6632.1994.tb44407.x] [PMID: 7847669]
[211]
Wheeler, D.B.; Randall, A.; Tsien, R.W. Roles of N-type and Q-type Ca2+ channels in supporting hippocampal synaptic transmission. Science, 1994, 264(5155), 107-111.
[http://dx.doi.org/10.1126/science.7832825] [PMID: 7832825]
[212]
Choi, D.W. Calcium: still center-stage in hypoxic-ischemic neuronal death. Trends Neurosci., 1995, 18(2), 58-60.
[http://dx.doi.org/10.1016/0166-2236(95)80018-W] [PMID: 7537408]
[213]
Uchitel, O.D. Toxins affecting calcium channels in neurons. Toxicon, 1997, 35(8), 1161-1191.
[http://dx.doi.org/10.1016/S0041-0101(96)00210-3] [PMID: 9278968]
[214]
Pringle, A.K.; Benham, C.D.; Sim, L.; Kennedy, J.; Iannotti, F.; Sundstrom, L.E. Selective N-type calcium channel antagonist omega conotoxin MVIIA is neuroprotective against hypoxic neurodegeneration in organotypic hippocampal-slice cultures. Stroke, 1996, 27(11), 2124-2130.
[http://dx.doi.org/10.1161/01.STR.27.11.2124] [PMID: 8898826]
[215]
Olivera, B.M.; Cruz, L.J.; de Santos, V.; LeCheminant, G.W.; Griffin, D.; Zeikus, R.; McIntosh, J.M.; Galyean, R.; Varga, J.; Gray, W.R. Neuronal calcium channel antagonists. Discrimination between calcium channel subtypes using omega-conotoxin from Conus magus venom. Biochemistry, 1987, 26(8), 2086-2090.
[http://dx.doi.org/10.1021/bi00382a004] [PMID: 2441741]
[216]
Valentino, K.; Newcomb, R.; Gadbois, T.; Singh, T.; Bowersox, S.; Bitner, S.; Justice, A.; Yamashiro, D.; Hoffman, B.B.; Ciaranello, R. A selective N-type calcium channel antagonist protects against neuronal loss after global cerebral ischemia. Proc. Natl. Acad. Sci. USA, 1993, 90(16), 7894-7897.
[http://dx.doi.org/10.1073/pnas.90.16.7894] [PMID: 8102803]
[217]
Zhao, Q.; Smith, M.L.; Siesjö, B.K. The omega-conopeptide SNX-111, an N-type calcium channel blocker, dramatically ameliorates brain damage due to transient focal ischaemia. Acta Physiol. Scand., 1994, 150(4), 459-461.
[http://dx.doi.org/10.1111/j.1748-1716.1994.tb09713.x] [PMID: 8036915]
[218]
Bowersox, S.S.; Singh, T.; Luther, R.R. Selective blockade of N-type voltage-sensitive calcium channels protects against brain injury after transient focal cerebral ischemia in rats. Brain Res., 1997, 747(2), 343-347.
[http://dx.doi.org/10.1016/S0006-8993(96)01325-X] [PMID: 9046013]
[219]
Xiong, Y.; Peterson, P.L.; Verweij, B.H.; Vinas, F.C.; Muizelaar, J.P.; Lee, C.P. Mitochondrial dysfunction after experimental traumatic brain injury: combined efficacy of SNX-111 and U-101033E. J. Neurotrauma, 1998, 15(7), 531-544.
[http://dx.doi.org/10.1089/neu.1998.15.531] [PMID: 9674556]
[220]
Takizawa, S.; Matsushima, K.; Fujita, H.; Nanri, K.; Ogawa, S.; Shinohara, Y. A selective N-type calcium channel antagonist reduces extracellular glutamate release and infarct volume in focal cerebral ischemia. J. Cereb. Blood Flow Metab., 1995, 15(4), 611-618.
[http://dx.doi.org/10.1038/jcbfm.1995.75] [PMID: 7790409]
[221]
Buchan, A.M.; Gertler, S.Z.; Li, H.; Xue, D.; Huang, Z.G.; Chaundy, K.E.; Barnes, K.; Lesiuk, H.J. A selective N-type Ca(2+)-channel blocker prevents CA1 injury 24 h following severe forebrain ischemia and reduces infarction following focal ischemia. J. Cereb. Blood Flow Metab., 1994, 14(6), 903-910.
[http://dx.doi.org/10.1038/jcbfm.1994.121] [PMID: 7929655]
[222]
Perez-Pinzon, M.A.; Yenari, M.A.; Sun, G.H.; Kunis, D.M.; Steinberg, G.K. SNX-111, a novel, presynaptic N-type calcium channel antagonist, is neuroprotective against focal cerebral ischemia in rabbits. J. Neurol. Sci., 1997, 153(1), 25-31.
[http://dx.doi.org/10.1016/S0022-510X(97)00196-2] [PMID: 9455974]
[223]
Bowersox, S.; Mandema, J.; Tarczy-Hornoch, K.; Miljanich, G.; Luther, R.R. Pharmacokinetics of SNX-111, a selective N-type calcium channel blocker, in rats and cynomolgus monkeys. Drug Metab. Dispos., 1997, 25(3), 379-383.
[PMID: 9172958]
[224]
Heading, C.E. Ziconotide (Elan Pharmaceuticals). IDrugs, 2001, 4(3), 339-350.
[PMID: 16025393]
[225]
McGivern, J.G. Ziconotide: a review of its pharmacology and use in the treatment of pain. Neuropsychiatr. Dis. Treat., 2007, 3(1), 69-85.
[http://dx.doi.org/10.2147/nedt.2007.3.1.69] [PMID: 19300539]
[226]
Smith, H.S.; Deer, T.R. Safety and efficacy of intrathecal ziconotide in the management of severe chronic pain. Ther. Clin. Risk Manag., 2009, 5(3), 521-534.
[http://dx.doi.org/10.2147/TCRM.S4438] [PMID: 19707262]
[227]
Hillyard, D.R.; Monje, V.D.; Mintz, I.M.; Bean, B.P.; Nadasdi, L.; Ramachandran, J.; Miljanich, G.; Azimi-Zoonooz, A.; McIntosh, J.M.; Cruz, L.J. A new Conus peptide ligand for mammalian presynaptic Ca2+ channels. Neuron, 1992, 9(1), 69-77.
[http://dx.doi.org/10.1016/0896-6273(92)90221-X] [PMID: 1352986]
[228]
Liu, H.; De Waard, M.; Scott, V.E.; Gurnett, C.A.; Lennon, V.A.; Campbell, K.P. Identification of three subunits of the high affinity omega-conotoxin MVIIC-sensitive Ca2+ channel. J. Biol. Chem., 1996, 271(23), 13804-13810.
[http://dx.doi.org/10.1074/jbc.271.23.13804] [PMID: 8662888]
[229]
Imaizumi, T.; Kocsis, J.D.; Waxman, S.G. The role of voltage-gated Ca2+ channels in anoxic injury of spinal cord white matter. Brain Res., 1999, 817(1-2), 84-92.
[http://dx.doi.org/10.1016/S0006-8993(98)01214-1] [PMID: 9889329]
[230]
Oliveira, K.M.; Lavor, M.S.; Silva, C.M.; Fukushima, F.B.; Rosado, I.R.; Silva, J.F.; Martins, B.C.; Guimarães, L.B.; Gomez, M.V.; Melo, M.M.; Melo, e.g Omega-conotoxin MVIIC attenuates neuronal apoptosis in vitro and improves significant recovery after spinal cord injury in vivo in rats. Int. J. Clin. Exp. Pathol., 2014, 7(7), 3524-3536.
[PMID: 25120731]
[231]
Madden, K.P.; Clark, W.M.; Marcoux, F.W.; Probert, A.W., Jr; Weber, M.L.; Rivier, J.; Zivin, J.A. Treatment with conotoxin, an ‘N-type’ calcium channel blocker, in neuronal hypoxic-ischemic injury. Brain Res., 1990, 537(1-2), 256-262.
[http://dx.doi.org/10.1016/0006-8993(90)90366-J] [PMID: 2085777]
[232]
Wang, X.; Treistman, S.N.; Lemos, J.R. Two types of high-threshold calcium currents inhibited by omega-conotoxin in nerve terminals of rat neurohypophysis. J. Physiol., 1992, 445, 181-199.
[http://dx.doi.org/10.1113/jphysiol.1992.sp018919] [PMID: 1323666]
[233]
Reis, H.J.; Prado, M.A.; Kalapothakis, E.; Cordeiro, M.N.; Diniz, C.R.; De Marco, L.A.; Gomez, M.V.; Romano-Silva, M.A. Inhibition of glutamate uptake by a polypeptide toxin (phoneutriatoxin 3-4) from the spider Phoneutria nigriventer. Biochem. J., 1999, 343(Pt 2), 413-418.
[http://dx.doi.org/10.1042/bj3430413] [PMID: 10510308]
[234]
Pinheiro, A.C.; Gomez, R.S.; Massensini, A.R.; Cordeiro, M.N.; Richardson, M.; Romano-Silva, M.A.; Prado, M.A.; De Marco, L.; Gomez, M.V. Neuroprotective effect on brain injury by neurotoxins from the spider Phoneutria nigriventer. Neurochem. Int., 2006, 49(5), 543-547.
[http://dx.doi.org/10.1016/j.neuint.2006.04.009] [PMID: 16759753]
[235]
Guatimosim, C.; Romano-Silva, M.A.; Cruz, J.S.; Beirão, P.S.; Kalapothakis, E.; Moraes-Santos, T.; Cordeiro, M.N.; Diniz, C.R.; Gomez, M.V.; Prado, M.A. A toxin from the spider Phoneutria nigriventer that blocks calcium channels coupled to exocytosis. Br. J. Pharmacol., 1997, 122(3), 591-597.
[http://dx.doi.org/10.1038/sj.bjp.0701381] [PMID: 9351520]
[236]
Miranda, D.M.; Romano-Silva, M.A.; Kalapothakis, E.; Diniz, C.R.; Cordeiro, M.N.; Santos, T.M.; Prado, M.A.; Gomez, M.V. Phoneutria nigriventer toxins block tityustoxin-induced calcium influx in synaptosomes. Neuroreport, 1998, 9(7), 1371-1373.
[http://dx.doi.org/10.1097/00001756-199805110-00022] [PMID: 9631431]
[237]
Pinheiro, A.C.; da Silva, A.J.; Prado, M.A. Cordeiro, Mdo.N.; Richardson, M.; Batista, M.C.; de Castro Junior, C.J.; Massensini, A.R.; Guatimosim, C.; Romano-Silva, M.A.; Kushmerick, C.; Gomez, M.V. Phoneutria spider toxins block ischemia-induced glutamate release, neuronal death, and loss of neurotransmission in hippocampus. Hippocampus, 2009, 19(11), 1123-1129.
[http://dx.doi.org/10.1002/hipo.20580] [PMID: 19370546]
[238]
Liang, S.P.; Zhang, D.Y.; Pan, X.; Chen, Q.; Zhou, P.A. Properties and amino acid sequence of huwentoxin-I, a neurotoxin purified from the venom of the Chinese bird spider Selenocosmia huwena. Toxicon, 1993, 31(8), 969-978.
[PMID: 8212049]
[239]
Wang, Y.R.; Liu, R.Y.; Wang, L.C.; Mao, H.F.; Chen, J.Q. Effect of Huwentoxin-I on the Fas and TNF apoptosis path-way in the hippocampus of rat with global cerebral ischemia. Toxicon, 2007, 50(8), 1085-1094.
[http://dx.doi.org/10.1016/j.toxicon.2007.07.020] [PMID: 17900647]
[240]
Cordeiro Mdo, N.; de Figueiredo, S.G.; Valentim Ado, C.; Diniz, C.R.; von Eickstedt, V.R.; Gilroy, J.; Richardson, M. Purification and amino acid sequences of six Tx3 type neurotoxins from the venom of the Brazilian ‘armed’ spider Phoneutria nigriventer (Keys). Toxicon, 1993, 31(1), 35-42.
[PMID: 8446961]
[241]
de Souza, A.H.; Lima, M.C.; Drewes, C.C.; da Silva, J.F.; Torres, K.C.; Pereira, E.M.; de Castro, C.J. Junior; Vieira, L.B.; Cordeiro, M.N.; Richardson, M.; Gomez, R.S. Romano-Silva, M.A.; Ferreira, J.; Gomez, M.V. Antiallodynic effect and side effects of Phα1β, a neurotoxin from the spider Phoneutria nigriventer: comparison with ω -conotoxin MVIIA and morphine. Toxicon, 2011, 58(8), 626-633.
[http://dx.doi.org/10.1016/j.toxicon.2011.09.008] [PMID: 21967810]
[242]
Rigo, F.K.; Dalmolin, G.D.; Trevisan, G.; Tonello, R.; Silva, M.A.; Rossato, M.F.; Klafke, J.Z. Cordeiro, Mdo.N.; Castro Junior, C.J.; Montijo, D.; Gomez, M.V.; Ferreira, J. Effect of ω-conotoxin MVIIA and Phα1β on paclitaxel-induced acute and chronic pain. Pharmacol. Biochem. Behav., 2013, 114-115, 16-22.
[http://dx.doi.org/10.1016/j.pbb.2013.10.014] [PMID: 24148893]
[243]
Rigo, F.K.; Trevisan, G.; Rosa, F.; Dalmolin, G.D.; Otuki, M.F.; Cueto, A.P.; de Castro, Junior, C.J.; Romano-Silva, M.A. Cordeiro, Mdo.N.; Richardson, M.; Ferreira, J.; Gomez, M.V. Spider peptide Phα1β induces analgesic effect in a model of cancer pain. Cancer Sci., 2013, 104(9), 1226-1230.
[http://dx.doi.org/10.1111/cas.12209] [PMID: 23718272]
[244]
Rigo, F.K.; Trevisan, G.; De Pra, S.D.; Cordeiro, M.N.; Borges, M.H.; Silva, J.F.; Santa Cecilia, F.V.; de Souza, A.H.; de Oliveira Adamante, G.; Milioli, A.M.; de Castro, C.J. Junior; Ferreira, J.; Gomez, M.V. The spider toxin Phalpha1beta recombinant possesses strong analgesic activity. Toxicon, 2017, 133, 145-152.
[http://dx.doi.org/10.1016/j.toxicon.2017.05.018] [PMID: 28526335]
[245]
Silva, R.B.M.; Greggio, S.; Venturin, G.T.; da Costa, J.C.; Gomez, M.V.; Campos, M.M. Beneficial effects of the calcium channel blocker CTK 01512-2 in a mouse model of multiple sclerosis. Mol. Neurobiol., 2018, 55(12), 9307-9327.
[http://dx.doi.org/10.1007/s12035-018-1049-1] [PMID: 29667130]
[246]
Astrup, J.; Symon, L.; Branston, N.M.; Lassen, N.A. Cortical evoked potential and extracellular K+ and H+ at critical levels of brain ischemia. Stroke, 1977, 8(1), 51-57.
[http://dx.doi.org/10.1161/01.STR.8.1.51] [PMID: 13521]
[247]
Xiong, Z.G.; Zhu, X.M.; Chu, X.P.; Minami, M.; Hey, J.; Wei, W.L.; MacDonald, J.F.; Wemmie, J.A.; Price, M.P.; Welsh, M.J.; Simon, R.P. Neuroprotection in ischemia: blocking calcium-permeable acid-sensing ion channels. Cell, 2004, 118(6), 687-698.
[http://dx.doi.org/10.1016/j.cell.2004.08.026] [PMID: 15369669]
[248]
Li, M.; Inoue, K.; Branigan, D.; Kratzer, E.; Hansen, J.C.; Chen, J.W.; Simon, R.P.; Xiong, Z.G. Acid-sensing ion channels in acidosis-induced injury of human brain neurons. J. Cereb. Blood Flow Metab., 2010, 30(6), 1247-1260.
[http://dx.doi.org/10.1038/jcbfm.2010.30] [PMID: 20216553]
[249]
Arias, R.L.; Sung, M.L.; Vasylyev, D.; Zhang, M.Y.; Albinson, K.; Kubek, K.; Kagan, N.; Beyer, C.; Lin, Q.; Dwyer, J.M.; Zaleska, M.M.; Bowlby, M.R.; Dunlop, J.; Monaghan, M. Amiloride is neuroprotective in an MPTP model of Parkinson’s disease. Neurobiol. Dis., 2008, 31(3), 334-341.
[http://dx.doi.org/10.1016/j.nbd.2008.05.008] [PMID: 18606547]
[250]
Pignataro, G.; Simon, R.P.; Xiong, Z.G. Prolonged activation of ASIC1a and the time window for neuroprotection in cerebral ischaemia. Brain, 2007, 130(Pt 1), 151-158.
[http://dx.doi.org/10.1093/brain/awl325] [PMID: 17114797]
[251]
Yang, Z.J.; Ni, X.; Carter, E.L.; Kibler, K.; Martin, L.J.; Koehler, R.C. Neuroprotective effect of acid-sensing ion channel inhibitor psalmotoxin-1 after hypoxia-ischemia in newborn piglet striatum. Neurobiol. Dis., 2011, 43(2), 446-454.
[http://dx.doi.org/10.1016/j.nbd.2011.04.018] [PMID: 21558004]
[252]
Escoubas, P.; De Weille, J.R.; Lecoq, A.; Diochot, S.; Waldmann, R.; Champigny, G.; Moinier, D.; Ménez, A.; Lazdunski, M. Isolation of a tarantula toxin specific for a class of proton-gated Na+ channels. J. Biol. Chem., 2000, 275(33), 25116-25121.
[http://dx.doi.org/10.1074/jbc.M003643200] [PMID: 10829030]
[253]
Saez, N.J.; Mobli, M.; Bieri, M.; Chassagnon, I.R.; Malde, A.K.; Gamsjaeger, R.; Mark, A.E.; Gooley, P.R.; Rash, L.D.; King, G.F. A dynamic pharmacophore drives the interaction between Psalmotoxin-1 and the putative drug target acid-sensing ion channel 1a. Mol. Pharmacol., 2011, 80(5), 796-808.
[http://dx.doi.org/10.1124/mol.111.072207] [PMID: 21825095]
[254]
McCarthy, C.A.; Rash, L.D.; Chassagnon, I.R.; King, G.F.; Widdop, R.E. PcTx1 affords neuroprotection in a conscious model of stroke in hypertensive rats via selective inhibition of ASIC1a. Neuropharmacology, 2015, 99, 650-657.
[http://dx.doi.org/10.1016/j.neuropharm.2015.08.040] [PMID: 26320544]
[255]
Sun, X.; Jin, J.; Zhang, J.G.; Qi, L.; Braun, F.K.; Zhang, X.D.; Xu, F. Expression of acid-sensing ion channels in nucleus pulposus cells of the human intervertebral disk is regulated by non-steroid anti-inflammatory drugs. Acta Biochim. Biophys. Sin. (Shanghai), 2014, 46(9), 774-781.
[http://dx.doi.org/10.1093/abbs/gmu067] [PMID: 25079679]
[256]
Zhou, R.P.; Ni, W.L.; Dai, B.B.; Wu, X.S.; Wang, Z.S.; Xie, Y.Y.; Wang, Z.Q.; Yang, W.J.; Ge, J.F.; Hu, W.; Chen, F.H. ASIC2a overexpression enhances the protective effect of PcTx1 and APETx2 against acidosis-induced articular chondrocyte apoptosis and cytotoxicity. Gene, 2018, 642, 230-240.
[http://dx.doi.org/10.1016/j.gene.2017.11.034] [PMID: 29141196]
[257]
Chassagnon, I.R.; McCarthy, C.A.; Chin, Y.K.; Pineda, S.S.; Keramidas, A.; Mobli, M.; Pham, V.; De Silva, T.M.; Lynch, J.W.; Widdop, R.E.; Rash, L.D.; King, G.F. Potent neuroprotection after stroke afforded by a double-knot spider-venom peptide that inhibits acid-sensing ion channel 1a. Proc. Natl. Acad. Sci. USA, 2017, 114(14), 3750-3755.
[http://dx.doi.org/10.1073/pnas.1614728114] [PMID: 28320941]
[258]
Liao, Q.; Li, S.; Siu, S.W.I.; Yang, B.; Huang, C.; Chan, J.Y.; Morlighem, J.R.L.; Wong, C.T.T.; Rádis-Baptista, G.; Lee, S.M. Novel kunitz-like peptides discovered in the Zoanthid Palythoa caribaeorum through transcriptome sequencing. J. Proteome Res., 2018, 17(2), 891-902.
[http://dx.doi.org/10.1021/acs.jproteome.7b00686] [PMID: 29285938]
[259]
Jones, R.M.; Bulaj, G. Conotoxins - new vistas for peptide therapeutics. Curr. Pharm. Des., 2000, 6(12), 1249-1285.
[http://dx.doi.org/10.2174/1381612003399653] [PMID: 10903392]
[260]
Harvey, A.L.; Bradley, K.N.; Cochran, S.A.; Rowan, e.g.; Pratt, J.A.; Quillfeldt, J.A.; Jerusalinsky, D.A. What can toxins tell us for drug discovery? Toxicon, 1998, 36(11), 1635-1640.
[http://dx.doi.org/10.1016/S0041-0101(98)00156-1]
[261]
Dauer, W.; Przedborski, S. Parkinson’s disease: mechanisms and models. Neuron, 2003, 39(6), 889-909.
[http://dx.doi.org/10.1016/S0896-6273(03)00568-3] [PMID: 12971891]
[262]
Isacson, O. Models of repair mechanisms for future treatment modalities of Parkinson’s disease. Brain Res. Bull., 2002, 57(6), 839-846.
[http://dx.doi.org/10.1016/S0361-9230(01)00773-0] [PMID: 12031282]
[263]
Jucker, M. The benefits and limitations of animal models for translational research in neurodegenerative diseases. Nat. Med., 2010, 16(11), 1210-1214.
[http://dx.doi.org/10.1038/nm.2224] [PMID: 21052075]
[264]
Fahnert, B. Using folding promoting agents in recombinant protein production: a review. Methods Mol. Biol., 2012, 824, 3-36.
[http://dx.doi.org/10.1007/978-1-61779-433-9_1] [PMID: 22160891]
[265]
Fahnert, B. Folding-promoting agents in recombinant protein production. Methods Mol. Biol., 2004, 267, 53-74.
[PMID: 15269415]
[266]
Rosano, G.L.; Ceccarelli, E.A. Recombinant protein expression in Escherichia coli: advances and challenges. Front. Microbiol., 2014, 5, 172.
[http://dx.doi.org/10.3389/fmicb.2014.00172] [PMID: 24860555]
[267]
Stefan, A.; Ceccarelli, A.; Conte, E.; Monton Silva, A.; Hochkoeppler, A. The multifaceted benefits of protein co-expression in Escherichia coli. J. Vis. Exp., 2015, (96) 10.3791/52431
[http://dx.doi.org/10.3791/52431] [PMID: 25742393]
[268]
Khan, K.H. Gene expression in mammalian cells and its applications. Adv. Pharm. Bull., 2013, 3(2), 257-263.
[PMID: 24312845]
[269]
Miranda, L.P.; Alewood, P.F. Accelerated chemical synthesis of peptides and small proteins. Proc. Natl. Acad. Sci. USA, 1999, 96(4), 1181-1186.
[http://dx.doi.org/10.1073/pnas.96.4.1181] [PMID: 9989998]
[270]
Münzker, L.; Oddo, A.; Hansen, P.R. Chemical synthesis of antimicrobial peptides. Methods Mol. Biol., 2017, 1548, 35-49.
[http://dx.doi.org/10.1007/978-1-4939-6737-7_3] [PMID: 28013495]
[271]
Yan, L.Z.; Dawson, P.E. Synthesis of peptides and proteins without cysteine residues by native chemical ligation combined with desulfurization. J. Am. Chem. Soc., 2001, 123(4), 526-533.
[http://dx.doi.org/10.1021/ja003265m] [PMID: 11456564]
[272]
Engelhard, M. Quest for the chemical synthesis of proteins. J. Pept. Sci., 2016, 22(5), 246-251.
[http://dx.doi.org/10.1002/psc.2880]
[273]
Hojo, H. Recent progress in the chemical synthesis of proteins. Curr. Opin. Struct. Biol., 2014, 26, 16-23.
[http://dx.doi.org/10.1016/j.sbi.2014.03.002] [PMID: 24681507]
[274]
Nilsson, B.L.; Soellner, M.B.; Raines, R.T. Chemical synthesis of proteins. Annu. Rev. Biophys. Biomol. Struct., 2005, 34, 91-118.
[http://dx.doi.org/10.1146/annurev.biophys.34.040204.144700] [PMID: 15869385]
[275]
Ferreira, S.H.; Bartelt, D.C.; Greene, L.J. Isolation of bradykinin-potentiating peptides from Bothrops jararaca venom. Biochemistry, 1970, 9(13), 2583-2593.
[http://dx.doi.org/10.1021/bi00815a005] [PMID: 4317874]
[276]
Cushman, D.W.; Ondetti, M.A. Inhibitors of angiotensin-converting enzyme. Prog. Med. Chem., 1980, 17, 41-104.
[http://dx.doi.org/10.1016/S0079-6468(08)70157-7] [PMID: 6273970]
[277]
Gentilella, R.; Bianchi, C.; Rossi, A.; Rotella, C.M. Exenatide: a review from pharmacology to clinical practice. Diabetes Obes. Metab., 2009, 11(6), 544-556.
[http://dx.doi.org/10.1111/j.1463-1326.2008.01018.x] [PMID: 19383034]
[278]
Nielsen, L.L.; Baron, A.D. Pharmacology of exenatide (synthetic exendin-4) for the treatment of type 2 diabetes. Curr. Opin. Investig. Drugs, 2003, 4(4), 401-405.
[PMID: 12808878]
[279]
Furman, B.L. The development of Byetta (exenatide) from the venom of the Gila monster as an anti-diabetic agent. Toxicon, 2012, 59(4), 464-471.
[http://dx.doi.org/10.1016/j.toxicon.2010.12.016] [PMID: 21194543]
[280]
Triplitt, C.; Chiquette, E. Exenatide: from the Gila monster to the pharmacy. J. Am. Pharm. Assoc. (2003), 2006, 46(1), 44-52.
[http://dx.doi.org/10.1331/154434506775268698] [PMID: 16529340]
[281]
Garsky, V.M.; Lumma, P.K.; Freidinger, R.M.; Pitzenberger, S.M.; Randall, W.C.; Veber, D.F.; Gould, R.J.; Friedman, P.A. Chemical synthesis of echistatin, a potent inhibitor of platelet aggregation from Echis carinatus: synthesis and biological activity of selected analogs. Proc. Natl. Acad. Sci. USA, 1989, 86(11), 4022-4026.
[http://dx.doi.org/10.1073/pnas.86.11.4022] [PMID: 2726764]
[282]
Hashemzadeh, M.; Furukawa, M.; Goldsberry, S.; Movahed, M.R. Chemical structures and mode of action of intravenous glycoprotein IIb/IIIa receptor blockers: a review. Exp. Clin. Cardiol., 2008, 13(4), 192-197.
[PMID: 19343166]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy