Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Mini-Review Article

Pharmacological Influencing of The Cholinergic Anti-inflammatory Pathway in Infectious Diseases and Inflammatory Pathologies

Author(s): Miroslav Pohanka*

Volume 21, Issue 6, 2021

Published on: 17 November, 2020

Page: [660 - 669] Pages: 10

DOI: 10.2174/1389557520666201117111715

Price: $65

Abstract

The cholinergic anti-inflammatory pathway is a part of the parasympathetic nervous system and it can also be entitled as an anti-inflammatory reflex. It consists of terminations of the vagal nerve into blood, acetylcholine released from the terminations, macrophages and other cells having α7 nicotinic acetylcholine receptor (α7 nAChR), calcium ions crossing through the receptor and interacting with nuclear factors, and erythrocytes with acetylcholinesterase (AChE) terminating the neurotransmission. Stopping of inflammatory cytokines production is the major task for the cholinergic antiinflammatory pathway. The cholinergic anti-inflammatory pathway can be stimulated or suppressed by agonizing or antagonizing α7 nAChR or by inhibition of AChE. This review is focused on cholinergic anti-inflammatory pathway regulation by drugs. Compounds that inhibit cholinesterases (for instance, huperzine, rivastigmine, galantamine), and their impact on the cholinergic anti-inflammatory pathway are discussed here and a survey of actual literature is provided.

Keywords: acetylcholinesterase, acetylcholine receptor, anti-inflammatory, cytokine storm, inhibitor, inflammation, macrophage, pathogenesis, vagus nerve.

Graphical Abstract

[1]
Winklewski, P.J.; Radkowski, M.; Demkow, U. Relevance of immune-sympathetic nervous system interplay for the development of hypertension. Adv. Exp. Med. Biol., 2016, 884, 37-43.
[http://dx.doi.org/10.1007/5584_2015_169] [PMID: 26453069]
[2]
Pongratz, G.; Straub, R.H. The sympathetic nervous response in inflammation., 2014.
[3]
Noble, B.T.; Brennan, F.H.; Popovich, P.G. The spleen as a neuroimmune interface after spinal cord injury. J. Neuroimmunol., 2018, 321, 1-11.
[http://dx.doi.org/10.1016/j.jneuroim.2018.05.007] [PMID: 29957379]
[4]
Schwab, J.M.; Zhang, Y.; Kopp, M.A.; Brommer, B.; Popovich, P.G. The paradox of chronic neuroinflammation, systemic immune suppression, autoimmunity after traumatic chronic spinal cord injury. Exp. Neurol., 2014, 258, 121-129.
[http://dx.doi.org/10.1016/j.expneurol.2014.04.023] [PMID: 25017893]
[5]
Mosley, R.L. Adaptive immunity in neurodegenerative and neuropsychological disorders. J. Neuroimmune Pharmacol., 2015, 10(4), 522-527.
[http://dx.doi.org/10.1007/s11481-015-9640-y] [PMID: 26496777]
[6]
Gendelman, H.E.; Mosley, R.L. A perspective on roles played by innate and adaptive immunity in the pathobiology of neurodegenerative disorders. J. Neuroimmune Pharmacol., 2015, 10(4), 645-650.
[http://dx.doi.org/10.1007/s11481-015-9639-4] [PMID: 26520433]
[7]
Pohanka, M. Alzheimer’s disease and oxidative stress: A review. Curr. Med. Chem., 2014, 21(3), 356-364.
[http://dx.doi.org/10.2174/09298673113206660258] [PMID: 24059239]
[8]
Pohanka, M. Vaccination to alzheimer disease. Is it a promising tool or a blind way? Curr. Med. Chem., 2016, 23(14), 1432-1441.
[http://dx.doi.org/10.2174/0929867323666160418114733] [PMID: 27087245]
[9]
Pohanka, M. Alpha7 nicotinic acetylcholine receptor is a target in pharmacology and toxicology. Int. J. Mol. Sci., 2012, 13(2), 2219-2238.
[http://dx.doi.org/10.3390/ijms13022219] [PMID: 22408449]
[10]
Changeux, J.P. The nicotinic acetylcholine receptor: A typical ‘allosteric machine’. Philos. Trans. R. Soc. Lond. B Biol. Sci., 1749, 2018, 373.
[11]
Changeux, J.P. The nicotinic acetylcholine receptor: The founding father of the pentameric ligand-gated ion channel superfamily. J. Biol. Chem., 2012, 287(48), 40207-40215.
[http://dx.doi.org/10.1074/jbc.R112.407668] [PMID: 23038257]
[12]
Dani, J.A. Neuronal nicotinic acetylcholine receptor structure and function and response to nicotine. Int. Rev. Neurobiol., 2015, 124, 3-19.
[http://dx.doi.org/10.1016/bs.irn.2015.07.001] [PMID: 26472524]
[13]
Criado, M. Acetylcholine nicotinic receptor subtypes in chromaffin cells. Pflugers Arch., 2018, 470(1), 13-20.
[http://dx.doi.org/10.1007/s00424-017-2050-7] [PMID: 28791474]
[14]
Pavlov, V.A.; Ochani, M.; Gallowitsch-Puerta, M.; Ochani, K.; Huston, J.M.; Czura, C.J.; Al-Abed, Y.; Tracey, K.J. Central muscarinic cholinergic regulation of the systemic inflammatory response during endotoxemia. Proc. Natl. Acad. Sci. USA, 2006, 103(13), 5219-5223.
[http://dx.doi.org/10.1073/pnas.0600506103] [PMID: 16549778]
[15]
Haga, T. Molecular properties of muscarinic acetylcholine receptors. Proc. Jpn. Acad., Ser. B, Phys. Biol. Sci., 2013, 89(6), 226-256.
[http://dx.doi.org/10.2183/pjab.89.226] [PMID: 23759942]
[16]
Wess, J. Novel insights into muscarinic acetylcholine receptor function using gene targeting technology. Trends Pharmacol. Sci., 2003, 24(8), 414-420.
[http://dx.doi.org/10.1016/S0165-6147(03)00195-0] [PMID: 12915051]
[17]
Marsango, S.; Ward, R.J.; Alvarez-Curto, E.; Milligan, G. Muscarinic receptor oligomerization. Neuropharmacology, 2018, 136(Pt C), 401-410.
[http://dx.doi.org/10.1016/j.neuropharm.2017.11.023] [PMID: 29146505]
[18]
Kruse, A.C.; Kobilka, B.K.; Gautam, D.; Sexton, P.M.; Christopoulos, A.; Wess, J. Muscarinic acetylcholine receptors: Novel opportunities for drug development. Nat. Rev. Drug Discov., 2014, 13(7), 549-560.
[http://dx.doi.org/10.1038/nrd4295] [PMID: 24903776]
[19]
Kruse, A.C.; Hu, J.; Kobilka, B.K.; Wess, J. Muscarinic acetylcholine receptor X-ray structures: Potential implications for drug development. Curr. Opin. Pharmacol., 2014, 16, 24-30.
[http://dx.doi.org/10.1016/j.coph.2014.02.006] [PMID: 24662799]
[20]
Pohanka, M. Cholinesterases, a target of pharmacology and toxicology. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub., 2011, 155(3), 219-229.
[http://dx.doi.org/10.5507/bp.2011.036] [PMID: 22286807]
[21]
Thapa, S.; Lv, M.; Xu, H. Acetylcholinesterase: A primary target for drugs and insecticides. Mini Rev. Med. Chem., 2017, 17(17), 1665-1676.
[http://dx.doi.org/10.2174/1389557517666170120153930] [PMID: 28117022]
[22]
Franjesevic, A.J.; Sillart, S.B.; Beck, J.M.; Vyas, S.; Callam, C.S.; Hadad, C.M. Resurrection and reactivation of acetylcholinesterase and butyrylcholinesterase. Chemistry, 2019, 25(21), 5337-5371.
[http://dx.doi.org/10.1002/chem.201805075] [PMID: 30444932]
[23]
Pohanka, M. Butyrylcholinesterase as a biochemical marker. Bratisl. Lek Listy, 2013, 114(12), 726-734.
[24]
Darvesh, S. Butyrylcholinesterase as a diagnostic and therapeutic target for alzheimer’s disease. Curr. Alzheimer Res., 2016, 13(10), 1173-1177.
[http://dx.doi.org/10.2174/1567205013666160404120542] [PMID: 27040140]
[25]
Delacour, H.; Dedome, E.; Courcelle, S.; Hary, B.; Ceppa, F. Butyrylcholinesterase deficiency. Ann. Biol. Clin. (Paris), 2016, 74(3), 279-285.
[26]
Huang, Y.; Zhao, C.; Su, X. Neuroimmune regulation of lung infection and inflammation. QJM, 2019, 112(7), 483-487.
[http://dx.doi.org/10.1093/qjmed/hcy154] [PMID: 30016504]
[27]
Bonaz, B.; Sinniger, V.; Pellissier, S. Vagus nerve stimulation at the interface of brain-gut interactions. Cold Spring Harb. Perspect. Med., 2019, 9(8)034199
[http://dx.doi.org/10.1101/cshperspect.a034199] [PMID: 30201788]
[28]
Tracey, K.J. Reflex control of immunity. Nat. Rev. Immunol., 2009, 9(6), 418-428.
[http://dx.doi.org/10.1038/nri2566] [PMID: 19461672]
[29]
Rosas-Ballina, M.; Tracey, K.J. Cholinergic control of inflammation. J. Intern. Med., 2009, 265(6), 663-679.
[http://dx.doi.org/10.1111/j.1365-2796.2009.02098.x] [PMID: 19493060]
[30]
Martelli, D.; McKinley, M.J.; McAllen, R.M. The cholinergic anti-inflammatory pathway: A critical review. Auton. Neurosci., 2014, 182, 65-69.
[http://dx.doi.org/10.1016/j.autneu.2013.12.007] [PMID: 24411268]
[31]
Kanashiro, A.; Talbot, J.; Peres, R.S.; Pinto, L.G.; Bassi, G.S.; Cunha, T.M.; Cunha, F.Q. Neutrophil recruitment and articular hyperalgesia in antigen-induced arthritis are modulated by the cholinergic anti-inflammatory pathway. Basic Clin. Pharmacol. Toxicol., 2016, 119(5), 453-457.
[http://dx.doi.org/10.1111/bcpt.12611] [PMID: 27098245]
[32]
Li, S.; Zhou, B.; Liu, B.; Zhou, Y.; Zhang, H.; Li, T.; Zuo, X. Activation of the cholinergic anti-inflammatory system by nicotine attenuates arthritis via suppression of macrophage migration. Mol. Med. Rep., 2016, 14(6), 5057-5064.
[http://dx.doi.org/10.3892/mmr.2016.5904] [PMID: 27840928]
[33]
Pavlov, V.A.; Wang, H.; Czura, C.J.; Friedman, S.G.; Tracey, K.J. The cholinergic anti-inflammatory pathway: A missing link in neuroimmunomodulation. Mol. Med., 2003, 9(5-8), 125-134.
[http://dx.doi.org/10.1007/BF03402177] [PMID: 14571320]
[34]
Goldstein, R.S.; Bruchfeld, A.; Yang, L.; Qureshi, A.R.; Gallowitsch-Puerta, M.; Patel, N.B.; Huston, B.J.; Chavan, S.; Rosas-Ballina, M.; Gregersen, P.K.; Czura, C.J.; Sloan, R.P.; Sama, A.E.; Tracey, K.J. Cholinergic anti-inflammatory pathway activity and High Mobility Group Box-1 (HMGB1) serum levels in patients with rheumatoid arthritis. Mol. Med., 2007, 13(3-4), 210-215.
[http://dx.doi.org/10.2119/2006-00108.Goldstein] [PMID: 17597834]
[35]
Hilderman, M.; Qureshi, A.R.; Abtahi, F.; Witt, N.; Jägren, C.; Olbers, J.; Delle, M.; Lindecrantz, K.; Bruchfeld, A. The cholinergic anti-inflammatory pathway in resistant hypertension treated with renal denervation. Mol. Med., 2019, 25(1), 1-10.
[http://dx.doi.org/10.1186/s10020-019-0097-y]
[36]
Frasch, M.G.; Szynkaruk, M.; Prout, A.P.; Nygard, K.; Cao, M.; Veldhuizen, R.; Hammond, R.; Richardson, B.S. 2016.
[37]
Hilderman, M.; Qureshi, A.R.; Al-Abed, Y.; Abtahi, F.; Lindecrantz, K.; Anderstam, B.; Bruchfeld, A. Cholinergic anti-inflammatory pathway activity in dialysis patients: A role for neuroimmunomodulation? Clin. Kidney J., 2015, 8(5), 599-605.
[http://dx.doi.org/10.1093/ckj/sfv074] [PMID: 26413288]
[38]
Pohanka, M. Biosensors based on cholinesterases. Chem. Listy, 2013, 107(2), 121-125.
[39]
Pohanka, M. Cholinesterases in biorecognition and biosensor construction, a review. Anal. Lett., 2013, 46(12), 1849-1868.
[http://dx.doi.org/10.1080/00032719.2013.780240]
[40]
Pohanka, M. Biosensors containing acetylcholinesterase and butyrylcholinesterase as recognition tools for detection of various compounds. Chem. Pap., 2015, 69(1), 4-16.
[http://dx.doi.org/10.2478/s11696-014-0542-x]
[41]
Pohanka, M. Inhibitors of acetylcholinesterase and butyrylcholinesterase meet immunity. Int. J. Mol. Sci., 2014, 15(6), 9809-9825.
[http://dx.doi.org/10.3390/ijms15069809] [PMID: 24893223]
[42]
Tanaka, S.; Hammond, B.; Rosin, D.L.; Okusa, M.D. 2019.
[43]
Wang, D.; Gao, T.; Zhao, Y.; Mao, Y.; Sheng, Z.; Lan, Q. Nicotine exerts neuroprotective effects by attenuating local inflammatory cytokine production following crush injury to rat sciatic nerves. Eur. Cytokine Netw., 2019, 30(2), 59-66.
[PMID: 31486397]
[44]
Huang, D.Y.; Li, Q.; Shi, C.Y.; Hou, C.Q.; Miao, Y.; Shen, H.B. Dexmedetomidine attenuates inflammation and pancreatic injury in a rat model of experimental severe acute pancreatitis via cholinergic anti-inflammatory pathway. Chin. Med. J. (Engl.), 2020, 133(9), 1073-1079.
[http://dx.doi.org/10.1097/CM9.0000000000000766] [PMID: 32265428]
[45]
Wu, X.J.; Yan, X.T.; Yang, X.M.; Zhang, Y.; Wang, H.Y.; Luo, H.; Fang, Q.; Li, H.; Li, X.Y.; Chen, K.; Wang, Y.L.; Zhang, Z.Z.; Song, X.M. GTS-21 ameliorates polymicrobial sepsis-induced hepatic injury by modulating autophagy through α7nAchRs in mice. Cytokine, 2020, 128(155019)155019
[http://dx.doi.org/10.1016/j.cyto.2020.155019] [PMID: 32018068]
[46]
Grandi, A.; Zini, I.; Flammini, L.; Cantoni, A.M.; Vivo, V.; Ballabeni, V.; Barocelli, E.; Bertoni, S. Alpha7 nicotinic agonist ar-r17779 protects mice against 2, 4,6-trinitrobenzene sulfonic acid-induced colitis in a spleen-dependent way. Front. Pharmacol., 2017, 8(809), 809.
[http://dx.doi.org/10.3389/fphar.2017.00809] [PMID: 29167641]
[47]
Snoek, S.A.; Verstege, M.I.; van der Zanden, E.P.; Deeks, N.; Bulmer, D.C.; Skynner, M.; Lee, K.; Te Velde, A.A.; Boeckxstaens, G.E.; de Jonge, W.J. Selective alpha7 nicotinic acetylcholine receptor agonists worsen disease in experimental colitis. Br. J. Pharmacol., 2010, 160(2), 322-333.
[http://dx.doi.org/10.1111/j.1476-5381.2010.00699.x] [PMID: 20423343]
[48]
Padilla, A.; Keating, P.; Hartmann, J.X.; Mari, F. Effects of alpha-conotoxin imi on tnf-alpha, il-8 and tgf-beta expression by human macrophage-like cells derived from thp-1 pre-monocytic leukemic cells., 2017.
[49]
Rahman, M.M.; Teng, J.; Worrell, B.T.; Noviello, C.M.; Lee, M.; Karlin, A.; Stowell, M.H.B.; Hibbs, R.E. Structure of the native muscle-type nicotinic receptor and inhibition by snake venom toxins. Neuron, 2020, 106(6), 952-962.
[http://dx.doi.org/10.1016/j.neuron.2020.03.012] [PMID: 32275860]
[50]
Lebedev, D.S.; Kryukova, E.V.; Ivanov, I.A.; Egorova, N.S.; Timofeev, N.D.; Spirova, E.N.; Tufanova, E.Y.; Siniavin, A.E.; Kudryavtsev, D.S.; Kasheverov, I.E.; Zouridakis, M.; Katsarava, R.; Zavradashvili, N.; Iagorshvili, I.; Tzartos, S.J.; Tsetlin, V.I. Oligoarginine peptides, a new family of nicotinic acetylcholine receptor inhibitors. Mol. Pharmacol., 2019, 96(5), 664-673.
[http://dx.doi.org/10.1124/mol.119.117713] [PMID: 31492697]
[51]
Kanashiro, A.; Sônego, F.; Ferreira, R.G.; Castanheira, F.V.; Leite, C.A.; Borges, V.F.; Nascimento, D.C.; Cólon, D.F.; Alves-Filho, J.C.; Ulloa, L.; Cunha, F.Q. Therapeutic potential and limitations of cholinergic anti-inflammatory pathway in sepsis. Pharmacol. Res., 2017, 117, 1-8.
[http://dx.doi.org/10.1016/j.phrs.2016.12.014] [PMID: 27979692]
[52]
Hajiasgharzadeh, K.; Baradaran, B. Cholinergic anti-inflammatory pathway and the liver. Adv. Pharm. Bull., 2017, 7(4), 507-513.
[http://dx.doi.org/10.15171/apb.2017.063] [PMID: 29399541]
[53]
Zi, S.; Li, J.; Liu, L.; Liu, F. Cholinergic anti-inflammatory pathway and its role in treatment of sepsis. Zhong Nan Da Xue Xue Bao Yi Xue Ban, 2020, 45(1), 68-73.
[PMID: 32132300]
[54]
Zhai, Q.; Lai, D.; Cui, P.; Zhou, R.; Chen, Q.; Hou, J.; Su, Y.; Pan, L.; Ye, H.; Zhao, J.W.; Fang, X. Selective activation of basal forebrain cholinergic neurons attenuates polymicrobial sepsis-induced inflammation via the cholinergic anti-inflammatory pathway. Crit. Care Med., 2017, 45(10), e1075-e1082.
[http://dx.doi.org/10.1097/CCM.0000000000002646] [PMID: 28806219]
[55]
Zhao, T.; Li, D.J.; Liu, C.; Su, D.F.; Shen, F.M. Beneficial effects of anisodamine in shock involved cholinergic anti-inflammatory pathway. Front. Pharmacol., 2011, 2(23), 23.
[http://dx.doi.org/10.3389/fphar.2011.00023] [PMID: 21687515]
[56]
Swaminathan, S.; Rosner, M.H.; Okusa, M.D. Emerging therapeutic targets of sepsis-associated acute kidney injury. Semin. Nephrol., 2015, 35(1), 38-54.
[http://dx.doi.org/10.1016/j.semnephrol.2015.01.005] [PMID: 25795498]
[57]
Chavan, S.S.; Pavlov, V.A.; Tracey, K.J. Mechanisms and therapeutic relevance of neuro-immune communication. Immunity, 2017, 46(6), 927-942.
[http://dx.doi.org/10.1016/j.immuni.2017.06.008] [PMID: 28636960]
[58]
Gomes, J.P.; Watad, A.; Shoenfeld, Y. Nicotine and autoimmunity: The lotus’ flower in tobacco. Pharmacol. Res., 2018, 128, 101-109.
[http://dx.doi.org/10.1016/j.phrs.2017.10.005] [PMID: 29051105]
[59]
Eldufani, J.; Blaise, G. The role of acetylcholinesterase inhibitors such as neostigmine and rivastigmine on chronic pain and cognitive function in aging: A review of recent clinical applications. Alzheimers Dement. (N. Y.), 2019, 5, 175-183.
[http://dx.doi.org/10.1016/j.trci.2019.03.004] [PMID: 31194017]
[60]
Sharma, K. Cholinesterase inhibitors as Alzheimer’s therapeutics. [Review Mol. Med. Rep., 2019, 20(2), 1479-1487.
[PMID: 31257471]
[61]
Santos, B.; González-Fraile, E.; Zabala, A.; Guillén, V.; Rueda, J.R.; Ballesteros, J. Cognitive improvement of acetylcholinesterase inhibitors in schizophrenia. J. Psychopharmacol. (Oxford), 2018, 32(11), 1155-1166.
[http://dx.doi.org/10.1177/0269881118805496] [PMID: 30324844]
[62]
McHardy, S.F.; Wang, H.L.; McCowen, S.V.; Valdez, M.C. Recent advances in acetylcholinesterase inhibitors and reactivators: An update on the patent literature (2012-2015). Expert Opin. Ther. Pat., 2017, 27(4), 455-476.
[http://dx.doi.org/10.1080/13543776.2017.1272571] [PMID: 27967267]
[63]
Lazarevic-Pasti, T.; Leskovac, A.; Momic, T.; Petrovic, S.; Vasic, V. Modulators of acetylcholinesterase activity: From alzheimer’s disease to anti-cancer drugs. Curr. Med. Chem., 2017, 24(30), 3283-3309.
[http://dx.doi.org/10.2174/0929867324666170705123509] [PMID: 28685687]
[64]
Shaikh, S.; Verma, A.; Siddiqui, S.; Ahmad, S.S.; Rizvi, S.M.; Shakil, S.; Biswas, D.; Singh, D.; Siddiqui, M.H.; Shakil, S.; Tabrez, S.; Kamal, M.A. Current acetylcholinesterase-inhibitors: A neuroinformatics perspective. CNS Neurol. Disord. Drug Targets, 2014, 13(3), 391-401.
[http://dx.doi.org/10.2174/18715273113126660166] [PMID: 24059296]
[65]
Anand, P.; Singh, B. A review on cholinesterase inhibitors for Alzheimer’s disease. Arch. Pharm. Res., 2013, 36(4), 375-399.
[http://dx.doi.org/10.1007/s12272-013-0036-3] [PMID: 23435942]
[66]
Galimberti, D.; Scarpini, E. Old and new acetylcholinesterase inhibitors for Alzheimer’s disease. Expert Opin. Investig. Drugs, 2016, 25(10), 1181-1187.
[http://dx.doi.org/10.1080/13543784.2016.1216972] [PMID: 27459153]
[67]
Whitmore, C.; Lindsay, C.D.; Bird, M.; Gore, S.J.; Rice, H.; Williams, R.L.; Timperley, C.M.; Green, A.C. Assessment of false transmitters as treatments for nerve agent poisoning. Toxicol. Lett., 2020, 321, 21-31.
[http://dx.doi.org/10.1016/j.toxlet.2019.12.010] [PMID: 31830555]
[68]
Therkorn, J.; Drewry, D.G.; Tiburzi, O.; Astatke, M.; Young, C.; Rainwater-Lovett, K. Review of biomarkers and analytical methods for organophosphate pesticides and applicability to nerve agents. Mil. Med., 2020, 185(3-4), e414-e421.
[http://dx.doi.org/10.1093/milmed/usz441] [PMID: 32077949]
[69]
Pohanka, M.; Novotny, L.; Pikula, J. Metrifonate alters antioxidant levels and caspase activity in cerebral cortex of Wistar rats. Toxicol. Mech. Methods, 2011, 21(8), 585-590.
[http://dx.doi.org/10.3109/15376516.2011.589089] [PMID: 21943232]
[70]
López-Arrieta, J.M.; Schneider, L. Metrifonate for Alzheimer’s disease. Cochrane Database Syst. Rev., 2006, (2)CD003155
[PMID: 16625573]
[71]
Kramer, C.V.; Zhang, F.; Sinclair, D.; Olliaro, P.L. Drugs for treating urinary schistosomiasis. Cochrane Database Syst. Rev., 2014, 6(8)CD000053
[PMID: 25099517]
[72]
Squires, N. Interventions for treating schistosomiasis haematobium. Cochrane Database Syst. Rev., 2000, 2(2)CD000053
[PMID: 10796476]
[73]
Al-Barazie, R.M.; Bashir, G.H.; Qureshi, M.M.; Mohamed, Y.A.; Al-Sbiei, A.; Tariq, S.; Lammers, W.J.; Al-Ramadi, B.K.; Fernandez-Cabezudo, M.J. Cholinergic activation enhances resistance to oral salmonella infection by modulating innate immune defense mechanisms at the intestinal barrier. Front. Immunol., 2018, 9(551), 551.
[http://dx.doi.org/10.3389/fimmu.2018.00551] [PMID: 29616040]
[74]
Fernandez-Cabezudo, M.J.; Lorke, D.E.; Azimullah, S.; Mechkarska, M.; Hasan, M.Y.; Petroianu, G.A.; al-Ramadi, B.K. Cholinergic stimulation of the immune system protects against lethal infection by Salmonella enterica serovar Typhimurium. Immunology, 2010, 130(3), 388-398.
[http://dx.doi.org/10.1111/j.1365-2567.2009.03238.x] [PMID: 20408892]
[75]
Bacalhau, P.; San Juan, A.A.; Goth, A.; Caldeira, A.T.; Martins, R.; Burke, A.J. Insights into (S)-rivastigmine inhibition of butyrylcholinesterase (BuChE): Molecular docking and saturation transfer difference NMR (STD-NMR). Bioorg. Chem., 2016, 67, 105-109.
[http://dx.doi.org/10.1016/j.bioorg.2016.06.002] [PMID: 27317888]
[76]
Pejchal, V.; Štěpánková, Š.; Pejchalová, M.; Královec, K.; Havelek, R.; Růžičková, Z.; Ajani, H.; Lo, R.; Lepšík, M. Synthesis, structural characterization, docking, lipophilicity and cytotoxicity of 1-[(1R)-1-(6-fluoro-1,3-benzothiazol-2-yl)ethyl]-3-alkyl carbamates, novel acetylcholinesterase and butyrylcholinesterase pseudo-irreversible inhibitors. Bioorg. Med. Chem., 2016, 24(7), 1560-1572.
[http://dx.doi.org/10.1016/j.bmc.2016.02.033] [PMID: 26947959]
[77]
Ray, B.; Maloney, B.; Sambamurti, K.; Karnati, H.K.; Nelson, P.T.; Greig, N.H.; Lahiri, D.K. Rivastigmine modifies the α-secretase pathway and potentially early alzheimer's disease., 2020.
[78]
Mohamed, L.A.; Qosa, H.; Kaddoumi, A. Age-related decline in brain and hepatic clearance of amyloid-beta is rectified by the cholinesterase inhibitors donepezil and rivastigmine in rats. ACS Chem. Neurosci., 2015, 6(5), 725-736.
[http://dx.doi.org/10.1021/acschemneuro.5b00040] [PMID: 25782004]
[79]
Pohanka, M.; Pavlis, O. Neostigmine modulates tularemia progression in balb/c mice. Afr. J. Pharm. Pharmacol., 2012, 6(17), 1317-1322.
[80]
Shifrin, H.; Mouhadeb, O.; Gluck, N.; Varol, C.; Weinstock, M. Cholinergic anti-inflammatory pathway does not contribute to prevention of ulcerative colitis by novel indoline carbamates. J. Neuroimmune Pharmacol., 2017, 12(3), 484-491.
[http://dx.doi.org/10.1007/s11481-017-9735-8] [PMID: 28271317]
[81]
Hernekamp, F.; Klein, H.; Schmidt, K.; Vogelpohl, J.; Kneser, U.; Kremer, T. Microcirculatory effects of physostigmine on experimental burn edema. J. Burn Care Res., 2015, 36(2), 279-286.
[http://dx.doi.org/10.1097/BCR.0000000000000068] [PMID: 24823331]
[82]
Pinder, N.; Zimmermann, J.B.; Gastine, S.; Würthwein, G.; Hempel, G.; Bruckner, T.; Hoppe-Tichy, T.; Weigand, M.A.; Swoboda, S. Continuous infusion of physostigmine in patients with perioperative septic shock: A pharmacokinetic/pharmacodynamic study with population pharmacokinetic modeling. Biomed. Pharmacother., 2019, 118(109318)109318
[http://dx.doi.org/10.1016/j.biopha.2019.109318] [PMID: 31398669]
[83]
Pohanka, M. Inhibitors of cholinesterases in the pharmacology, the current trends. Mini Rev. Med. Chem., 2019, 18(10)
[http://dx.doi.org/10.2174/1389557519666191018170908] [PMID: 31656151]
[84]
da Silva, V.B.; de Andrade, P.; Kawano, D.F.; Morais, P.A.B.; de Almeida, J.R.; Carvalho, I.; Taft, C.A.; da Silva, C.H. In silico design and search for acetylcholinesterase inhibitors in Alzheimer’s disease with a suitable pharmacokinetic profile and low toxicity. Future Med. Chem., 2011, 3(8), 947-960.
[http://dx.doi.org/10.4155/fmc.11.67] [PMID: 21707398]
[85]
Rainer, M. Galanthamine in Alzheimer’s disease: A new alternative to tacrine? CNS Drugs, 1997, 7(2), 89-97.
[http://dx.doi.org/10.2165/00023210-199707020-00001] [PMID: 23338128]
[86]
Lilienfeld, S. Galantamine--a novel cholinergic drug with a unique dual mode of action for the treatment of patients with Alzheimer’s disease. CNS Drug Rev., 2002, 8(2), 159-176.
[http://dx.doi.org/10.1111/j.1527-3458.2002.tb00221.x] [PMID: 12177686]
[87]
Darreh-Shori, T.; Soininen, H. Effects of cholinesterase inhibitors on the activities and protein levels of cholinesterases in the cerebrospinal fluid of patients with Alzheimer’s disease: A review of recent clinical studies. Curr. Alzheimer Res., 2010, 7(1), 67-73.
[http://dx.doi.org/10.2174/156720510790274455] [PMID: 20205672]
[88]
Thomsen, T.; Kewitz, H. Selective inhibition of human acetylcholinesterase by galanthamine in vitro and in vivo. Life Sci., 1990, 46(21), 1553-1558.
[http://dx.doi.org/10.1016/0024-3205(90)90429-U] [PMID: 2355800]
[89]
Berg, L.; Andersson, C.D.; Artursson, E.; Hörnberg, A.; Tunemalm, A.K.; Linusson, A.; Ekström, F. Targeting acetylcholinesterase: identification of chemical leads by high throughput screening, structure determination and molecular modeling. PLoS One, 2011, 6(11)e26039
[http://dx.doi.org/10.1371/journal.pone.0026039] [PMID: 22140425]
[90]
Cheewakriengkrai, L.; Gauthier, S. A 10-year perspective on donepezil. Expert Opin. Pharmacother., 2013, 14(3), 331-338.
[http://dx.doi.org/10.1517/14656566.2013.760543] [PMID: 23316713]
[91]
Rampa, A.; Belluti, F.; Gobbi, S.; Bisi, A. Hybrid-based multi-target ligands for the treatment of Alzheimer’s disease. Curr. Top. Med. Chem., 2011, 11(22), 2716-2730.
[http://dx.doi.org/10.2174/156802611798184409] [PMID: 22039875]
[92]
Bai, D.L.; Tang, X.C.; He, X.C. Huperzine A, a potential therapeutic agent for treatment of Alzheimer’s disease. Curr. Med. Chem., 2000, 7(3), 355-374.
[http://dx.doi.org/10.2174/0929867003375281] [PMID: 10637369]
[93]
Liu, J.; Zhang, H.Y.; Tang, X.C.; Wang, B.; He, X.C.; Bai, D.L. Effects of synthetic (-)-huperzine A on cholinesterase activities and mouse water maze performance. Zhongguo Yao Li Xue Bao, 1998, 19(5), 413-416.
[PMID: 10375798]
[94]
Luo, W.; Li, Y.P.; He, Y.; Huang, S.L.; Li, D.; Gu, L.Q.; Huang, Z.S. Synthesis and evaluation of heterobivalent tacrine derivatives as potential multi-functional anti-Alzheimer agents. Eur. J. Med. Chem., 2011, 46(6), 2609-2616.
[http://dx.doi.org/10.1016/j.ejmech.2011.03.058] [PMID: 21497959]
[95]
Jogani, V.V.; Shah, P.J.; Mishra, P.; Mishra, A.K.; Misra, A.R. Nose-to-brain delivery of tacrine. J. Pharm. Pharmacol., 2007, 59(9), 1199-1205.
[http://dx.doi.org/10.1211/jpp.59.9.0003] [PMID: 17883890]
[96]
Knapp, M.J.; Gracon, S.I.; Davis, C.S.; Solomon, P.R.; Pendlebury, W.W.; Knopman, D.S. Efficacy and safety of high-dose tacrine - a 30 week evaluation Alzheimer Dis. Assoc. Dis., 1994, 8, S22-S31.
[97]
Davis, K.L.; Thal, L.J.; Gamzu, E.R.; Davis, C.S.; Woolson, R.F.; Gracon, S.I.; Drachman, D.A.; Schneider, L.S.; Whitehouse, P.J.; Hoover, T.M.; Morris, J.C.; Kawas, C.H.; Knopman, D.S.; Earl, N.L.; Kumar, V.; Doody, R.S. A double-blind, placebo-controlled multicenter study of tacrine for Alzheimer’s disease. N. Engl. J. Med., 1992, 327(18), 1253-1259.
[http://dx.doi.org/10.1056/NEJM199210293271801] [PMID: 1406817]
[98]
Pohanka, M. Spectrophotomeric assay of aflatoxin b1 using acetylcholinesterase immobilized on standard microplates. Anal. Lett., 2013, 46(8), 1306-1315.
[http://dx.doi.org/10.1080/00032719.2012.757703]
[99]
Arduini, F.; Amine, A.; Moscone, D.; Palleschi, G. Biosensors based on cholinesterase inhibition for insecticides, nerve agents and aflatoxin b-1 detection. Mikrochim. Acta, 2010, 170(3-4), 193-214.
[http://dx.doi.org/10.1007/s00604-010-0317-1]
[100]
Pohanka, M.; Dobes, P. Caffeine inhibits acetylcholinesterase, but not butyrylcholinesterase. Int. J. Mol. Sci., 2013, 14(5), 9873-9882.
[http://dx.doi.org/10.3390/ijms14059873] [PMID: 23698772]
[101]
Pohanka, M. The effects of caffeine on the cholinergic system. Mini Rev. Med. Chem., 2014, 14(6), 543-549.
[http://dx.doi.org/10.2174/1389557514666140529223436] [PMID: 24873820]
[102]
Texidó, L.; Ros, E.; Martín-Satué, M.; López, S.; Aleu, J.; Marsal, J.; Solsona, C. Effect of galantamine on the human alpha7 neuronal nicotinic acetylcholine receptor, the Torpedo nicotinic acetylcholine receptor and spontaneous cholinergic synaptic activity. Br. J. Pharmacol., 2005, 145(5), 672-678.
[http://dx.doi.org/10.1038/sj.bjp.0706221] [PMID: 15834443]
[103]
Ibrahim, S.M.; Al-Shorbagy, M.Y.; Abdallah, D.M.; El-Abhar, H.S. 2018.
[104]
Pohanka, M. The perspective of caffeine and caffeine derived compounds in therapy. Bratisl. Lek Listy, 2015, 116(9), 520-530.
[http://dx.doi.org/10.4149/BLL_2015_106] [PMID: 26435014]
[105]
Wu, N.; Xu, X.; Wang, B.; Li, X.M.; Cheng, Y.Y.; Li, M.; Xia, X.Q.; Zhang, Y.A. Anti-foodborne enteritis effect of galantamine potentially via acetylcholine anti-inflammatory pathway in fish. Fish Shellfish Immunol., 2020, 97, 204-215.
[http://dx.doi.org/10.1016/j.fsi.2019.12.028] [PMID: 31843701]
[106]
Gowayed, M.A.; Rothe, K.; Rossol, M.; Attia, A.S.; Wagner, U.; Baerwald, C.; El-Abhar, H.S.; Refaat, R. The role of α7nAChR in controlling the anti-inflammatory/anti-arthritic action of galantamine. Biochem. Pharmacol., 2019, 170(113665)113665
[http://dx.doi.org/10.1016/j.bcp.2019.113665] [PMID: 31606410]
[107]
Ruan, Q.; Liu, F.; Gao, Z.; Kong, D.; Hu, X.; Shi, D.; Bao, Z.; Yu, Z. The anti-inflamm-aging and hepatoprotective effects of huperzine A in D-galactose-treated rats. Mech. Ageing Dev., 2013, 134(3-4), 89-97.
[http://dx.doi.org/10.1016/j.mad.2012.12.005] [PMID: 23313706]
[108]
Zhu, S.Z.; Huang, W.P.; Huang, L.Q.; Han, Y.L.; Han, Q.P.; Zhu, G.F.; Wen, M.Y.; Deng, Y.Y.; Zeng, H.K. Huperzine A protects sepsis associated encephalopathy by promoting the deficient cholinergic nervous function. Neurosci. Lett., 2016, 631, 70-78.
[http://dx.doi.org/10.1016/j.neulet.2016.07.009] [PMID: 27400829]
[109]
Huang, W.; Zhu, S.; Liu, X.; Huang, L.; Han, Y.; Han, Q.; Xie, D.; Zeng, H. Cholinergic anti-inflammatory pathway involves in the neuroprotective effect of huperzine A on sepsis-associated encephalopathy. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue, 2016, 28(5), 450-454.
[PMID: 29920043]
[110]
Maroli, A.; Di Lascio, S.; Drufuca, L.; Cardani, S.; Setten, E.; Locati, M.; Fornasari, D.; Benfante, R. Effect of donepezil on the expression and responsiveness to LPS of CHRNA7 and CHRFAM7A in macrophages: A possible link to the cholinergic anti-inflammatory pathway. J. Neuroimmunol., 2019, 332, 155-166.
[http://dx.doi.org/10.1016/j.jneuroim.2019.04.012] [PMID: 31048268]
[111]
Arikawa, M.; Kakinuma, Y.; Noguchi, T.; Todaka, H.; Sato, T. Donepezil, an acetylcholinesterase inhibitor, attenuates LPS-induced inflammatory response in murine macrophage cell line RAW 264.7 through inhibition of nuclear factor kappa B translocation. Eur. J. Pharmacol., 2016, 789, 17-26.
[http://dx.doi.org/10.1016/j.ejphar.2016.06.053] [PMID: 27373848]
[112]
Pohanka, M. Caffeine alters oxidative homeostasis in the body of BALB/c mice. Bratisl. Lek Listy, 2014, 115(11), 699-703.
[http://dx.doi.org/10.4149/BLL_2014_135] [PMID: 25428538]
[113]
Pohanka, M. Caffeine downregulates antibody production in a mouse model. J. Appl. Biomed., 2015, 13(1), 1-6.
[http://dx.doi.org/10.1016/j.jab.2014.09.001]
[114]
Liu, Y.; Meng, Y.N.; Huang, X.J.; Qin, F.H.; Wu, D.; Shao, Q.; Guo, Z.; Li, Q.; Wei, W.T. Radical cyclization of 1,6-dienes with azobis(alkylcarbonitriles) on water under additive-free conditions. Green Chem., 2020, 22, 4593-4596.
[http://dx.doi.org/10.1039/D0GC00140F]
[115]
Böhmer, W.; Volkov, A.; Engelmark Cassimjee, K.; Mutti, F.G. Front cover picture: Continuous flow bioamination of ketones in organic solvents at controlled water activity using immobilized ω-transaminases. Adv. Synth. Catal., 2020, 362(9), 1858-1867.
[http://dx.doi.org/10.1002/adsc.201901274] [PMID: 32421034]
[116]
Xie, L.Y.; Jiang, L.L.; Tan, J.X.; Wang, Y.; Xu, X.Q.; Zhang, B.; Cao, Z.; He, W.M. Visible-light-initiated decarboxylative alkylation of quinoxalin-2(1h)-ones with phenyliodine(iii) dicarboxylates in recyclable ruthenium(ii) catalytic system. ACS Sustain. Chem.& Eng., 2019, 16, 14153-14160.
[http://dx.doi.org/10.1021/acssuschemeng.9b02822]
[117]
Vadodariya, N.; Meena, R. Protein-functionalized aerogel membranes for gravity-driven separation. ACS Sustain. Chem.& Eng., 2019, 5, 4814-4820.
[http://dx.doi.org/10.1021/acssuschemeng.8b05100]
[118]
Kang, Q.Q.; Wu, W.; Li, Q.; Wei, W.T. Photochemical strategies for c–n bond formation via metal catalyst-free (hetero) aryl c(sp2)–h functionalization. Green Chem., 2020, 22, 3060-33068.
[http://dx.doi.org/10.1039/D0GC01088J]
[119]
Huang, X.J.; Qin, F.H.; Wu, S.P.; Li, Q.; Wei, W.T. Acylation/cyclization of 1,6-dienes with ethers under catalyst- and base-free conditions. Green Chem., 2020, 22, 3952-3955.
[http://dx.doi.org/10.1039/D0GC00865F]
[120]
Meng, X.X.; Kang, Q.Q.; Zhang, J.Y.; Li, Q.; Wei, W.T.; He, W.M. Visible-light-initiated regioselective sulfonylation/cyclization of 1,6-enynes under photocatalyst- and additive-free conditions. Green Chem., 2020, 22, 1388-1392.
[http://dx.doi.org/10.1039/C9GC03769A]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy