Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Research Article

Study of the Effects of L-tryptophane Nanoparticles on Motor Behavior in Alzheimer's Experimental Models

Author(s): Andressa L. Miri*, Andressa P. Hosni, Jossinelma C. Gomes, Rubiana M. Mainardes, Najeh M. Khalil, Rossana G. del J.V. Marcano, Mário C. da S. Pereira and Ivo I. Kerppers

Volume 18, Issue 1, 2019

Page: [44 - 51] Pages: 8

DOI: 10.2174/1871527317666181105111157

Price: $65

Abstract

Background: Alzheimer's disease (AD) is a neurodegenerative disease characterized by the progressive and incapacitating decay of cognitive, neuropsychiatric, and behavioral manifestations. L-tryptophan is the precursor amino acid of serotonin, which is a neurotransmitter responsible for mood balance and the sense of well-being and can be administered in the form of nanoparticles. Objective: This study analyzed the effectiveness of L-tryptophan nanoparticles and L-tryptophan on behavioral physiological alterations resulting from AD in animal models.

Methods: The sample consisted of 50 Rattus norvegicus rats, divided in 10 groups with 5 animals each: one negative control (NC), three positive control groups (C3, C7, and C21), three groups treated with L-tryptophan nanoparticles (T3N, T7N, and T21N) at the concentration of 1.5 mg, and three groups treated with L-tryptophan (T3L, T7L, and T21L) at the concentration of 1.5 mg. The rats underwent stereotactic surgery to induce AD through the injection of amyloid beta-amyloid peptide1-42 in the intracerebroventricular region. All rats were submitted to pre- and post-surgery and post-treatment motor behavior evaluation through the Later Water Maze (LWM) and elevated cross-labyrinth (ECL). Histological analysis was performed to verify the presence of senile plaques, and the statistical analysis used the unpaired T-test.

Results: Significant intergroup differences were observed in some of the evaluated parameters between treated and untreated groups.

Conclusion: It was concluded that the treatment with L-tryptophan nanoparticles was beneficial to improve behavioral reactions in the Alzheimer's model.

Keywords: Dementia, serotonin, neuroinflammation, neurodegeneration, neuroscience, nanoscience.

Graphical Abstract

[1]
Geda YE, Schneider LS, Gitlin LN, et al. Sintomas neuropsiquiátricos na doença de Alzheimer: Progresso passado e antecipação do futuro. Alzheimers Dement 2013; 9(5): 602-8.
[2]
Silagi ML, Bertoluccill PH, Ortizl KZ. Naming ability in patients with mild to moderate Alzheimer’s disease: What changes occur with the evolution of the disease? Clinics 2015; 70: 6.
[3]
Fichman HC, Oliveira RM, Fernandes CS. Neuropsychological and neurobiological markers of the preclinical stage of Alzheimer’s disease. Psychol Neurosci 2011; 4(2): 245-53.
[4]
Holtzman DM, Morris JC, Goate AM. Doença de Alzheimer: O desafio do segundo século. Medicina de tradução científica. 2017; 3: 77.
[5]
Frota NAF, Nitrini R, Forlenza O, et al. Critérios para o diagnóstico de doença de Alzheimer. Dement Neuropsychol 2011; 5(1): 5-10.
[6]
Studart NA, Nitrini R. Subjective cognitive decline: The first clinical manifestation of Alzheimer’s disease? Dement Neuropsychol 2016; 10(3): 170-7.
[7]
Fukushima RLM, Carmo EG. Pedroso R do V, Micali PN, Viola J, Fuzaro JG. Effects of cognitive stimulation on neuropsychiatric symptoms in elderly with Alzheimer’s disease: A systematic review. Dement Neuropsychol 2016; 10(3): 178-84.
[8]
Medeiros GE de, Rosas BO, Lessa A de SN. Perfil nutricional de idosos portadores de Alzheimer atendidos em home care. Rev Bras Neurol 2016; 52(4): 5-17.
[9]
Mestres MC, Morris JC, Roe CM. Sintomas “não cognitivos” da doença de Alzheimer precoce: Uma análise longitudinal. Neurologia 2015; 84(6): 617-22.
[10]
Ringman JM, Liang LJ, Zhou Y, et al. Mudanças precoce no comportamento da doença de Alzheimer familiar na rede de Alzheimer, hereditária. Cérebro 2015; 138(4): 1036-45.
[11]
Trillo L, Das D, Hsieh W, et al. Alterações ascendentes dos sistemas monoaminérgicos na doença de Alzheimer. Traduzindo ciências básicas em cuidados clínicos. Neurosci Biobehav Rev 2013; 37(8): 1363-79.
[12]
Vermeiren Y, Van Dam D, Aerts T, Engelborghs S, De Deyn PP. Alterações do neurotransmissor monoaminérgico nas regiões do cérebro pós-morte de pacientes deprimidos e agressivos com doença de Alzheimer. Envelhecimento Neurobiol 2014; 35(12): 2691-700.
[13]
Mossello E, Boncinelli M, Caleri V, et al. O tratamento antidepressivo associado ao declínio cognitivo reduzido na doença de Alzheimer? Dement Geriatr Cogn Disord 2008; 25: 372-9.
[14]
Walther DJ, Bader M. Uma isoforma central de hidroxilase de triptofano central. Biochem Pharmacol 2003; 66: 1673-80.
[15]
Muzerelle A, Scotto-Lomassese S, Bernard JF, Soiza-Reilly M, Gaspar P. O rastreamento anterógrado condicional revela alvos distintos de grupos de células de serotonina individuais (B5-B9) para o prosencéfalo e tronco encefálico. Brain Struct Funct 2016; 221: 535-61.
[16]
Albert PR, Ansari FV, Luckhart C. Serotonin-prefrontal cortical circuitry in anxiety and depression phenotypes: Pivotal role of pre- and post-synaptic 5-HT1A receptor expression. Front Behav Neurosci 2014; 8: 199.
[17]
Jenkins TA, Nguyen JCD, Polglaze KE, Bertrand PP. Influence of tryptophan and serotonin on mood and cognition with a possible role of the gut-brain axis. Nutrients 2016; 8(1): 56.
[18]
Mattos AC, Altmeyer C, Tominaga TT, Khalil NM, Mainardes RM. Polymeric nanoparticles for oral delivery of 5-fluorouracil: Formulation optimization, cytotoxicity assay and pre-clinical pharmacokinetics study. Eur J Pharm Sci 2016; 10(84): 83-91.
[19]
Antônio E, Antunes ODR. Junior, De Araújo IS, Khalil NM, Mainardes RM. Poly (lactic acid) nanoparticles loaded with ursolic acid: Characterization and in vitro evaluation of radical scavenging activity and cytotoxicity. Mater Sci Eng C Mater Biol Appl 2017; 71: 156-66.
[20]
Glikmann-Johnston Y, Saling MM, Reutens DC, Stout JC. Hippocampal 5-HT1A receptor and spatial learning and memory. Front Pharmacol 2015; 6: 289.
[21]
Miri AL, Hosni AP, Gomes JC, Kerppers II, Pereira MCS. Study of L-Tryptophan in an experimental model of depression caused by Alzheimer’s Disease. J Phisycal Edu 2017; 28: 1-8.
[22]
Mathew A, Fukuda T, Nagaoka Y. Curcumin loaded-PLGA nanoparticles conjugated with Tet-1 peptide for potential use in Alzheimer’s disease. PLoS One 2012; 7(3): e32616.
[23]
Lockman PR, Koziara JM, Mumper RJ, Allen DD. Nanoparticle surface charges alter blood-brain barrier integrity and permeability. J Drug Target 2004; 12: 635-1.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy