Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Carbocyclic Analogues of Distamycin and Netropsin

Author(s): Karolina Arciszewska, Anna Pućkowska, Agnieszka Wróbel and Danuta Drozdowska*

Volume 19, Issue 2, 2019

Page: [98 - 113] Pages: 16

DOI: 10.2174/1389557518666181009143203

Price: $65

Abstract

The DNA as the depository of genetic information is a natural target for chemotherapy. A lot of anticancer and antimicrobial agents derive their biological activity from their selective interaction with DNA in the minor groove and from their ability to interfere with biological processes such as enzyme catalysis, replication and transcription. The discovery of the details of minor groove binding drugs, such as netropsin and distamycin A, oligoamides built of 4-amino-1-methylpyrrole-2-carboxylic acid residues, allowed to develop various DNA sequence-reading molecules, named lexitropsins, capable of interacting with DNA precisely, strongly and with a high specificity, and at the same time exhibiting significant cytotoxic potential. Among such compounds, lexitropsins built of carbocyclic sixmembered aromatic rings occupy a quite prominent place in drug research. This work is an attempt to present current findings in the study of carbocyclic lexitropins, their structures, syntheses and biological investigations such as DNA-binding and antiproliferative activity.

Keywords: Distamycin, netropsin, minor groove binder, lexitropsin, carbocyclic analogue, anticancer drug, drug design.

Graphical Abstract

[1]
Remers, W.A.; Iyengar, B.S. Antitumor Antibiotics. in: Cancer chemotherapeutic agents,, (Ed. Foye W.O.), ACS, Washington, DC. 1995, 577-679
[2]
Finlay, A.C.; Hochstein, F.A.; Sobin, B.A.; Murphy, F.X. Netropsin, a new antibiotic produced by a Streptomyces. J. Am. Chem. Soc., 1951, 73, 341-343.
[3]
Arcamone, F.; Penco, F.; Orezzi, P.; Nicolella, V.; Pirelli, A. Structure and synthesis of distamycin A. Nature, 1964, 203, 1064-1065.
[4]
Krey, A.K.; Allison, R.G.; Hahn, F.E. Interactions of the antibiotic, distamycin A, with native DNA and with synthetic duplex polydeoxyribonucleotides. FEBS Lett., 1973, 29, 58-62.
[5]
Hahn, F.E. Distamycin A and netropsin. in: Mechanism of action of antimicrobial and antitumor agents;, Corcoran, J.W.; Hahn, F.E.; Shell, J.T.; Arrora, K.L. Antibiotics, Ed. Springer: Berlin, 1975; Vol. 3, pp. 79-100
[6]
Kopka, M.L.; Yoon, C.; Goodsell, D.; Pjura, P.; Dickerson, R.E. The molecular origin of DNA-drug specificity in netropsin and distamycin. Proc. Natl. Acad. Sci. USA, 1985, 82, 1376-1380.
[7]
Bailly, Ch.; Chaires, J.B. Sequence-specific DNA minor groove binders. Design and synthesis of netropsin and distamycin analogues. Bioconjugate . Chem., 1998, 9, 513-538.
[8]
Bourdouxhe-Housiaux, C.; Colson, P.; Houssier, C.; Waring, M.C.; Bailly, C. Interaction of a DNA-threading netropsin-amsacrine combilexin with DNA and chromatin. Biochemistry, 1996, 35, 4251-4264.
[9]
Cozzi, P.; Monelli, N.; Suarato, A. Recent anticancer cytotoxic agents. Curr. Med. Chem. - Anti-Cancer Agents, 2004, 4, 93-121.
[10]
Berman, H.M.; Neidle, S.; Zimmer, C.; Thrum, H. Netropsin, a DNA-binding oligopeptide structural and binding studies. Biochim. Biophys. Acta, 1979, 561, 124-131.
[11]
Gurskaya, G.V.; Grohovsky, S.L.; Zhuze, A.L.; Gottich, B.P. DNA-binding antibiotics X-ray structure of the distamycin A analogue. Biochim. Biophys. Acta, 1979, 563, 336-342.
[12]
Luck, G.; Zimmer, C.; Reinert, K.E.; Arcamone, F. Specific interactions of distamycin A and its analogs with (A-T) rich and (G-C) rich duplex regions of DNA and deoxypolynucleotides. Nucleic Acids Res., 1977, 4, 2655-2670.
[13]
Wemmer, D.E.; Dervan, P.B. Targeting the minor groove of DNA. Curr. Opin. Struct. Biol., 1997, 7, 355-361.
[14]
Sondhi, S.M.; Praveen Reddy, B.S.; Lown, J.W. Lexitropsin conjugates: Action on DNA targets. Curr. Med. Chem., 1997, 4, 313-358.
[15]
Pindur, U.; Jansen, M.; Lemster, T. Advances in DNA-ligands with groove binding, intercalating and/or alkylating activity: chemistry, DNA-binding and biology. Curr. Med. Chem., 2005, 12, 2805-2847.
[16]
Khan, G.S.; Shah, A.; Rehman, Z.; Baker, D. Chemistry of DNA minor groove binding agents. J. Photochem. Photobiol. B Biol, 2012, 115, 105-118.
[17]
Bartulewicz, D.; Bielawski, K.; Krajewska, D.; Różański, A. Synthetic analogues of netropsin and distamycin. II. Synthesis of a carbocyclic analogue of the pyrrolecarboxamide antitumour antibiotics. Ann. Acad. Med. Bialos., 1995, 40, 364-375.
[18]
Turner, P.R.; Ferguson, L.R.; Denny, A. Polybenzamide mustards: structure-activity relationships for DNA sequence-specific alkylation. Anti-Cancer Drug Des., 1999, 14, 61-70.
[19]
Bialer, M.; Yagen, B.; Mechoulam, R. A total synthesis of distamycin a, an antiviral antibiotic. Tetrahedron, 1978, 34, 2389-2391.
[20]
Rajagopalan, M.; Rao, K.E.; Ayyer, J.; Sasisekharan, V. Synthesis of a distamycin analogue: Tris(m-benzamido) compound. Ind J. Chem., 1987, 26B, 1021-1024.
[21]
Rajagopalan, M.; Sasisekharan, V. Interaction of non-intercalative drugs with DNA: distamycin analogues. J. Biosci., 1985, 7, 27-32.
[22]
Dasgupta, D.; Rajagopalan, M.; Sasisekharan, V. DNA-binding characteristics of a synthetic analogue of distamycin. Biochem. Biophys. Res. Commun., 1986, 140, 626-631.
[23]
Rao, K.E.; Sasisekharan, V. Synthesis of distamycin and netropsin analogs: Part III - Biologically active analogs of tris(m-benzamido)compound. Ind J. Chem., 1990, 29B, 508-513.
[24]
Arya, D.P.; Warner, P.M.; Jebaratnam, D.J. Development of new DNA-binding and cleaving molecules: Design, synthesis and activity of a bisdiazonium salt. Tetrahedron Lett., 1993, 34, 7823-7826.
[25]
Yan, Y.; Liu, M.; Gong, B. Two-ring DNA minor-groove binders consisting of readily available di-substituted benzene derivatives. Bioorg. Med. Chem. Lett., 1997, 7, 1469-1474.
[26]
Gong, B.; Yan, Y. New DNA minor-groove binding molecules with high sequence-selectivities and binding affinities. Biochem. Biophys. Res. Com., 1997, 240, 557-560.
[27]
Bartulewicz, D.; Bielawski, K.; Markowska, A.; Zwierz, K.; Pućkowska, A.; Różański, A. Synthetic analogues of netropsin and distamycin - synthesis of a new pyridine and carbocyclic analogues of the pyrrolecarboxamide antitumour antibiotics. Acta Biochim. Polon., 1998, 45, 41-57.
[28]
Bartulewicz, D.; Markowska, A.; Wołczyński, S.; Dąbrowska, M.; Różański, A. Molecular modelling, synthesis and antitumour activity of carbocyclic analogues of netropsin and distamycin - new carriers of alkylating elements. Acta Biochim. Polon., 2000, 47, 23-35.
[29]
Bielawski, K.; Bielawska, A.; Bartulewicz, D.; Różański, A. Molecular modelling of the interaction of carbocyclic analogues of netropsin and distamycin with d[CGCGAATTCGCG]2. Acta Biochim. Polon., 2000, 47, 855-866.
[30]
Pućkowska, A.; Bielawski, K.; Bielawska, A.; Różański, A. New carbocyclic analogues of netropsin: Synthesis and inhibition of topoisomerases. Acta Biochim. Pol., 2002, 49, 177-183.
[31]
Bartulewicz, D.; Bielawski, K.; Bielawska, A. Carbocyclic analogues of netropsin and distamycin: DNA-binding properties and inhibition of DNA topoisomerases. Arch. Pharm. Med. Chem, 2002, 9, 422-426.
[32]
Pućkowska, A.; Drozdowska, D.; Midura-Nowaczek, K. Carbocyclic analogues of lexitropsin - DNA affinity and endonuclease inhibition. Acta Polon. Pharm., 2007, 64, 115-119.
[33]
Pućkowska, A.; Midura-Nowaczek, K.; Bruzgo, I. Effects of netropsin and pentamidine amino analogues on the amidolytic activity of plasmin, trypsin and urokinase. Acta Polon. Pharm., 2008, 65, 213-215.
[34]
König, B.; Papke, U.; Rödel, M. Synthesis of aromatic and heteroaromatic oligoamides on methoxypoly(ethylene glycol) as solubilizing polymer support. New J. Chem., 2000, 24, 39-45.
[35]
Drozdowska, D. New solid phase synthesis of distamycin analogues. Molecules, 2011, 16, 3066-3076.
[36]
Drozdowska, D.; Szerszenowicz, J. Semi-automatic synthesis of distamycin analogues and their DNA-binding properties. Lett. Drug Des. Discov., 2012, 9, 12-16.
[37]
Drozdowska, D.; Rusak, M.; Miltyk, W.; Markowska, A.; Samczuk, P. Antiproliferative effects on breast cancer cells and some interactions of new distamycin analogues wit DNA, endonucleases and DNA topoisomerases. Acta Polon. Pharm., 2016, 73, 47-53.
[38]
Arcamone, F.; Lazzari, E.; Menozzi, M.; Sornzo, C.; Verini, M.A. Synthesis, DNA binding and antiviral activity of distamycin analogues containing different heterocyclic moieties. Anticancer Drug Des., 1986, 1, 235-244.
[39]
Kӧnig, B.; Rӧdel, M. Synthesis of DNA-binding heteroaromatic oligoamides on liquid solid support. Chem. Commun., 1998, 605-606.
[40]
Dudouit, F.; Goossens, J.F.; Houssin, R.; Henichart, J.P.; Colson, P.; Houssier, C.; Gelus, N.; Bailly, C. Synthesis, DNA binding, topoisomerases inhibition and cytotoxic properties of 4-Arylcarboxamidopyrrolo-2-carboxyanilides. Bioorg. Med. Chem. Lett., 2000, 10, 553-557.
[41]
Boger, D.L.; Dechantsreiter, M.A.; Ishii, T.; Fink, B.E.; Hedrick, M.P. Assessment of solution-phase positional scanning libraries based on distamycin A for the discovery of new DNA binding agents. Bioorg. Med. Chem., 2000, 8, 2049-2057.
[42]
Boger, D.L.; Fink, B.E.; Hedrick, M.P. Total synthesis of distamycin A and 2640 analogues: a solution-phase combinatorial approach to the discovery of new, bioactive DNA binding agents and development of a rapid, high-throughput screen for determining relative DNA binding affinity or DNA binding sequence selectivity. J. Am. Chem. Soc., 2000, 122, 6382-6394.
[43]
Hu, W.; Bȕrli, R.W.; Kaizerman, J.A.; Johnson, K.W.; Gross, M.I.; Iwamoto, M.; Jones, P.; Lofland, D.; Difuntorum, S.; Chen, H.; Bozdogan, B.; Appelbaum, P.C.; Moser, H.E. DNA binding ligands with improved in vitro and in vivo potency against drug-resistant Staphylococcus aureus. J. Med. Chem., 2004, 47, 4352-4355.
[44]
Anthony, N.G.; Breen, D.; Clarke, J.; Donoghue, G.; Drummond, A.J.; Ellis, E.M.; Gemmell, C.G.; Helesbeux, J.J.; Hunter, I.S.; Khalaf, A.I.; Mackay, S.P.; Parkinson, J.A.; Suckling, C.J.; Waigh, R.D. Antimicrobial lexitropsins containing amide, amidine, and alkene linking groups. J. Med. Chem., 2007, 50, 6116-6125.
[45]
Brucoli, F.; Howard, P.W.; Thurston, D.E. Efficient solid-phase synthesis of a library of distamycin analogs containing novel biaryl motifs on SynPhase Lanterns. J. Comb. Chem., 2009, 11, 576-586.
[46]
Drozdowska, D.; Rusak, M.; Bielawski, T.; Midura-Nowaczek, K. Analogues of distamycin -- synthesis and biological evaluation of new aromatic oligopeptides, potential anticancer agents. Acta Polon. Pharm., 2009, 66, 633-638.
[47]
Drozdowska, D.; Bruzgo, I.; Midura-Nowaczek, K. Carbocyclic potential DNA minor groove binders and their biological evaluation. J. Enz Inhib. Med. Chem., 2010, 25, 629-634.
[48]
Drozdowska, D.; Rusak, M.; Miltyk, W.; Midura-Nowaczek, K. Synthesis and biological evaluation of distamycin analogues - new potential anticancer agents. Arch. Pharm. Chem. Life Sci., 2009, 342, 87-93.
[49]
Szerszenowicz, J.; Drozdowska, D. Semi-automatic synthesis, antiproliferative activity and DNA-binding properties of new netropsin and bis-netropsin analogues. Molecules, 2014, 11300-11315.
[50]
Lown, J.W. Lexitropsins: rational design of DNA sequence reading agents as novel anti-cancer agents and potential cellular probes. Anticancer Drug Des., 1988, 3, 25-40.
[51]
Walker, W.L.; Kopka, M.L.; Goodsell, D.S. Progress in the design of DNA sequence-specific lexitropsins. Biopolymers, 1997, 44, 323-334.
[52]
Neamati, N.; Mazumder, A.; Sunder, S.; Owen, J.M.; Tandon, M.; Lown, J.W.; Pommier, Y. Highly potent synthetic polyamides, bisdistamycins, and lexitropsins as inhibitors of human immunodeficiency virus type 1 integrase. Mol. Pharmacol., 1998, 54, 280-290.
[53]
Pućkowska, A.; Bielawski, K.; Bielawska, A.; Midura-Nowaczek, K. Aromatic analogues of DNA minor groove binders - synthesis and biological evaluation. Eur. J. Med. Chem., 2004, 39, 99-105.
[54]
Bartulewicz, D.; Anchim, T.; Dąbrowska, M.; Midura-Nowaczek, K. Synthesis and cytotoxic effect of carbocyclic potential minor groove binders. Farmaco, 2004, 59, 211-214.
[55]
Ali, A.; Bhattacharya, S. DNA binders in clinical trials and chemotherapy. Bioorg. Med. Chem., 2014, 22, 4506-4521.
[56]
Broggini, M.; Coley, H.M.; Mongelli, N.; Presenti, E.; Wyatt, M.D.; Hartley, J.A.; D’Incalci, M. DNA sequence-specific adenine alkylation by the novel anti-tumour drug Tallimustine (FCE 24517), a benzoyl nitrogen mustard derivative of distamycin. Nucleic Res., 1995, 23, 81-87.
[57]
Broggini, M.; Marchini, S.; Fontana, E.; Moneta, D.; Fowst, C.; Geroni, C. Brostallicin: a new concept in minor groove DNA binder development. Anticancer Drugs, 2004, 15, 1-6.
[58]
Baraldi, P.G.; Cacciari, B.; Guiotto, A.; Leoni, A.; Romagnoli, R.; Spalluto, G.; Mongelli, N.; Howard, P.W.; Thurston, D.E.; Bianchi, N.; Gambari, R. Design, synthesis and biological activity of a pyrrolo [2, 1- c][1,4]benzodiazepine (PBD)-distamycin hybrid. Bioorg. Med. Chem. Lett., 1998, 8, 3019-3024.
[59]
Baraldi, P.G.; Cacciarit, B.; Guiotto, A.; Romagnoli, R.; Spalluto, G.; Leoni, A.; Bianchi, N.; Feriotto, G.; Rutigliano, C.; Mischiati, C.; Gambari, R. [1,4]benzodiazepine (PBD)-distamycin hybrid inhibits DNA binding to transcription factor Sp1. Nucleos. Nucleot. Nucl., 2000, 19, 1219-1229.
[60]
Gelderblom, H.; Blay, J.Y.; Seddon, B.M.; Leahy, M.; Ray-Coquard, I.; Sleijfer, S.; Kerst, J.M.; Rutkowski, P.; Bauer, S.; Ouali, M.; Marreaud, S.; van der Straaten, R.J.H.M.; Guchelaar, H.J. Weitman SD1, Hogendoorn, P.C.V.; Hohenberger, P. Brostallicin versus doxorubicin as first-line chemotherapy in patients with advanced or metastatic soft tissue sarcoma: An european organisation for research and treatment of cancer soft tissue and bone sarcoma group randomised phase II and pharmacogenetic study. Eur. J. Cancer, 2014, 50, 388-396.
[61]
Markowska, A.; Bartulewicz, D.; Pućkowska, A.; Różański, A. Synthetic analogues of netropsin and distamycin. 4.Synthesis of a new carbocyclic analogue of distamycin with alkylating side groups. Ann. Acad. Med. Bialos., 1997, 42, 129-140.
[62]
Baker, B.F.; Dervan, P.B. Sequence-specific cleavage of DNA by N-bromoacetyldistamycin. Product and kinetic analyses. J. Am. Chem. Soc., 1989, 111, 2700-2712.
[63]
Watts, C.R.; Kerwin, S.M.; Kenyon, G.L.; Kuntz, I.D.; Kallick, D.A. Rationally designed N,N′-Bis[(N-p-guanidinobenzyl-N-methyl)aminocarbonyl]-1,3-diaminobenzene, “BIGBEN’, binds to the minor groove of d(CGCGAATTCGCG)2 as determined by two-dimensional nuclear magnetic resonance spectroscopy. J. Am. Chem. Soc., 1995, 117, 9941-9950.
[64]
Markowska, A.; Różański, A. Synthetic analogues of netropsin and distamycin. VI. Synthesis of carbocyclic lexitropsins containing A bioreductive element. Acta Polon. Pharm., 2000, 57, 71-76.
[65]
Markowska, A.; Różański, A.; Wołczyński, S.; Midura-Nowaczek, K. Synthesis and biological activity of carbocyclic lexitropsins with a bioreductive fragment. Farmaco, 2002, 57, 1019-1023.
[66]
Bartulewicz, D.; Bielawski, K.; Bielawska, A.; Różański, A. Synthesis, molecular modelling, and antiproliferative and cytotoxic effects of carbocyclic derivatives of distamycin with chlorambucil moiety. Eur. J. Med. Chem., 2001, 36, 461-467.
[67]
Bartulewicz, D. Aromatic oligopeptides with chlorambucil moiety - synthesis and biological evaluation. Acta Polon. Pharm., 2005, 62, 451-455.
[68]
Pućkowska, A.; Bartulewicz, D.; Markowska, A.; Różański, A. Synthesis of a carbocyclic bis-lexitropsin as DNA cleaving agent. Acta Polon. Pharm., 1999, 56, 104-111.
[69]
Pućkowska, A.; Bartulewicz, D.; Midura-Nowaczek, K. Aromatic benzotriazole amides - synthesis and biological evaluation. Acta Polon. Pharm., 2005, 62, 59-64.
[70]
Barret, M.P.; Gemmell, C.G.; Suckling, C.J. Minor groove binders as anti-infective agents. Pharmacol. Ther., 2012, 139, 12-23.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy