[1]
Kuroiwa M, Ikeda H, Hongo T, et al. Effects of recombinant human endostatin on a human neuroblastoma xenograft. Int J Mol Med 2001; 8(4): 391-6.
[2]
Arvold ND, Armstrong TS, Warren KE, et al. Corticosteroid use endpoints in neuro-oncology: Response assessment in neuro-oncology working group. Neuro-oncol 2018; 20(7): 897-906.
[3]
Peck MW. Biology and genomic analysis of Clostridium botulinum. Adv Microb Physiol 2009; 55: 183-265.
[4]
Rossetto O, Pirazzini M, Montecucco C. Botulinum neurotoxins: Genetic, structural and mechanistic insights. Nat Rev Microbiol 2014; 12(8): 535-49.
[5]
Silvaggi NR, Boldt GE, Hixon MS, et al. Structures of Clostridium botulinum neurotoxin serotype a light chain complexed with small-molecule inhibitors highlight active-site flexibility. Chem Biol 2007; 14(5): 533-42.
[6]
Bade S, Rummel A, Reisinger C, et al. Botulinum neurotoxin type D enables cytosolic delivery of enzymatically active cargo proteins to neurones via unfolded translocation intermediates. J Neurochem 2004; 91(6): 1461-72.
[7]
Safarpour Y, Jabbari B. Botulinum toxin for the treatment of movement disorders. Curr Treat Neurol 2012; 12(4): 399-409.
[8]
Hackett G, Moore K, Burgin D, et al. Purification and characterization of recombinant botulinum neurotoxin serotype FA, also known as serotype H. Toxicon 2018; 123: 36.
[9]
Pellett S, Bradshaw M, Tepp WH, et al. The light chain defines the duration of action of botulinum toxin serotype a subtypes. Mol Biol 2018; 9(2): e00089-18.
[10]
Ko EC, Wang X, Ferrone S. Immunotherapy of malignant diseases. Challenges and strategies. Int Arch Allergy Immunol 2003; 132(4): 294-309.
[11]
Silvaggi NR, Boldt GE, Hixon MS, et al. Structures of clostridium botulinum neurotoxin serotype a light chain complexed with small-molecule inhibitors highlight active-site flexibility. Chem Biol 2007; 14(5): 533-42.
[12]
Bade S, Rummel A, Reisinger C, et al. Botulinum neurotoxin type D enables cytosolic delivery of enzymatically active cargo proteins to neurones via unfolded translocation intermediates. J Neurochem 2010; 91(6): 1461-72.
[13]
Binz T, Sikorra S. Structural and functional insights into the interaction of BoNT/A light chain with SNAP-25 and SNAP-23. Toxicon 2016; 123: 6.
[14]
Mesngon M, Mcnutt P. Alpha-latrotoxin rescues snap-25 from bont/a-mediated proteolysis in embryonic stem cell-derived neurons. Toxins 2011; 3(5): 489-503.
[15]
Wang M, Zhi D, Wang H, et al. TAT-HSA-α-MSH fusion protein with extended half-life inhibits tumor necrosis factor-α in brain inflammation of mice. Appl Microbiol Biotechnol 2016; 100(12): 5353-61.
[16]
Liu P, Liu X, Xing J, et al. The neuroprotective mechanism of erythropoietin-tat fusion protein against neurodegeneration from ischemic brain injury. CNS Neurol Disord Drug Targets 2014; 13(8): 1465-74.
[17]
Zhu Y, Bu Q, Liu X, Hu W, Wang Y. Neuroprotective effect of TAT-14-3-3ε fusion protein against cerebral ischemia/reperfusion injury in rats. PLoS One 2014; 9(3): e93334.
[18]
Doeppner TR, Aanbouri ME, Dietz GPH, Weise J, Schwarting S, Bähr M. Transplantation of TAT-Bcl-x-transduced neural precursor cells: Long-term neuroprotection after stroke. Neurobiol Dis 2010; 40(1): 265-76.
[19]
Cai B, Lin Y, Xue XH, Fang L, Wang N, Wu ZY. TAT-mediated delivery of neuroglobin protects against focal cerebral ischemia in mice. Exp Neurol 2011; 227(1): 224-31.
[20]
Jeong HJ, Kim DW, Kim MJ, et al. Protective effects of transduced Tat-DJ-1 protein against oxidative stress and ischemic brain injury. Exp Mol Med 2012; 44(10): 586-93.