Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

General Review Article

Anesthetic-induced Myocardial Conditioning: Molecular Fundamentals and Scope

Author(s): Jose Luis Guerrero Orriach*, Juan Jose Escalona Belmonte , Marta Ramirez Aliaga*, Alicia Ramirez Fernandez , Aida Raigón Ponferrada , Manuel Rubio Navarro and Jose Cruz Mañas

Volume 27, Issue 13, 2020

Page: [2147 - 2160] Pages: 14

DOI: 10.2174/0929867325666180926161427

Price: $65

Abstract

Background: The pre- and post-conditioning effects of halogenated anesthetics make them most suitable for cardiac surgery. Several studies have demonstrated that the mechanism of drug-induced myocardial conditioning is enzyme-mediated via messenger RNA and miRNA regulation. The objective of this study was to investigate the role that miRNAs play in the cardioprotective effect of halogenated anesthetics. For such purpose, we reviewed the literature to determine the expression profile of miRNAs in ischemic conditioning and in the complications prevented by these phenomena.

Methods: A review was conducted of more than 100 studies to identify miRNAs involved in anesthetic-induced myocardial conditioning. Our objective was to determine the miRNAs that play a relevant role in ischemic disease, heart failure and arrhythmogenesis, which expression is modulated by the perioperative administration of halogenated anesthetics. So far, no studies have been performed to assess the role of miRNAs in anesthetic-induced myocardial conditioning. The potential of miRNAs as biomarkers and miRNAs-based therapies involving the synthesis, inhibition or stimulation of miRNAs are a promising avenue for future research in the field of cardiology.

Results: Each of the cardioprotective effects of myocardial conditioning is related to the expression of several (not a single) miRNAs. The cumulative evidence on the role of miRNAs in heart disease and myocardial conditioning opens new therapeutic and diagnostic opportunities.

Conclusion: Halogenated anesthetics regulate the expression of miRNAs involved in heart conditions. Further research is needed to determine the expression profile of miRNAs after the administration of halogenated drugs. The results of these studies would contribute to the development of new hypnotics for cardiac surgery patients.

Keywords: miRNAs, cardiac anesthesia, preconditioning, postconditioning, aconditioning, halogenated.

[1]
Bartel, D.P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 2004, 116(2), 281-297.
[http://dx.doi.org/10.1016/S0092-8674(04)00045-5] [PMID: 14744438]
[2]
Lagos-Quintana, M.; Rauhut, R.; Lendeckel, W.; Tuschl, T. Identification of novel genes coding for small expressed RNAs. Science, 2001, 294(5543), 853-858.
[http://dx.doi.org/10.1126/science.1064921] [PMID: 11679670]
[3]
Kozomara, A.; Griffiths-Jones, S. miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res., 2011, 39(Database issue), D152-D157.
[http://dx.doi.org/10.1093/nar/gkq1027] [PMID: 21037258]
[4]
Lee, Y.; Kim, M.; Han, J.; Yeom, K.H.; Lee, S.; Baek, S.H.; Kim, V.N. MicroRNA genes are transcribed by RNA polymerase II. EMBO J., 2004, 23(20), 4051-4060.
[http://dx.doi.org/10.1038/sj.emboj.7600385] [PMID: 15372072]
[5]
Gurtan, A.M.; Sharp, P.A. The role of miRNAs in regulating gene expression networks. J. Mol. Biol., 2013, 425(19), 3582-3600.
[http://dx.doi.org/10.1016/j.jmb.2013.03.007] [PMID: 23500488]
[6]
Nana-Sinkam, S.P.; Croce, C.M. MicroRNA regulation of tumorigenesis, cancer progression and interpatient heterogeneity: towards clinical use. Genome Biol., 2014, 15(9), 445.
[http://dx.doi.org/10.1186/s13059-014-0445-8] [PMID: 25315999]
[7]
Boon, R.A.; Dimmeler, S. MicroRNAs in myocardial infarction. Nat. Rev. Cardiol., 2015, 12(3), 135-142.
[http://dx.doi.org/10.1038/nrcardio.2014.207] [PMID: 25511085]
[8]
Islas, J.F.; Moreno-Cuevas, J.E. A MicroRNA perspective on cardiovascular development and diseases: an update. Int. J. Mol. Sci., 2018, 19(7) pii: E2075
[http://dx.doi.org/10.3390/ijms19072075] [PMID: 30018214]
[9]
De Rosa, R.; Polito, M.V.; Benvenga, R.; De Angelis, E.; Piscione, F.; Galasso, G. Micrornas and cardiovascular diseases: from bench to bedside. Transl. Med. UniSa, 2018, 17(17), 12-18.
[PMID: 30050875]
[10]
Pfeffer, S.R.; Yang, C.H.; Pfeffer, L.M. The role of miR-21 in cancer. Drug Dev. Res., 2015, 76(6), 270-277.
[http://dx.doi.org/10.1002/ddr.21257] [PMID: 26082192]
[11]
Mann, D.L. MicroRNAs and the failing heart. N. Engl. J. Med., 2007, 356(25), 2644-2645.
[http://dx.doi.org/10.1056/NEJMcibr072068] [PMID: 17582077]
[12]
Orriach, J.L.; Aliaga, M.R.; Ortega, M.G.; Navarro, M.R.; Arce, I.N.; Mañas, J.C. Sevoflurane in intraoperative and postoperative cardiac surgery patients. Our experience in intensive care unit with sevoflurane sedation. Curr. Pharm. Des., 2013, 19(22), 3996-4002.
[http://dx.doi.org/10.2174/1381612811319220008] [PMID: 23228318]
[13]
Guerrero Orriach, J.L.; Galán Ortega, M.; Ramirez Aliaga, M.; Iglesias, P.; Rubio Navarro, M.; Cruz Mañas, J. Prolonged sevoflurane administration in the off-pump coronary artery bypass graft surgery: beneficial effects. J. Crit. Care, 2013, 28(5), 879.e13-879.e18..
[http://dx.doi.org/10.1016/j.jcrc.2013.06.004] [PMID: 23886454]
[14]
Julier, K.; da Silva, R.; Garcia, C.; Bestmann, L.; Frascarolo, P.; Zollinger, A.; Chassot, P.G.; Schmid, E.R.; Turina, M.I.; von Segesser, L.K.; Pasch, T.; Spahn, D.R.; Zaugg, M. Preconditioning by sevoflurane decreases biochemical markers for myocardial and renal dysfunction in coronary artery bypass graft surgery: a double-blinded, placebo-controlled, multicenter study. Anesthesiology, 2003, 98(6), 1315-1327.
[http://dx.doi.org/10.1097/00000542-200306000-00004] [PMID: 12766638]
[15]
De Hert, S.G.; Cromheecke, S.; ten Broecke, P.W.; Mertens, E.; De Blier, I.G.; Stockman, B.A.; Rodrigus, I.E.; Van der Linden, P.J. Effects of propofol, desflurane, and sevoflurane on recovery of myocardial function after coronary surgery in elderly high-risk patients. Anesthesiology, 2003, 99(2), 314-323.
[http://dx.doi.org/10.1097/00000542-200308000-00013] [PMID: 12883404]
[16]
Lloyd-Jones, D.; Adams, R.J.; Brown, T.M.; Carnethon, M.; Dai, S.; De Simone, G.; Ferguson, T.B.; Ford, E.; Furie, K.; Gillespie, C.; Go, A.; Greenlund, K.; Haase, N.; Hailpern, S.; Ho, P.M.; Howard, V.; Kissela, B.; Kittner, S.; Lackland, D.; Lisabeth, L.; Marelli, A.; McDermott, M.M.; Meigs, J.; Mozaffarian, D.; Mussolino, M.; Nichol, G.; Roger, V.L.; Rosamond, W.; Sacco, R.; Sorlie, P.; Stafford, R.; Thom, T.; Wasserthiel-Smoller, S.; Wong, N.D.; Wylie-Rosett, J. American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Executive summary: heart disease and stroke statistics--2010 update: a report from the American Heart Association. Circulation, 2010, 121(7), 948-954.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.109.192666] [PMID: 20177011]
[17]
Haas, F.; Haebnel, N.; Augustin, N.; Picker, W.; Nekolla, S.; Meisner, H. Prevalence and time-coures of functional improvements in stunned and hibernating myocardium in patients with coronary artery disease (CAD) and congestive heart failure (CHF). J. Am. Coll. Cardiol., 1997, 29, 367.
[18]
Semenza, G.L. Shifting paradigms for ischaemic preconditioning. Cardiovasc. Res., 2012, 96(2), 216-219.
[http://dx.doi.org/10.1093/cvr/cvs197] [PMID: 22822100]
[19]
Lim, G.B. Acute coronary syndromes: Postconditioning reduces myocardial edema. Nat. Rev. Cardiol., 2012, 9(8), 434-436.
[PMID: 22733216]
[20]
Gerczuk, P.Z.; Kloner, R.A. An update on cardioprotection: a review of the latest adjunctive therapies to limit myocardial infarction size in clinical trials. J. Am. Coll. Cardiol., 2012, 59(11), 969-978.
[http://dx.doi.org/10.1016/j.jacc.2011.07.054] [PMID: 22402067]
[21]
Murry, C.E.; Jennings, R.B.; Reimer, K.A. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation, 1986, 74(5), 1124-1136.
[http://dx.doi.org/10.1161/01.CIR.74.5.1124] [PMID: 3769170]
[22]
Warltier, D.C.; al-Wathiqui, M.H.; Kampine, J.P.; Schmeling, W.T. Recovery of contractile function of stunned myocardium in chronically instrumented dogs is enhanced by halothane or isoflurane. Anesthesiology, 1988, 69(4), 552-565.
[http://dx.doi.org/10.1097/00000542-198810000-00016] [PMID: 3177915]
[23]
Cason, B.A.; Gamperl, A.K.; Slocum, R.E.; Hickey, R.F. Anesthetic-induced preconditioning: previous administration of isoflurane decreases myocardial infarct size in rabbits. Anesthesiology, 1997, 87(5), 1182-1190.
[http://dx.doi.org/10.1097/00000542-199711000-00023] [PMID: 9366471]
[24]
De Hert, S.G.; Cromheecke, S.; ten Broecke, P.W.; Mertens, E.; De Blier, I.G.; Stockman, B.A.; Rodrigus, I.E.; Van der Linden, P.J. Effects of propofol, desflurane, and sevoflurane on recovery of myocardial function after coronary surgery in elderly high-risk patients. Anesthesiology, 2003, 99(2), 314-323.
[http://dx.doi.org/10.1097/00000542-200308000-00013] [PMID: 12883404]
[25]
Binder, A.; Ali, A.; Chawla, R.; Aziz, H.A.; Abbate, A.; Jovin, I.S. Myocardial protection from ischemia-reperfusion injury post coronary revascularization. Expert Rev. Cardiovasc. Ther., 2015, 13(9), 1045-1057.
[http://dx.doi.org/10.1586/14779072.2015.1070669] [PMID: 26202544]
[26]
Wang, Y.; Hirai, K.; Ashraf, M. Activation of mitochondrial ATP-sensitive K(+) channel for cardiac protection against ischemic injury is dependent on protein kinase C activity. Circ. Res., 1999, 85(8), 731-741.
[http://dx.doi.org/10.1161/01.RES.85.8.731] [PMID: 10521247]
[27]
Lotz, C.; Kehl, F. Volatile anesthetic-induced cardiac protection: molecular mechanisms, clinical aspects, and interactions with nonvolatile agents. J. Cardiothorac. Vasc. Anesth., 2015, 29(3), 749-760.
[http://dx.doi.org/10.1053/j.jvca.2014.11.012] [PMID: 25802192]
[28]
Garlid, K.D.; Dos Santos, P.; Xie, Z.J.; Costa, A.D.; Paucek, P. Mitochondrial potassium transport: the role of the mitochondrial ATP-sensitive K(+) channel in cardiac function and cardioprotection. Biochim. Biophys. Acta, 2003, 1606(1-3), 1-21.
[http://dx.doi.org/10.1016/S0005-2728(03)00109-9] [PMID: 14507424]
[29]
Guerrero Orriach, J.L.; Galán Ortega, M.; Ramirez Fernandez, A.; Ramirez Aliaga, M.; Moreno Cortes, M.I.; Ariza Villanueva, D.; Florez Vela, A.; Alcaide Torres, J.; Santiago Fernandez, C.; Matute Gonzalez, E.; Alsina Marcos, E.; Escalona Belmonte, J.J.; Rubio Navarro, M.; Garrido Sanchez, L.; Cruz Mañas, J. Cardioprotective efficacy of sevoflurane vs. propofol during induction and/or maintenance in patients undergoing coronary artery revascularization surgery without pump: A randomized trial. Int. J. Cardiol., 2017, 243(243), 73-80.
[http://dx.doi.org/10.1016/j.ijcard.2017.04.105] [PMID: 28506550]
[30]
Liu, X.; Liu, X.; Wang, R.; Luo, H.; Qin, G.; Wang, L.U.; Ye, Z.; Guo, Q.; Wang, E. Circulating microRNAs indicate cardioprotection by sevoflurane inhalation in patients undergoing off-pump coronary artery bypass surgery. Exp. Ther. Med., 2016, 11(6), 2270-2276.
[http://dx.doi.org/10.3892/etm.2016.3197] [PMID: 27284310]
[31]
Yin, C.; Salloum, F.N.; Kukreja, R.C. A novel role of microRNA in late preconditioning: upregulation of endothelial nitric oxide synthase and heat shock protein 70. Circ. Res., 2009, 104(5), 572-575.
[http://dx.doi.org/10.1161/CIRCRESAHA.108.193250] [PMID: 19213952]
[32]
Wilhide, M.E.; Tranter, M.; Ren, X.; Chen, J.; Sartor, M.A.; Medvedovic, M.; Jones, W.K. Identification of a NF-κB cardioprotective gene program: NF-κB regulation of Hsp70.1 contributes to cardioprotection after permanent coronary occlusion. J. Mol. Cell. Cardiol., 2011, 51(1), 82-89.
[http://dx.doi.org/10.1016/j.yjmcc.2011.03.011] [PMID: 21439970]
[33]
Ong, S.G.; Hausenloy, D.J. Hypoxia-inducible factor as a therapeutic target for cardioprotection. Pharmacol. Ther., 2012, 136(1), 69-81.
[http://dx.doi.org/10.1016/j.pharmthera.2012.07.005] [PMID: 22800800]
[34]
Tang, Y.; Zheng, J.; Sun, Y.; Wu, Z.; Liu, Z.; Huang, G. MicroRNA-1 regulates cardiomyocyte apoptosis by targeting Bcl-2. Int. Heart J., 2009, 50(3), 377-387.
[http://dx.doi.org/10.1536/ihj.50.377] [PMID: 19506341]
[35]
Pan, Z.; Sun, X.; Ren, J.; Li, X.; Gao, X.; Lu, C.; Zhang, Y.; Sun, H.; Wang, Y.; Wang, H.; Wang, J.; Xie, L.; Lu, Y.; Yang, B. miR-1 exacerbates cardiac ischemia-reperfusion injury in mouse models. PLoS One, 2012, 7(11)e50515
[http://dx.doi.org/10.1371/journal.pone.0050515] [PMID: 23226300]
[36]
Li, D.F.; Tian, J.; Guo, X.; Huang, L.M.; Xu, Y.; Wang, C.C.; Wang, J.F.; Ren, A.J.; Yuan, W.J.; Lin, L. Induction of microRNA-24 by HIF-1 protects against ischemic injury in rat cardiomyocytes. Physiol. Res., 2012, 61(6), 555-565.
[PMID: 23098654]
[37]
Qian, L.; Van Laake, L.W.; Huang, Y.; Liu, S.; Wendland, M.F.; Srivastava, D. miR-24 inhibits apoptosis and represses Bim in mouse cardiomyocytes. J. Exp. Med., 2011, 208(3), 549-560.
[http://dx.doi.org/10.1084/jem.20101547] [PMID: 21383058]
[38]
Thum, T.; Gross, C.; Fiedler, J.; Fischer, T.; Kissler, S.; Bussen, M.; Galuppo, P.; Just, S.; Rottbauer, W.; Frantz, S.; Castoldi, M.; Soutschek, J.; Koteliansky, V.; Rosenwald, A.; Basson, M.A.; Licht, J.D.; Pena, J.T.; Rouhanifard, S.H.; Muckenthaler, M.U.; Tuschl, T.; Martin, G.R.; Bauersachs, J.; Engelhardt, S. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature, 2008, 456(7224), 980-984.
[http://dx.doi.org/10.1038/nature07511] [PMID: 19043405]
[39]
Gidlöf, O.; Smith, J.G.; Miyazu, K.; Gilje, P.; Spencer, A.; Blomquist, S.; Erlinge, D. Circulating cardio-enriched microRNAs are associated with long-term prognosis following myocardial infarction. BMC Cardiovasc. Disord., 2013, 13, 12.
[http://dx.doi.org/10.1186/1471-2261-13-12] [PMID: 23448306]
[40]
Oliveira, L.; Costa-Neto, C.M.; Nakaie, C.R.; Schreier, S.; Shimuta, S.I.; Paiva, A.C. The angiotensin II AT1 receptor structure-activity correlations in the light of rhodopsin structure. Physiol. Rev., 2007, 87(2), 565-592.
[http://dx.doi.org/10.1152/physrev.00040.2005] [PMID: 17429042]
[41]
AbdAlla S; Lother, H; Abdel-tawab, AM; Quitterer, U The angiotensin II AT2 receptor is an AT1 receptor antagonist. J. Biol. Chem., 2001, 276, 39721-39726.
[http://dx.doi.org/10.1074/jbc.M105253200]
[42]
Santos, R.A.; Ferreira, A.J. Angiotensin-(1-7) and the renin-angiotensin system. Curr. Opin. Nephrol. Hypertens., 2007, 16(2), 122-128.
[http://dx.doi.org/10.1097/MNH.0b013e328031f362] [PMID: 17293687]
[43]
Schulz, E.; Jansen, T.; Wenzel, P.; Daiber, A.; Münzel, T. Nitric oxide, tetrahydrobiopterin, oxidative stress, and endothelial dysfunction in hypertension. Antioxid. Redox Signal., 2008, 10(6), 1115-1126.
[http://dx.doi.org/10.1089/ars.2007.1989] [PMID: 18321209]
[44]
Bujak, M.; Frangogiannis, N.G. The role of TGF-beta signaling in myocardial infarction and cardiac remodeling. Cardiovasc. Res., 2007, 74(2), 184-195.
[http://dx.doi.org/10.1016/j.cardiores.2006.10.002] [PMID: 17109837]
[45]
Greco, S; Zaccagnini, G; Voellenkle, C; Martelli, F. microRNAs in ischaemic cardiovascular diseases. Eur Heart J Suppl., 2016, 28,18(Suppl E), E31-E36.
[http://dx.doi.org/10.1093/eurheartj/suw012] [PMID: 28533714]
[46]
De Gonzalo-Calvo, D.; Iglesias-Gutiérrez, E.; Llorente-Cortés, V. Biomarcadores epigenéticos y enfermedad cardiovascular, los microARN circulantes. Rev. Esp. Cardiol., 2017, 70(12), 763-769.
[http://dx.doi.org/10.1016/j.recesp.2017.02.027] [PMID: 28623159]
[47]
Hagiwara, S.; Kantharidis, P.; Cooper, M.E. MicroRNA as biomarkers and regulator of cardiovascular development and disease. Curr. Pharm. Des., 2014, 20(14), 2347-2370.
[http://dx.doi.org/10.2174/13816128113199990495] [PMID: 23844813]
[48]
Dhalla, N.S.; Rangi, S.; Babick, A.P.; Zieroth, S.; Elimban, V. Cardiac remodeling and subcellular defects in heart failure due to myocardial infarction and aging. Heart Fail. Rev., 2012, 17(4-5), 671-681.
[http://dx.doi.org/10.1007/s10741-011-9278-7] [PMID: 21850540]
[49]
Piek, A.; de Boer, R.A.; Silljé, H.H.W. The fibrosis-cell death axis in heart failure. Heart Fail. Rev., 2016, 21(2), 199-211.
[http://dx.doi.org/10.1007/s10741-016-9536-9] [PMID: 26883434]
[50]
Xu, J.; Zhao, J.; Evan, G.; Xiao, C.; Cheng, Y.; Xiao, J. Circulating microRNAs: novel biomarkers for cardiovascular diseases. J. Mol. Med. (Berl.), 2012, 90(8), 865-875.
[http://dx.doi.org/10.1007/s00109-011-0840-5] [PMID: 22159451]
[51]
Wang, G.K.; Zhu, J.Q.; Zhang, J.T.; Li, Q.; Li, Y.; He, J.; Qin, Y.W.; Jing, Q. Circulating microRNA: a novel potential biomarker for early diagnosis of acute myocardial infarction in humans. Eur. Heart J., 2010, 31(6), 659-666.
[http://dx.doi.org/10.1093/eurheartj/ehq013] [PMID: 20159880]
[52]
Glinge, C.; Clauss, S.; Boddum, K.; Jabbari, R.; Jabbari, J.; Risgaard, B.; Tomsits, P.; Hildebrand, B.; Kääb, S.; Wakili, R.; Jespersen, T.; Tfelt-Hansen, J. Stability of circulating blood-based microRNAs- pre-analytic methodological conseiderations. PLoS One, 2017, 12(2)e0167969
[http://dx.doi.org/10.1371/journal.pone.0167969] [PMID: 28151938]
[53]
Parikh, V.N.; Chan, S.Y. Analysis of microRNA niches: techniques to measure extracellular microRNA and intracellular microRNA in situ. Methods Mol. Biol., 2013, 1024, 157-172.
[http://dx.doi.org/10.1007/978-1-62703-453-1_12] [PMID: 23719949]
[54]
Li, Y.; Kowdley, K.V. Method for microRNA isolation from clinical serum samples. Anal. Biochem., 2012, 431(1), 69-75.
[http://dx.doi.org/10.1016/j.ab.2012.09.007] [PMID: 22982505]
[55]
Santini, G.C.; Potrich, C.; Lunelli, L.; Pasquardini, L.; Vaghi, V.; Pederzolli, C. Innovative microRNA purification based on surface properties modulation. Colloids Surf. B Biointerfaces, 2014, 116, 160-168.
[http://dx.doi.org/10.1016/j.colsurfb.2013.12.033] [PMID: 24463152]
[56]
Salone, V.; Rederstorff, M. Stem-loop RT-PCR based quantification of small non-coding RNAs. Methods Mol. Biol., 2015, 1296, 103-108.
[http://dx.doi.org/10.1007/978-1-4939-2547-6_10] [PMID: 25791594]
[57]
Min, P.K.; Chan, S.Y. The biology of circulating microRNAs in cardiovascular disease. Eur. J. Clin. Invest., 2015, 45(8), 860-874.
[http://dx.doi.org/10.1111/eci.12475] [PMID: 26046787]
[58]
Ji, X.; Takahashi, R.; Hiura, Y.; Hirokawa, G.; Fukushima, Y.; Iwai, N. Plasma miR-208 as a biomarker of myocardial injury. Clin. Chem., 2009, 55(11), 1944-1949.
[http://dx.doi.org/10.1373/clinchem.2009.125310] [PMID: 19696117]
[59]
Janssen, H.L.; Reesink, H.W.; Lawitz, E.J.; Zeuzem, S.; Rodriguez-Torres, M.; Patel, K.; van der Meer, A.J.; Patick, A.K.; Chen, A.; Zhou, Y.; Persson, R.; King, B.D.; Kauppinen, S.; Levin, A.A.; Hodges, M.R. Treatment of HCV infection by targeting microRNA. N. Engl. J. Med., 2013, 368(18), 1685-1694.
[http://dx.doi.org/10.1056/NEJMoa1209026] [PMID: 23534542]
[60]
Deddens, J.C.; Colijn, J.M.; Oerlemans, M.I.; Pasterkamp, G.; Chamuleau, S.A.; Doevendans, P.A.; Sluijter, J.P. Circulating microRNAs as novel biomarkers for the early diagnosis of acute coronary syndrome. J. Cardiovasc. Transl. Res., 2013, 6(6), 884-898.
[http://dx.doi.org/10.1007/s12265-013-9493-9] [PMID: 23897095]
[61]
D’Alessandra, Y.; Devanna, P.; Limana, F.; Straino, S.; Di Carlo, A.; Brambilla, P.G.; Rubino, M.; Carena, M.C.; Spazzafumo, L.; De Simone, M.; Micheli, B.; Biglioli, P.; Achilli, F.; Martelli, F.; Maggiolini, S.; Marenzi, G.; Pompilio, G.; Capogrossi, M.C. Circulating microRNAs are new and sensitive biomarkers of myocardial infarction. Eur. Heart J., 2010, 31(22), 2765-2773.
[http://dx.doi.org/10.1093/eurheartj/ehq167] [PMID: 20534597]
[62]
Kuwabara, Y.; Ono, K.; Horie, T.; Nishi, H.; Nagao, K.; Kinoshita, M.; Watanabe, S.; Baba, O.; Kojima, Y.; Shizuta, S.; Imai, M.; Tamura, T.; Kita, T.; Kimura, T. Increased microRNA-1 and microRNA-133a levels in serum of patients with cardiovascular disease indicate myocardial damage. Circ Cardiovasc Genet, 2011, 4(4), 446-454.
[http://dx.doi.org/10.1161/CIRCGENETICS.110.958975] [PMID: 21642241]
[63]
Devaux, Y.; Vausort, M.; Goretti, E.; Nazarov, P.V.; Azuaje, F.; Gilson, G.; Corsten, M.F.; Schroen, B.; Lair, M.L.; Heymans, S.; Wagner, D.R. Use of circulating microRNAs to diagnose acute myocardial infarction. Clin. Chem., 2012, 58(3), 559-567.
[http://dx.doi.org/10.1373/clinchem.2011.173823] [PMID: 22252325]
[64]
Miskowic, D.; Lipiec, P.; Kupczynska, K.; Ojrznowski, M.; Simiera, M.; Wierbowska-Drabik, K.; Wejner-Mik, P.; Michalski, B.; Kasprzak, J.D. Free circulating microRNAs (MIR-1; MIR-133a; MIR-208a; MIR-499) differentiate clinical types of coronary disease, Acute myocardial infaction; unstable angina and stable coronary artery disease. Conference, ESC Congress. Eur. Heart J., 2016, 37(1)
[65]
Montgomery, R.L.; Hullinger, T.G.; Semus, H.M.; Dickinson, B.A.; Seto, A.G.; Lynch, J.M.; Stack, C.; Latimer, P.A.; Olson, E.N.; van Rooij, E. Therapeutic inhibition of miR-208a improves cardiac function and survival during heart failure. Circulation, 2011, 124(14), 1537-1547.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.111.030932] [PMID: 21900086]
[66]
Li, Q.; Xie, J.; Wang, B.; Li, R.; Bai, J.; Ding, L.; Gu, R.; Wang, L.; Xu, B. Overexpression of microRNA-99 a attenuates cardiac hypertrophy. PLoS One, 2016, 11(2)e0148480
[http://dx.doi.org/10.1371/journal.pone.0148480] [PMID: 26914935]
[67]
Cheng, Y.; Tan, N.; Yang, J.; Liu, X.; Cao, X.; He, P.; Dong, X.; Qin, S.; Zhang, C. A translational study of circulating cell-free microRNA-1 in acute myocardial infarction. Clin. Sci. (Lond.), 2010, 119(2), 87-95.
[http://dx.doi.org/10.1042/CS20090645] [PMID: 20218970]
[68]
Zeller, T.; Keller, T.; Ojeda, F.; Reichlin, T.; Twerenbold, R.; Tzikas, S.; Wild, P.S.; Reiter, M.; Czyz, E.; Lackner, K.J.; Munzel, T.; Mueller, C.; Blankenberg, S.; Lackner, K.J.; Munzel, T.; Mueller, C.; Blankenberg, S. Assessment of microRNAs in patients with unstable angina pectoris. Eur. Heart J., 2014, 35(31), 2106-2114.
[http://dx.doi.org/10.1093/eurheartj/ehu151] [PMID: 24727883]
[69]
Millard, R.W.; Tranter, M. Biomarcadores no troponínicos; complementarios; alternativos y presuntos; para el síndrome coronario agudo, nuevos recursos para los futuros instrumentos de cálculo del riesgo. Rev. Esp. Cardiol., 2014, 67, 312-320.
[http://dx.doi.org/10.1016/j.recesp.2013.12.013] [PMID: 24774594]
[70]
Weber, K.T.; Sun, Y.; Tyagi, S.C.; Cleutjens, J.P. Collagen network of the myocardium: function, structural remodeling and regulatory mechanisms. J. Mol. Cell. Cardiol., 1994, 26(3), 279-292.
[http://dx.doi.org/10.1006/jmcc.1994.1036] [PMID: 8028011]
[71]
Berk, B.C.; Fujiwara, K.; Lehoux, S. ECM remodeling in hypertensive heart disease. J. Clin. Invest., 2007, 117(3), 568-575.
[http://dx.doi.org/10.1172/JCI31044] [PMID: 17332884]
[72]
Swynghedauw, B. Molecular mechanisms of myocardial remodeling. Physiol. Rev., 1999, 79(1), 215-262.
[http://dx.doi.org/10.1152/physrev.1999.79.1.215] [PMID: 9922372]
[73]
Wijnen, W.J.; Pinto, Y.M.; Creemers, E.E. The therapeutic potential of miRNAs in cardiac fibrosis: where do we stand? J. Cardiovasc. Transl. Res., 2013, 6(6), 899-908.
[http://dx.doi.org/10.1007/s12265-013-9483-y] [PMID: 23821466]
[74]
Creemers, E.E.; Pinto, Y.M. Molecular mechanisms that control interstitial fibrosis in the pressure-overloaded heart. Cardiovasc. Res., 2011, 89(2), 265-272.
[http://dx.doi.org/10.1093/cvr/cvq308] [PMID: 20880837]
[75]
Li, H.; Zhang, X.; Wang, F.; Zhou, L.; Yin, Z.; Fan, J.; Nie, X.; Wang, P.; Fu, X.D.; Chen, C.; Wang, D.W. MicroRNA-21 lowers blood pressure in spontaneous hypertensive rats by upregulating mitochondrial translation. Circulation, 2016, 134(10), 734-751.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.116.023926] [PMID: 27542393]
[76]
Patrick, D.M.; Montgomery, R.L.; Qi, X.; Obad, S.; Kauppinen, S.; Hill, J.A.; van Rooij, E.; Olson, E.N. Stress-dependent cardiac remodeling occurs in the absence of microRNA-21 in mice. J. Clin. Invest., 2010, 120(11), 3912-3916.
[http://dx.doi.org/10.1172/JCI43604] [PMID: 20978354]
[77]
Fiedler, J.; Jazbutyte, V.; Kirchmaier, B.C.; Gupta, S.K.; Lorenzen, J.; Hartmann, D.; Galuppo, P.; Kneitz, S.; Pena, J.T.; Sohn-Lee, C.; Loyer, X.; Soutschek, J.; Brand, T.; Tuschl, T.; Heineke, J.; Martin, U.; Schulte-Merker, S.; Ertl, G.; Engelhardt, S.; Bauersachs, J.; Thum, T. MicroRNA-24 regulates vascularity after myocardial infarction. Circulation, 2011, 124(6), 720-730.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.111.039008] [PMID: 21788589]
[78]
Wang, J.; Huang, W.; Xu, R.; Nie, Y.; Cao, X.; Meng, J.; Xu, X.; Hu, S.; Zheng, Z. MicroRNA-24 regulates cardiac fibrosis after myocardial infarction. J. Cell. Mol. Med., 2012, 16(9), 2150-2160.
[http://dx.doi.org/10.1111/j.1582-4934.2012.01523.x] [PMID: 22260784]
[79]
Pan, Z.; Sun, X.; Shan, H.; Wang, N.; Wang, J.; Ren, J.; Feng, S.; Xie, L.; Lu, C.; Yuan, Y.; Zhang, Y.; Wang, Y.; Lu, Y.; Yang, B. MicroRNA-101 inhibited postinfarct cardiac fibrosis and improved left ventricular compliance via the FBJ osteosarcoma oncogene/transforming growth factor-β1 pathway. Circulation, 2012, 126(7), 840-850.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.112.094524] [PMID: 22811578]
[80]
Karakikes, I.; Chaanine, A.H.; Kang, S.; Mukete, B.N.; Jeong, D.; Zhang, S.; Hajjar, R.J.; Lebeche, D. Therapeutic cardiac-targeted delivery of miR-1 reverses pressure overload-induced cardiac hypertrophy and attenuates pathological remodeling. J. Am. Heart Assoc., 2013, 2(2)e000078
[http://dx.doi.org/10.1161/JAHA.113.000078] [PMID: 23612897]
[81]
Haubner, B.J.; Schneider, J.; Schweigmann, U.; Schuetz, T.; Dichtl, W.; Velik-Salchner, C.; Stein, J.I.; Penninger, J.M. Functional recovery of a human neonatal heart after severe myocardial infarction. Circ. Res., 2016, 118(2), 216-221.
[http://dx.doi.org/10.1161/CIRCRESAHA.115.307017] [PMID: 26659640]
[82]
Fleissner, F.; Jazbutyte, V.; Fiedler, J.; Gupta, S.K.; Yin, X.; Xu, Q.; Galuppo, P.; Kneitz, S.; Mayr, M.; Ertl, G.; Bauersachs, J.; Thum, T. Short communication: asymmetric dimethylarginine impairs angiogenic progenitor cell function in patients with coronary artery disease through a microRNA-21-dependent mechanism. Circ. Res., 2010, 107(1), 138-143.
[http://dx.doi.org/10.1161/CIRCRESAHA.110.216770] [PMID: 20489163]
[83]
Mocharla, P.; Briand, S.; Giannotti, G.; Dörries, C.; Jakob, P.; Paneni, F.; Lüscher, T.; Landmesser, U. AngiomiR-126 expression and secretion from circulating CD34(+) and CD14(+) PBMCs: role for proangiogenic effects and alterations in type 2 diabetics. Blood, 2013, 121(1), 226-236.
[http://dx.doi.org/10.1182/blood-2012-01-407106] [PMID: 23144172]
[84]
Mirotsou, M.; Zhang, Z.; Deb, A.; Zhang, L.; Gnecchi, M.; Noiseux, N.; Mu, H.; Pachori, A.; Dzau, V. Secreted frizzled related protein 2 (Sfrp2) is the key Akt-mesenchymal stem cell-released paracrine factor mediating myocardial survival and repair. Proc. Natl. Acad. Sci. USA, 2007, 104(5), 1643-1648.
[http://dx.doi.org/10.1073/pnas.0610024104] [PMID: 17251350]
[85]
Sahoo, S.; Klychko, E.; Thorne, T.; Misener, S.; Schultz, K.M.; Millay, M.; Ito, A.; Liu, T.; Kamide, C.; Agrawal, H.; Perlman, H.; Qin, G.; Kishore, R.; Losordo, D.W. Exosomes from human CD34(+) stem cells mediate their proangiogenic paracrine activity. Circ. Res., 2011, 109(7), 724-728.
[http://dx.doi.org/10.1161/CIRCRESAHA.111.253286] [PMID: 21835908]
[86]
Hermeking, H. MicroRNA-34a regulation of endothelial senescence. Cell Death Differ., 2010, 17, 193-199.
[http://dx.doi.org/10.1038/cdd.2009.56] [PMID: 19461653]
[87]
Ito, T.; Yagi, S.; Yamakuchi, M. MicroRNA-34a regulation of endothelial senescence. Biochem. Biophys. Res. Commun., 2010, 398(4), 735-740.
[http://dx.doi.org/10.1016/j.bbrc.2010.07.012] [PMID: 20627091]
[88]
Chen, F.; Hu, S.J. Effect of microRNA-34a in cell cycle, differentiation, and apoptosis: a review. J. Biochem. Mol. Toxicol., 2012, 26(2), 79-86.
[http://dx.doi.org/10.1002/jbt.20412] [PMID: 22162084]
[89]
Izarra, A.; Moscoso, I.; Levent, E.; Cañón, S.; Cerrada, I.; Díez-Juan, A.; Blanca, V.; Núñez-Gil, I.J.; Valiente, I.; Ruíz-Sauri, A.; Sepúlveda, P.; Tiburcy, M.; Zimmermann, W.H.; Bernad, A. miR-133a enhances the protective capacity of cardiac progenitors cells after myocardial infarction. Stem Cell Reports, 2014, 3(6), 1029-1042.
[http://dx.doi.org/10.1016/j.stemcr.2014.10.010] [PMID: 25465869]
[90]
Hullinger, T.G.; Montgomery, R.L.; Seto, A.G.; Dickinson, B.A.; Semus, H.M.; Lynch, J.M.; Dalby, C.M.; Robinson, K.; Stack, C.; Latimer, P.A.; Hare, J.M.; Olson, E.N.; van Rooij, E. Inhibition of miR-15 protects against cardiac ischemic injury. Circ. Res., 2012, 110(1), 71-81.
[http://dx.doi.org/10.1161/CIRCRESAHA.111.244442] [PMID: 22052914]
[91]
Porrello, E.R.; Mahmoud, A.I.; Simpson, E.; Johnson, B.A.; Grinsfelder, D.; Canseco, D.; Mammen, P.P.; Rothermel, B.A.; Olson, E.N.; Sadek, H.A. Regulation of neonatal and adult mammalian heart regeneration by the miR-15 family. Proc. Natl. Acad. Sci. USA, 2013, 110(1), 187-192.
[http://dx.doi.org/10.1073/pnas.1208863110] [PMID: 23248315]
[92]
Bonauer, A.; Carmona, G.; Iwasaki, M.; Mione, M.; Koyanagi, M.; Fischer, A.; Burchfield, J.; Fox, H.; Doebele, C.; Ohtani, K.; Chavakis, E.; Potente, M.; Tjwa, M.; Urbich, C.; Zeiher, A.M.; Dimmeler, S. MicroRNA-92a controls angiogenesis and functional recovery of ischemic tissues in mice. Science, 2009, 324(5935), 1710-1713.
[http://dx.doi.org/10.1126/science.1174381] [PMID: 19460962]
[93]
Lai, K.B.; Sanderson, J.E.; Izzat, M.B.; Yu, C.M. Micro-RNA and mRNA myocardial tissue expression in biopsy specimen from patients with heart failure. Int. J. Cardiol., 2015, 199, 79-83.
[http://dx.doi.org/10.1016/j.ijcard.2015.07.043] [PMID: 26188824]
[94]
Cakmak, H.A.; Coskunpinar, E.; Ikitimur, B.; Barman, H.A.; Karadag, B.; Tiryakioglu, N.O.; Kahraman, K.; Vural, V.A. The prognostic value of circulating microRNAs in heart failure: preliminary results from a genome-wide expression study. J. Cardiovasc. Med. (Hagerstown), 2015, 16(6), 431-437.
[http://dx.doi.org/10.2459/JCM.0000000000000233] [PMID: 25643195]
[95]
Thum, T.; Galuppo, P.; Wolf, C.; Fiedler, J.; Kneitz, S.; van Laake, L.W.; Doevendans, P.A.; Mummery, C.L.; Borlak, J.; Haverich, A.; Gross, C.; Engelhardt, S.; Ertl, G.; Bauersachs, J. MicroRNAs in the human heart: a clue to fetal gene reprogramming in heart failure. Circulation, 2007, 116(3), 258-267.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.107.687947] [PMID: 17606841]
[96]
Elia, L.; Contu, R.; Quintavalle, M.; Varrone, F.; Chimenti, C.; Russo, M.A.; Cimino, V.; De Marinis, L.; Frustaci, A.; Catalucci, D.; Condorelli, G. Reciprocal regulation of microRNA-1 and insulin-like growth factor-1 signal transduction cascade in cardiac and skeletal muscle in physiological and pathological conditions. Circulation, 2009, 120(23), 2377-2385.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.109.879429] [PMID: 19933931]
[97]
Carè, A.; Catalucci, D.; Felicetti, F.; Bonci, D.; Addario, A.; Gallo, P.; Bang, M.L.; Segnalini, P.; Gu, Y.; Dalton, N.D.; Elia, L.; Latronico, M.V.; Høydal, M.; Autore, C.; Russo, M.A.; Dorn, G.W., II; Ellingsen, O.; Ruiz-Lozano, P.; Peterson, K.L.; Croce, C.M.; Peschle, C.; Condorelli, G. MicroRNA-133 controls cardiac hypertrophy. Nat. Med., 2007, 13(5), 613-618.
[http://dx.doi.org/10.1038/nm1582] [PMID: 17468766]
[98]
da Costa Martins, P.A.; De Windt, L.J. miR-21: a miRaculous Socratic paradox. Cardiovasc. Res., 2010, 87(3), 397-400.
[http://dx.doi.org/10.1093/cvr/cvq196] [PMID: 20562424]
[99]
Kim, Y.K. Extracellular microRNAs as biomarkers in human disease. Chonnam Med. J., 2015, 51(2), 51-57.
[http://dx.doi.org/10.4068/cmj.2015.51.2.51] [PMID: 26306299]
[100]
Marfella, R.; Di Filippo, C.; Potenza, N.; Sardu, C.; Rizzo, M.R.; Siniscalchi, M.; Musacchio, E.; Barbieri, M.; Mauro, C.; Mosca, N.; Solimene, F.; Mottola, M.T.; Russo, A.; Rossi, F.; Paolisso, G.; D’Amico, M. Circulating microRNA changes in heart failure patients treated with cardiac resynchronization therapy: responders vs. non-responders. Eur. J. Heart Fail., 2013, 15(11), 1277-1288.
[http://dx.doi.org/10.1093/eurjhf/hft088] [PMID: 23736534]
[101]
Vogel, B.; Keller, A.; Frese, K.S.; Leidinger, P.; Sedaghat-Hamedani, F.; Kayvanpour, E.; Kloos, W.; Backe, C.; Thanaraj, A.; Brefort, T.; Beier, M.; Hardt, S.; Meese, E.; Katus, H.A.; Meder, B. Multivariate miRNA signatures as biomarkers for non-ischaemic systolic heart failure. Eur. Heart J., 2013, 34(36), 2812-2822.
[http://dx.doi.org/10.1093/eurheartj/eht256] [PMID: 23864135]
[102]
Chen, F.; Yang, J.; Li, Y.; Wang, H. Circulating microRNAs as novel biomarkers for heart failure. Hellenic J. Cardiol., 2018, 59(4), 209-214.
[http://dx.doi.org/10.1016/j.hjc.2017.10.002] [PMID: 29126951]
[103]
Watson, C.J.; Gupta, S.K.; O’Connell, E.; Thum, S.; Glezeva, N.; Fendrich, J.; Gallagher, J.; Ledwidge, M.; Grote-Levi, L.; McDonald, K.; Thum, T. MicroRNA signatures differentiate preserved from reduced ejection fraction heart failure. Eur. J. Heart Fail., 2015, 17(4), 405-415.
[http://dx.doi.org/10.1002/ejhf.244] [PMID: 25739750]
[104]
Wong, L.L.; Armugam, A.; Sepramaniam, S.; Karolina, D.S.; Lim, K.Y.; Lim, J.Y.; Chong, J.P.; Ng, J.Y.; Chen, Y.T.; Chan, M.M.; Chen, Z.; Yeo, P.S.; Ng, T.P.; Ling, L.H.; Sim, D.; Leong, K.T.; Ong, H.Y.; Jaufeerally, F.; Wong, R.; Chai, P.; Low, A.F.; Lam, C.S.; Jeyaseelan, K.; Richards, A.M. Circulating microRNAs in heart failure with reduced and preserved left ventricular ejection fraction. Eur. J. Heart Fail., 2015, 17(4), 393-404.
[http://dx.doi.org/10.1002/ejhf.223] [PMID: 25619197]
[105]
Matkovich, S.J.; Van Booven, D.J.; Youker, K.A.; Torre-Amione, G.; Diwan, A.; Eschenbacher, W.H.; Dorn, L.E.; Watson, M.A.; Margulies, K.B.; Dorn, G.W., II Reciprocal regulation of myocardial microRNAs and messenger RNA in human cardiomyopathy and reversal of the microRNA signature by biomechanical support. Circulation, 2009, 119(9), 1263-1271.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.108.813576] [PMID: 19237659]
[106]
Seronde, M.F.; Vausort, M.; Gayat, E.; Goretti, E.; Ng, L.L.; Squire, I.B.; Vodovar, N.; Sadoune, M.; Samuel, J.L.; Thum, T.; Solal, A.C.; Laribi, S.; Plaisance, P.; Wagner, D.R.; Mebazaa, A.; Devaux, Y. GREAT network. Circulating microRNAs and outcome in patients with acute heart failure. PLoS One, 2015, 10(11)e0142237
[http://dx.doi.org/10.1371/journal.pone.0142237] [PMID: 26580972]
[107]
Kim, G.H.; Kim, M.D. MicroRNA regulation of cardiac conduction and arrhythmias. Transl. Res., 2013, 161(5), 381-392.
[http://dx.doi.org/10.1016/j.trsl.2012.12.004] [PMID: 23274306]
[108]
Sardu, C.; Marfella, R.; Santulli, G.; Paolisso, G. Functional role of miRNA in cardiac resynchronization therapy. Pharmacogenomics, 2014, 15(8), 1159-1168.
[http://dx.doi.org/10.2217/pgs.14.76] [PMID: 25084208]
[109]
Luo, X.; Pan, Z.; Shan, H.; Xiao, J.; Sun, X.; Wang, N.; Lin, H.; Xiao, L.; Maguy, A.; Qi, X.Y.; Li, Y.; Gao, X.; Dong, D.; Zhang, Y.; Bai, Y.; Ai, J.; Sun, L.; Lu, H.; Luo, X.Y.; Wang, Z.; Lu, Y.; Yang, B.; Nattel, S. MicroRNA-26 governs profibrillatory inward-rectifier potassium current changes in atrial fibrillation. J. Clin. Invest., 2013, 123(5), 1939-1951.
[http://dx.doi.org/10.1172/JCI62185] [PMID: 23543060]
[110]
Liao, C.; Gui, Y.; Guo, Y.; Xu, D. The regulatory function of microRNA-1 in arrhythmias. Mol. Biosyst., 2016, 12(2), 328-333.
[http://dx.doi.org/10.1039/C5MB00806A] [PMID: 26671473]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy