[1]
Remers, W.A.; Iyengar, B.S. Antitumor Antibiotics. in: Cancer
chemotherapeutic agents,, (Ed. Foye W.O.), ACS, Washington, DC.
1995, 577-679
[2]
Finlay, A.C.; Hochstein, F.A.; Sobin, B.A.; Murphy, F.X. Netropsin, a new antibiotic produced by a Streptomyces. J. Am. Chem. Soc., 1951, 73, 341-343.
[3]
Arcamone, F.; Penco, F.; Orezzi, P.; Nicolella, V.; Pirelli, A. Structure and synthesis of distamycin A. Nature, 1964, 203, 1064-1065.
[4]
Krey, A.K.; Allison, R.G.; Hahn, F.E. Interactions of the antibiotic, distamycin A, with native DNA and with synthetic duplex polydeoxyribonucleotides. FEBS Lett., 1973, 29, 58-62.
[5]
Hahn, F.E. Distamycin A and netropsin. in: Mechanism of action of
antimicrobial and antitumor agents;, Corcoran, J.W.; Hahn, F.E.;
Shell, J.T.; Arrora, K.L. Antibiotics, Ed. Springer: Berlin, 1975;
Vol. 3, pp. 79-100
[6]
Kopka, M.L.; Yoon, C.; Goodsell, D.; Pjura, P.; Dickerson, R.E. The molecular origin of DNA-drug specificity in netropsin and distamycin. Proc. Natl. Acad. Sci. USA, 1985, 82, 1376-1380.
[7]
Bailly, Ch.; Chaires, J.B. Sequence-specific DNA minor groove binders. Design and synthesis of netropsin and distamycin analogues. Bioconjugate . Chem., 1998, 9, 513-538.
[8]
Bourdouxhe-Housiaux, C.; Colson, P.; Houssier, C.; Waring, M.C.; Bailly, C. Interaction of a DNA-threading netropsin-amsacrine combilexin with DNA and chromatin. Biochemistry, 1996, 35, 4251-4264.
[9]
Cozzi, P.; Monelli, N.; Suarato, A. Recent anticancer cytotoxic agents. Curr. Med. Chem. - Anti-Cancer Agents, 2004, 4, 93-121.
[10]
Berman, H.M.; Neidle, S.; Zimmer, C.; Thrum, H. Netropsin, a DNA-binding oligopeptide structural and binding studies. Biochim. Biophys. Acta, 1979, 561, 124-131.
[11]
Gurskaya, G.V.; Grohovsky, S.L.; Zhuze, A.L.; Gottich, B.P. DNA-binding antibiotics X-ray structure of the distamycin A analogue. Biochim. Biophys. Acta, 1979, 563, 336-342.
[12]
Luck, G.; Zimmer, C.; Reinert, K.E.; Arcamone, F. Specific interactions of distamycin A and its analogs with (A-T) rich and (G-C) rich duplex regions of DNA and deoxypolynucleotides. Nucleic Acids Res., 1977, 4, 2655-2670.
[13]
Wemmer, D.E.; Dervan, P.B. Targeting the minor groove of DNA. Curr. Opin. Struct. Biol., 1997, 7, 355-361.
[14]
Sondhi, S.M.; Praveen Reddy, B.S.; Lown, J.W. Lexitropsin conjugates: Action on DNA targets. Curr. Med. Chem., 1997, 4, 313-358.
[15]
Pindur, U.; Jansen, M.; Lemster, T. Advances in DNA-ligands with groove binding, intercalating and/or alkylating activity: chemistry, DNA-binding and biology. Curr. Med. Chem., 2005, 12, 2805-2847.
[16]
Khan, G.S.; Shah, A.; Rehman, Z.; Baker, D. Chemistry of DNA minor groove binding agents. J. Photochem. Photobiol. B Biol, 2012, 115, 105-118.
[17]
Bartulewicz, D.; Bielawski, K.; Krajewska, D.; Różański, A. Synthetic analogues of netropsin and distamycin. II. Synthesis of a carbocyclic analogue of the pyrrolecarboxamide antitumour antibiotics. Ann. Acad. Med. Bialos., 1995, 40, 364-375.
[18]
Turner, P.R.; Ferguson, L.R.; Denny, A. Polybenzamide mustards: structure-activity relationships for DNA sequence-specific alkylation. Anti-Cancer Drug Des., 1999, 14, 61-70.
[19]
Bialer, M.; Yagen, B.; Mechoulam, R. A total synthesis of distamycin a, an antiviral antibiotic. Tetrahedron, 1978, 34, 2389-2391.
[20]
Rajagopalan, M.; Rao, K.E.; Ayyer, J.; Sasisekharan, V. Synthesis of a distamycin analogue: Tris(m-benzamido) compound. Ind J. Chem., 1987, 26B, 1021-1024.
[21]
Rajagopalan, M.; Sasisekharan, V. Interaction of non-intercalative drugs with DNA: distamycin analogues. J. Biosci., 1985, 7, 27-32.
[22]
Dasgupta, D.; Rajagopalan, M.; Sasisekharan, V. DNA-binding characteristics of a synthetic analogue of distamycin. Biochem. Biophys. Res. Commun., 1986, 140, 626-631.
[23]
Rao, K.E.; Sasisekharan, V. Synthesis of distamycin and netropsin analogs: Part III - Biologically active analogs of tris(m-benzamido)compound. Ind J. Chem., 1990, 29B, 508-513.
[24]
Arya, D.P.; Warner, P.M.; Jebaratnam, D.J. Development of new DNA-binding and cleaving molecules: Design, synthesis and activity of a bisdiazonium salt. Tetrahedron Lett., 1993, 34, 7823-7826.
[25]
Yan, Y.; Liu, M.; Gong, B. Two-ring DNA minor-groove binders consisting of readily available di-substituted benzene derivatives. Bioorg. Med. Chem. Lett., 1997, 7, 1469-1474.
[26]
Gong, B.; Yan, Y. New DNA minor-groove binding molecules with high sequence-selectivities and binding affinities. Biochem. Biophys. Res. Com., 1997, 240, 557-560.
[27]
Bartulewicz, D.; Bielawski, K.; Markowska, A.; Zwierz, K.; Pućkowska, A.; Różański, A. Synthetic analogues of netropsin and distamycin - synthesis of a new pyridine and carbocyclic analogues of the pyrrolecarboxamide antitumour antibiotics. Acta Biochim. Polon., 1998, 45, 41-57.
[28]
Bartulewicz, D.; Markowska, A.; Wołczyński, S.; Dąbrowska, M.; Różański, A. Molecular modelling, synthesis and antitumour activity of carbocyclic analogues of netropsin and distamycin - new carriers of alkylating elements. Acta Biochim. Polon., 2000, 47, 23-35.
[29]
Bielawski, K.; Bielawska, A.; Bartulewicz, D.; Różański, A. Molecular modelling of the interaction of carbocyclic analogues of netropsin and distamycin with d[CGCGAATTCGCG]2. Acta Biochim. Polon., 2000, 47, 855-866.
[30]
Pućkowska, A.; Bielawski, K.; Bielawska, A.; Różański, A. New carbocyclic analogues of netropsin: Synthesis and inhibition of topoisomerases. Acta Biochim. Pol., 2002, 49, 177-183.
[31]
Bartulewicz, D.; Bielawski, K.; Bielawska, A. Carbocyclic analogues of netropsin and distamycin: DNA-binding properties and inhibition of DNA topoisomerases. Arch. Pharm. Med. Chem, 2002, 9, 422-426.
[32]
Pućkowska, A.; Drozdowska, D.; Midura-Nowaczek, K. Carbocyclic analogues of lexitropsin - DNA affinity and endonuclease inhibition. Acta Polon. Pharm., 2007, 64, 115-119.
[33]
Pućkowska, A.; Midura-Nowaczek, K.; Bruzgo, I. Effects of netropsin and pentamidine amino analogues on the amidolytic activity of plasmin, trypsin and urokinase. Acta Polon. Pharm., 2008, 65, 213-215.
[34]
König, B.; Papke, U.; Rödel, M. Synthesis of aromatic and heteroaromatic oligoamides on methoxypoly(ethylene glycol) as solubilizing polymer support. New J. Chem., 2000, 24, 39-45.
[35]
Drozdowska, D. New solid phase synthesis of distamycin analogues. Molecules, 2011, 16, 3066-3076.
[36]
Drozdowska, D.; Szerszenowicz, J. Semi-automatic synthesis of distamycin analogues and their DNA-binding properties. Lett. Drug Des. Discov., 2012, 9, 12-16.
[37]
Drozdowska, D.; Rusak, M.; Miltyk, W.; Markowska, A.; Samczuk, P. Antiproliferative effects on breast cancer cells and some interactions of new distamycin analogues wit DNA, endonucleases and DNA topoisomerases. Acta Polon. Pharm., 2016, 73, 47-53.
[38]
Arcamone, F.; Lazzari, E.; Menozzi, M.; Sornzo, C.; Verini, M.A. Synthesis, DNA binding and antiviral activity of distamycin analogues containing different heterocyclic moieties. Anticancer Drug Des., 1986, 1, 235-244.
[39]
Kӧnig, B.; Rӧdel, M. Synthesis of DNA-binding heteroaromatic oligoamides on liquid solid support. Chem. Commun., 1998, 605-606.
[40]
Dudouit, F.; Goossens, J.F.; Houssin, R.; Henichart, J.P.; Colson, P.; Houssier, C.; Gelus, N.; Bailly, C. Synthesis, DNA binding, topoisomerases inhibition and cytotoxic properties of 4-Arylcarboxamidopyrrolo-2-carboxyanilides. Bioorg. Med. Chem. Lett., 2000, 10, 553-557.
[41]
Boger, D.L.; Dechantsreiter, M.A.; Ishii, T.; Fink, B.E.; Hedrick, M.P. Assessment of solution-phase positional scanning libraries based on distamycin A for the discovery of new DNA binding agents. Bioorg. Med. Chem., 2000, 8, 2049-2057.
[42]
Boger, D.L.; Fink, B.E.; Hedrick, M.P. Total synthesis of distamycin A and 2640 analogues: a solution-phase combinatorial approach to the discovery of new, bioactive DNA binding agents and development of a rapid, high-throughput screen for determining relative DNA binding affinity or DNA binding sequence selectivity. J. Am. Chem. Soc., 2000, 122, 6382-6394.
[43]
Hu, W.; Bȕrli, R.W.; Kaizerman, J.A.; Johnson, K.W.; Gross, M.I.; Iwamoto, M.; Jones, P.; Lofland, D.; Difuntorum, S.; Chen, H.; Bozdogan, B.; Appelbaum, P.C.; Moser, H.E. DNA binding ligands with improved in vitro and in vivo potency against drug-resistant Staphylococcus aureus. J. Med. Chem., 2004, 47, 4352-4355.
[44]
Anthony, N.G.; Breen, D.; Clarke, J.; Donoghue, G.; Drummond, A.J.; Ellis, E.M.; Gemmell, C.G.; Helesbeux, J.J.; Hunter, I.S.; Khalaf, A.I.; Mackay, S.P.; Parkinson, J.A.; Suckling, C.J.; Waigh, R.D. Antimicrobial lexitropsins containing amide, amidine, and alkene linking groups. J. Med. Chem., 2007, 50, 6116-6125.
[45]
Brucoli, F.; Howard, P.W.; Thurston, D.E. Efficient solid-phase synthesis of a library of distamycin analogs containing novel biaryl motifs on SynPhase Lanterns. J. Comb. Chem., 2009, 11, 576-586.
[46]
Drozdowska, D.; Rusak, M.; Bielawski, T.; Midura-Nowaczek, K. Analogues of distamycin -- synthesis and biological evaluation of new aromatic oligopeptides, potential anticancer agents. Acta Polon. Pharm., 2009, 66, 633-638.
[47]
Drozdowska, D.; Bruzgo, I.; Midura-Nowaczek, K. Carbocyclic potential DNA minor groove binders and their biological evaluation. J. Enz Inhib. Med. Chem., 2010, 25, 629-634.
[48]
Drozdowska, D.; Rusak, M.; Miltyk, W.; Midura-Nowaczek, K. Synthesis and biological evaluation of distamycin analogues - new potential anticancer agents. Arch. Pharm. Chem. Life Sci., 2009, 342, 87-93.
[49]
Szerszenowicz, J.; Drozdowska, D. Semi-automatic synthesis, antiproliferative activity and DNA-binding properties of new netropsin and bis-netropsin analogues. Molecules, 2014, 11300-11315.
[50]
Lown, J.W. Lexitropsins: rational design of DNA sequence reading agents as novel anti-cancer agents and potential cellular probes. Anticancer Drug Des., 1988, 3, 25-40.
[51]
Walker, W.L.; Kopka, M.L.; Goodsell, D.S. Progress in the design of DNA sequence-specific lexitropsins. Biopolymers, 1997, 44, 323-334.
[52]
Neamati, N.; Mazumder, A.; Sunder, S.; Owen, J.M.; Tandon, M.; Lown, J.W.; Pommier, Y. Highly potent synthetic polyamides, bisdistamycins, and lexitropsins as inhibitors of human immunodeficiency virus type 1 integrase. Mol. Pharmacol., 1998, 54, 280-290.
[53]
Pućkowska, A.; Bielawski, K.; Bielawska, A.; Midura-Nowaczek, K. Aromatic analogues of DNA minor groove binders - synthesis and biological evaluation. Eur. J. Med. Chem., 2004, 39, 99-105.
[54]
Bartulewicz, D.; Anchim, T.; Dąbrowska, M.; Midura-Nowaczek, K. Synthesis and cytotoxic effect of carbocyclic potential minor groove binders. Farmaco, 2004, 59, 211-214.
[55]
Ali, A.; Bhattacharya, S. DNA binders in clinical trials and chemotherapy. Bioorg. Med. Chem., 2014, 22, 4506-4521.
[56]
Broggini, M.; Coley, H.M.; Mongelli, N.; Presenti, E.; Wyatt, M.D.; Hartley, J.A.; D’Incalci, M. DNA sequence-specific adenine alkylation by the novel anti-tumour drug Tallimustine (FCE 24517), a benzoyl nitrogen mustard derivative of distamycin. Nucleic Res., 1995, 23, 81-87.
[57]
Broggini, M.; Marchini, S.; Fontana, E.; Moneta, D.; Fowst, C.; Geroni, C. Brostallicin: a new concept in minor groove DNA binder development. Anticancer Drugs, 2004, 15, 1-6.
[60]
Gelderblom, H.; Blay, J.Y.; Seddon, B.M.; Leahy, M.; Ray-Coquard, I.; Sleijfer, S.; Kerst, J.M.; Rutkowski, P.; Bauer, S.; Ouali, M.; Marreaud, S.; van der Straaten, R.J.H.M.; Guchelaar, H.J. Weitman SD1, Hogendoorn, P.C.V.; Hohenberger, P. Brostallicin versus doxorubicin as first-line chemotherapy in patients with advanced or metastatic soft tissue sarcoma: An european organisation for research and treatment of cancer soft tissue and bone sarcoma group randomised phase II and pharmacogenetic study. Eur. J. Cancer, 2014, 50, 388-396.
[61]
Markowska, A.; Bartulewicz, D.; Pućkowska, A.; Różański, A. Synthetic analogues of netropsin and distamycin. 4.Synthesis of a new carbocyclic analogue of distamycin with alkylating side groups. Ann. Acad. Med. Bialos., 1997, 42, 129-140.
[62]
Baker, B.F.; Dervan, P.B. Sequence-specific cleavage of DNA by N-bromoacetyldistamycin. Product and kinetic analyses. J. Am. Chem. Soc., 1989, 111, 2700-2712.
[63]
Watts, C.R.; Kerwin, S.M.; Kenyon, G.L.; Kuntz, I.D.; Kallick, D.A. Rationally designed N,N′-Bis[(N-p-guanidinobenzyl-N-methyl)aminocarbonyl]-1,3-diaminobenzene, “BIGBEN’, binds to the minor groove of d(CGCGAATTCGCG)2 as determined by two-dimensional nuclear magnetic resonance spectroscopy. J. Am. Chem. Soc., 1995, 117, 9941-9950.
[64]
Markowska, A.; Różański, A. Synthetic analogues of netropsin and distamycin. VI. Synthesis of carbocyclic lexitropsins containing A bioreductive element. Acta Polon. Pharm., 2000, 57, 71-76.
[65]
Markowska, A.; Różański, A.; Wołczyński, S.; Midura-Nowaczek, K. Synthesis and biological activity of carbocyclic lexitropsins with a bioreductive fragment. Farmaco, 2002, 57, 1019-1023.
[66]
Bartulewicz, D.; Bielawski, K.; Bielawska, A.; Różański, A. Synthesis, molecular modelling, and antiproliferative and cytotoxic effects of carbocyclic derivatives of distamycin with chlorambucil moiety. Eur. J. Med. Chem., 2001, 36, 461-467.
[67]
Bartulewicz, D. Aromatic oligopeptides with chlorambucil moiety - synthesis and biological evaluation. Acta Polon. Pharm., 2005, 62, 451-455.
[68]
Pućkowska, A.; Bartulewicz, D.; Markowska, A.; Różański, A. Synthesis of a carbocyclic bis-lexitropsin as DNA cleaving agent. Acta Polon. Pharm., 1999, 56, 104-111.
[69]
Pućkowska, A.; Bartulewicz, D.; Midura-Nowaczek, K. Aromatic benzotriazole amides - synthesis and biological evaluation. Acta Polon. Pharm., 2005, 62, 59-64.
[70]
Barret, M.P.; Gemmell, C.G.; Suckling, C.J. Minor groove binders as anti-infective agents. Pharmacol. Ther., 2012, 139, 12-23.