[1]
Sato, Y.; Suzuki, Y.; Yamamoto, K.; Kuroiwa, S.; Maruyama, S. Novel 3-phenyltetrahydrocinnolin-5-ol derivative and medicinal use thereof. Jpn. Pat. JP2005/10494, WO 2005121105, December 12, 2005.
[2]
Hennequin, L.F.; Thomas, A.P.; Johnstone, C.; Stokes, E.S.E.; Plé, P.A.; Lohmann, J.J.M.; Ogilvie, D.J.; Dukes, M.; Wedge, S.R.; Curwen, J.O.; Kendrew, J.; Lambert-van der Brempt, C. Design and structure-activity relationship of a new class of potent VEGF receptor tyrosine kinase inhibitors. J. Med. Chem., 1999, 42, 5369-5389.
[3]
Ruchelman, A.L.; Singh, S.K.; Ray, A.; Wu, X.; Yang, J.M.; Zhou, N.; Liu, A.; Liu, L.F.; La Voie, E.J. 11H-isoquino [4,3-c]cinnolin-12-ones: Novel anticancer agents with potent topoisomerase I-targeting activity and cytotoxicity. Bioorg. Med. Chem., 2004, 12, 795-806.
[4]
Yu, Y.; Singh, S.K.; Liu, A.; Li, T.K.; Liu, L.F.; La Voie, E.J. Substituted dibenzo[c,h]cinnolines: Topoisomerase I-targeting anticancer agents. Bioorg. Med. Chem., 2003, 11, 1475-1491.
[5]
Stefańska, B.; Arciemiuk, M.; Bontemps-Gracz, M.M.; Dzieduszycka, M.; Kupiec, A.; Martelli, S.; Borowski, E. Synthesis and biological evaluation of 2,7-Dihydro-3H-dibenzo[de,h]cinno-line-3,7-dione derivatives, a novel group of anticancer agents active on a multidrug resistant cell line. Bioorg. Med. Chem., 2003, 11, 561-572.
[6]
Suzuki, I.; Nakadate, M.; Nakashima, T.; Nagasawa, N. Synthesis of cinnoline 1,2-dioxide. Tetrahedron Lett., 1966, 7, 2899-2903.
[7]
Parrino, B.; Carbone, A.; Muscarella, M.; Spanò, V.; Montalbano, A.; Barraja, P.; Salvador, A.; Vedaldi, D.; Cirrincione, G.; Diana, P. 11H-Pyrido[3′,2′:4,5]pyrrolo [3,2-c]cinnoline and Pyrido[3′,2′:4,5] pyrrolo [1,2-c][2,2,3]benzotriazine: Two new ring systems with antitumor activity. J. Med. Chem., 2014, 57, 9495-9511.
[9]
Cirrincione, G.; Almerico, A.M.; Diana, P.; Grimaudo, S.; Dattolo, G.; Aiello, E.; Barraja, P.; Mingoia, F. Polycondensed nitrogen heterocycles. Part 27. Indolo [3,2-c]cinnoline. Synthesis and antileukemic activity. Farmaco, 1995, 50, 849-852.
[10]
Yu, Y.; Singh, S.K.; Liu, A.; Li, T.K.; Liu, L.F.; La Voie, E.J. Substituted dibenzo[c,h]cinnolines: Topoisomerase I-targeting anti-cancer agents. Bioorg. Med. Chem., 2003, 11, 1475-1491.
[11]
Brzezińska, E.; Stańczak, A.; Ochocki, Z. Structure and biological activity of some 4-amino-3-cinnolinecarboxylic acid derivatives. QSAR analysis of cinnoline derivatives with antibacterial properties. Acta Pol. Pharm., 2003, 60, 15-20.
[14]
Hu, E.; Kunz, R.K.; Rumfelt, S.; Chen, N.; Bürli, R.; Li, C.; Andrews, K.L.; Zhang, J.; Chmait, S.; Kogan, J.; Lindstrom, M.; Hitchcock, S.A.; Treanor, J. Discovery of potent, selective, and metabolically stable 4-(pyridin-3-yl)cinnolines as novel phosphodiesterase 10A (PDE10A) inhibitors. Bioorg. Med. Chem. Lett., 2012, 22, 2262-2265.
[15]
Mishra, P.; Middha, A.; Saxena, V.; Saxena, A. Synthesis and evaluation of anti-inflammatory activity of some cinnoline derivatives-4(-2-amino-thiophene) cinnoline-3-carboxamide. J. Pharm. Biosci., 2016, 4, 64-68.
[16]
Mishra, P.; Saxena, V.; Minu, K.; Abhishek, S. Synthesis, characterization and anti-inflammatory activity of cinnolines (pyrazole) derivatives. J. Pharm. Biol. Sci, 2015, 10, 77-82.
[18]
Mishra, P.; Middha, A.; Saxena, V.; Saxena, A. Synthesis and evaluation of anti-inflammatory activity of some cinnoline derivatives-4(-2-amino-thiophene) Cinnoline-3-carboxamide. UKJPB, 2016, 4, 64-68.
[19]
Holland, D.; Jones, G.; Marshall, P.W.; Tringham, G.D. Cinnoline-3-propionic acids, a new series of orally active anti-allergic substances. J. Med. Chem., 1976, 19, 1225-1228.
[20]
Wieslawa, L.; Andrzej, S. Cinnoline derivatives with biological activity. Arch. Pharm., 2007, 340, 65-80.
[21]
Alhambra, C.; Becker, C.; Blake, T.; Chang, A.; Damewood, Jr, J.R.; Daniels, T.; Dembofsky, B.T.; Gurley, D.A.; Hall, J.E.; Herzog, K.J.; Horchler, C.L.; Ohnmacht, C.J.; Schmiesing, R.J.; Dudley, A.; Ribadeneira, M.D.; Knappenberger, K.S.; Maciag, C.; Stein, M.M.; Chopra, M.; Liu, X.F.; Christian, E.P.; Arriza, J.L.; Chapdelaine, M.J. Development and SAR of functionally selective allosteric modulators of GABAA receptors. Bioorg. Med. Chem., 2011, 19, 2927-2938.
[22]
Scott, D.A.; Dakin, L.A.; Del Valle, D.J.; Bruce Diebold, R.; Drew, L.; Gero, T.W.; Ogoe, C.A.; Omer, C.A.; Repik, G.; Thakur, K.; Ye, Q.; Zheng, X. 3-Amido-4-anilinocinnolines as a novel class of CSF-1R inhibitor. Bioorg. Med. Chem. Lett., 2011, 21, 1382-1384.
[23]
Parasuraman, P.; Shanmugarajan, R.S.; Aravazhi, T.; Nehru, K.; Mathiazhaga, T.; Rajakumari, R. Synthesis, characterization and antimicrobial evaluation of some substituted 4-amino cinnoline-3-carboxamide derivatives. Int. J. Pharm. Life Sci., 2012, 3, 1430-1436.
[24]
Ryu, C.K.; Lee, J.Y. Synthesis and antifungal activity of 6-hydroxycinnolines. Bioorg. Med. Chem. Lett., 2006, 16, 1850-1853.
[26]
Mishra, P.; Middha, A.; Saxena, V.; Saxena, A. Synthesis, biological evaluation and comparative study of some cinnoline derivatives. UKJPB, 2016, 4, 74-80.
[27]
Li, X.; Yeh, V.; Molteni, V. Liver X receptor modulators: A review of recently patented compounds (2007-2009). Expert Opin. Ther. Pat., 2010, 20, 535-562.
[28]
HU, B.; Wrobel, J.E.; Collini, M.D.; Unwalla, R.J. Cinnoline compounds and their use as liver x receptor modilators. Google Patent WO 2006094034 A1, September 8. 2006.
[29]
Hu, B.; Unwalla, R.; Collini, M.; Quinet, E.; Feingold, I.; Goos-Nilsson, A.; Wihelmsson, A.; Nambi, P.; Wrobel, J. Discovery and SAR of cinnolines/quinolines as Liver X Receptor (LXR) agonists with binding selectivity for LXRβ. Bioorg. Med. Chem., 2009, 17, 3519-3527.
[30]
Keneford, J.R.; Simpson, J.C.E. 170. Synthetic antimalarials. Part XX. Cinnolines. Part XIII. Synthesis and antimalarial action of 4-aminoalkylaminocinnolines. J. Chem. Soc., 1947, 917-920.
[31]
Simpson, J.C.E.; Schofield, K. Antimalarial action of cinnoline derivatives. Nature, 1946, 157, 439-440.
[33]
Gomtsyan, A.; Bayburt, E.K.; Schmidt, R.G.; Zheng, G.Z.; Perner, R.J.; Didomenico, S.; Koenig, J.R.; Turner, S.; Jinkerson, T.; Drizin, I.; Hannick, S.M.; Macri, B.S.; McDonald, H.A.; Honore, P.; Wismer, C.T.; Marsh, K.C.; Wetter, J.; Stewart, K.D.; Oie, T.; Jarvis, M.F.; Surowy, C.S.; Faltynek, C.R.; Lee, C.H. Novel transient receptor potential vanilloid 1 receptor antagonists for the treatment of pain: Structure-activity relationships for ureas with quinoline, isoquinoline, quinazoline, phthalazine, quinoxaline, and cinnoline moieties. J. Med. Chem., 2005, 48, 744-752.
[34]
Kalyani, G.; Bethi, S.; Sastry, K.V.; Kuchana, V. Synthesis of novel cinnoline fused mannich bases: Pharmacological evaluation of antibacterial, analgesic and anti-inflammatory activities. IJPCR, 2017, 9, 515-520.
[36]
Abdelrazek, F.M.; Metz, P.; Metwally, N.H.; El-Mahrouky, S.F. Synthesis and molluscicidal activity of new cinnoline and pyrano [2,3‐c]pyrazole derivatives. Arch. Pharm., 2006, 339, 456-460.
[37]
Lamberth, C. Pyridazine chemistry in crop protection. J. Heterocycl. Chem., 2017, 54, 2974-2984.
[38]
Shen, Y.; Shang, Z.; Yang, Y.; Zhu, S.; Qian, X.; Shi, P.; Zheng, J.; Yang, Y. Structurally rigid 9-amino-benzo[c]cinnoliniums make up a class of compact and large stokes-shift fluorescent dyes for cell-based imaging applications. J. Org. Chem., 2015, 80, 5906-5911.
[39]
Mitsumori, T.; Bendikov, M.; Sedó, J.; Wudl, F. Synthesis and properties of novel highly fluorescent pyrrolopyridazine derivatives. Chem. Mater., 2003, 15, 3759-3768.
[41]
Chapoulaud, V.G.; Plé, N.; Turck, A.; Quéguiner, G. Synthesis of 4,8-diarylcinnolines and quinazolines with potential applications in nonlinear optics. diazines. part 28. Tetrahedron, 2000, 56, 5499-5507.
[42]
Busch, A.; Turck, A.; Nowicka, K.; Barasella, A.; An-draud, C.; Plé, N. Molecular design and synthesis of 4,8-di(hetero)aryl-quinazolines with potential applications in quadratic nonlinear optics diazines part 48. Heterocycles, 2007, 71, 1723-1741.
[43]
Richter, V. Ueber cinnolinderivate. Chem. Ber., 1883, 16, 677-683.
[44]
Bradford, M.P.; Michael, G.E.; Frank, G.F. Name reaction and reagents in organic synthesis, 2nd ed; Wiley: Hoboken, 2005.
[45]
Vinogradova, O.V.; Balova, I.A. Methods for the synthesis of cinnolines (review). Chem. Heterocycl. Compd., 2008, 44, 501-522.
[46]
Evangeline, M.P.; Balamurugan, B.K.; Perm, P.K. A concise literature review on synthesis and pharmacological actions of 1, 2 benzodiazine (cinnolines). Int. J. Pharm. Pharm. Sci., 2017, 2, 31-39.
[47]
Gogoi, P.; Gogoi, S.R.; Devi, N.; Barman, P. Aluminium chloride–catalyzed synthesis of 4-benzyl cinnolines from aryl hydrazones. Synth. Commun., 2014, 44, 1142-1148.
[48]
Zhu, C.; Yamane, M. Synthesis of 3,4-disubstituted cinnolines by the Pd-catalyzed annulation of 2-iodophenyltriazenes with an internal alkyne. Tetrahedron, 2011, 67, 4933-4938.
[49]
Danilkina, N.A.; Vlasov, P.S.; Vodianik, S.M.; Kruchinin, A.A.; Vlasov, Y.G.; Balova, I.A. Synthesis and chemosensing properties of cinnoline-containing poly(arylene ethynylene)s. Beilstein J. Org. Chem., 2015, 11, 373-384.
[50]
Kimball, D.B.; Weakley, T.J.R.; Herges, R.; Haley, M.M. Deciphering the mechanistic dichotomy in the cyclization of 1-(2-Ethynylphenyl)-3,3-dialkyltriazenes: Competition between pericyclic and pseudocoarctate pathways. J. Am. Chem. Soc., 2002, 124, 13463-13473.
[51]
Kimball, D.B.; Herges, R.; Haley, M.M. Two unusual, competitive mechanisms for (2-ethynylphenyl)triazene cyclization: Pseudocoarctate versus pericyclic reactivity. J. Am. Chem. Soc., 2002, 124, 1572-1573.
[52]
Kimball, D.B.; Weakley, T.J.R.; Haley, M.M. Cyclization of 1-(2-Alkynylphenyl)-3,3-dialkyltriazenes: A convenient, high-yield synthesis of substituted cinnolines and isoindazoles. J. Am. Chem. Soc., 2002, 67, 6395-6405.
[53]
Shirtcliff, L.D.; Weakley, T.J.R.; Haley, M.M.; Köhler, F.; Herges, R. Experimental and theoretical investigation of the coarctate cyclization of (2-ethynylphenyl)phenyldiazenes. J. Am. Chem. Soc., 2004, 69, 6979-6985.
[54]
Shirtcliff, L.D.; Hayes, A.G.; Haley, M.M.; Köhler, F.; Hess, K.; Herges, R. Biscyclization reactions in butadiyne- and ethyne-linked triazenes and diazenes: Concerted versus stepwise coarctate cyclizations. J. Am. Chem. Soc., 2006, 128, 9711-9721.
[55]
Shirtcliff, L.D.; Haley, M.M.; Herges, R. CuCl-induced formation and migration of isoindazolyl carbenoids. J. Am. Chem. Soc., 2007, 72, 2411-2418.
[56]
Mc Clintock, S.P.; Forster, N.; Herges, R.; Haley, M.M. Synthesis of α-Ketoester- and α-Hydroxyester-substituted isoindazoles via the thermodynamic coarctate cyclization of ester-terminated azo-ene-yne systems. J. Org. Chem., 2009, 74, 6631-6636.
[57]
Vinogradova, O.V.; Balova, I.A.; Popik, V.V. Synthesis and reactivity of cinnoline-fused cyclic enediyne. J. Org. Chem., 2011, 76, 6937-6941.
[58]
Dey, R.; Ranu, B.C. A convenient and efficient protocol for the synthesis of 4(1H)-cinnolones, 1,4-dihydrocinnolines, and cinnolines in aqueous medium: Application for detection of nitrite ions. Tetrahedron, 2011, 67, 8918-8924.
[59]
Dey, R.; Chatterjee, T.; Ranu, B.C. Facile cyclization of 2-arylethynyl aniline to 4(1H)-cinnolones: A new chemodosimeter for nitrite ions. Tetrahedron Lett., 2011, 52, 461-464.
[60]
Ball, C.J.; Gilmore, J.; Willis, M.C. Copper-catalyzed tandem C-N bond formation: An efficient annulative synthesis of functionalized cinnolines. Angew. Chem. Int. Ed., 2012, 51, 5718-5722.
[61]
Zhang, G.; Miao, J.; Zhao, Y.; Ge, H. Copper-catalyzed aerobic dehydrogenative cyclization of N-methyl-N-phenylhydrazones: Synthesis of cinnolines. Angew. Chem. Int. Ed., 2012, 51, 8318-8832.
[62]
Reddy, B.V.S.; Reddy, C.R.; Reddy, M.R.; Yarlagadda, S.; Sridhar, B. Substrate directed C–H activation for the synthesis of benzo[c]cinnolines through a sequential C–C and C–N bond formation. Org. Lett., 2015, 17, 3730-3733.
[63]
Yan, J.; Tay, G.L.; Neo, C.; Lee, B.R.; Chan, P.W.H. Gold-catalyzed cycloisomerization and diels-alder reaction of 1,6-diyne esters with alkenes and diazenes to hydronaphthalenes and -cinnolines. Org. Lett., 2015, 17, 4176-4179.
[64]
Sun, P.; Wu, Y.; Huang, Y.; Wu, X.; Xu, J.; Yao, H.; Lin, A. Rh(iii)-catalyzed redox-neutral annulation of azo and diazo compounds: One-step access to cinnolines. Org. Chem. Front., 2016, 3, 91-95.
[65]
Simpson, J.C. In: Chemistry of Heterocyclic Compounds: Pyridazine and Pyrazine Rings; Wiley-VCH: Weinheim, 2008, Vol. 5, pp. 39-45.
[66]
Zhao, D.; Wu, Q.; Huang, X.; Song, F.; Lv, T.; You, J. A general method to diverse cinnolines and cinnolinium salts. Chem. Eur. J., 2013, 19, 6239-6244.
[67]
Hu, B.; Unwalla, R.; Collini, M.; Quinet, E.; Feingold, I.; Goos-Nilsson, A.; Wihelmsson, A.; Nambi, P.; Wrobel, J. Discovery and SAR of cinnolines/quinolines as Liver X Receptor (LXR) agonists with binding selectivity for LXRβ. Bioorg. Med. Chem., 2009, 17, 3519-3527.
[68]
Edwards, A.S.; Bennett, D.J.; Carswell, E.L.; Cooke, A.J.; Nimz, O. Design, structure activity relationships and X-ray co-crystallography of non-steroidal LXR agonists. Curr. Med. Chem., 2008, 15, 195-209.
[69]
Khalafy, J.; Rimaz, M.; Ezzati, M.; Prager, R.H. A green one-pot protocol for regioselective synthesis of new substituted 7,8-dihydrocinnoline-5(6H)-ones. Bull. Korean Chem. Soc., 2012, 33, 2890-2896.
[70]
Shu, W.M.; Ma, J.R.; Zheng, K.L.; Wu, A.X. Multicomponent coupling cyclization access to cinnolines via in situ generated diazene with arynes, and α-Bromo Ketones. Org. Lett., 2016, 18, 196-199.
[71]
Lambert, D.J.; Parikh, N.; Messham, S.J.; Edwards, G.; Van Truong, H.; Dempster, N.M.; Drew, M.G.B.; Nahar, L.; Sarker, S.D.; Ismail, F.M.D. One-pot synthesis and negative ion mass spectrometric investigation of a densely functionalized cinnoline. Tetrahedron Lett., 2015, 56, 6980-6983.
[72]
Do, H.Q.; Daugulis, O. An aromatic Glaser−Hay reaction. J. Am. Chem. Soc., 2009, 131, 17052-17053.
[73]
Ibrahim, N.S.; Mohamed, A.G.F.; Maawad, A.M.R.; Elnagdi, M.H. Nitriles in heterocyclic synthesis. Novel synthesis of pyridazine derivatives. Bull. Chem. Soc. Jpn., 1987, 60, 4486-4488.
[74]
Elnagdi, M.H.; Ibrahim, N.S.; Sadek, K.U.; Mohamed, M.H. Studies with heteroaromatic Aza compounds: A novel synthesis of phthalazines. Liebigs Ann. Chem., 1988, 1988, 1005-1006.
[75]
Al-Mousawi, S.; Elassar, A.Z.; El-Apasery, M.A. A microwave assisted diazo coupling reaction: The synthesis of alkylazines and thienopyridazines. Phosphorus Sulfur Silicon Relat. Elem., 2006, 181, 1755-177.
[76]
Hameed, A.A.; Ahmed, E.K.; Fattah, A.A.A.; Andrade, C.K.Z.; Sadek, K.U. Green and efficient synthesis of polyfunctionally substituted cinnolines under controlled microwave irradiation. Res. Chem. Intermed., 2017, 43, 5523-5533.