[1]
(a) Nogueira, C.W.; Rocha, J.B.T. Toxicology and pharmacology of selenium: Emphasis on synthetic compounds. Arch. Toxicol., 2011, 85, 1313-1359.
(b) Rayman, M.P. Selenium and human health. Lancet, 2012, 379(9822), 1256-1268.
(c) Tan, L.C.; Nancharaiah, Y.V.; Van Hullebusch, E.D.; Lens, P.N.L. Selenium: Environmental significance, pollution, and biological treatment technologies. Biotechnol. Adv., 2016, 34(5), 886-907.
(d) Santoro, S.; Azeredo, J.B.; Nascimento, V.; Sancineto, L.; Braga, A.L.; Santi, C. The green side of the moon: Ecofriendly aspects of organoselenium chemistry. RSC Advances, 2014, 4, 31521-31535.
(e) Pacuła, A.J.; Mangiavacchi, F.; Sancineto, L.; Lenardão, E.J.; Scianowski, J.; Santi, C. An update on selenium containing compounds from poison to drug candidates: A review on the GPx-like activity. Curr. Chem. Biol., 2015, 9, 97-112.
(f) Lenardão, E.J.; Santi, C.; Sancineto, L. Bioactive Organoselenium Compounds and Therapeutic Perspectives.In: New frontiers in Organoselenium Compounds; Springer Nature: Cham, 2018, pp. 99-143.
[2]
Pietrella, D.In Organoselenium Chemistry: Between Synthesis and
Biochemistry; Santi C., Ed.; eISBN:978-1-60805-838-9, Bentham
Science: The Netherland. , 2014, p. pp. 328-344 (17).
[3]
Pesarico, A.P.; Sartori, G.; dos Santos, C.F.A.; Neto, J.S.S.; Bortolotto, V.; Santos, R.C.V.; Nogueira, C.W.; Prigol, M. 2,2′-Dithienyl diselenide pro-oxidant activity accounts for antibacterial and antifungal activities. Microbiol. Res., 2013, 168, 563-568.
[4]
Loreto, E.S.; Mario, D.A.N.; Santurio, J.M.; Alves, S.H.; Nogueira, C.W.; Zeni, G. In vitro antifungal evaluation and structure-activity relationship of diphenyl diselenide and synthetic analogues. Mycoses, 2011, 54, 572-576.
[5]
Denardi, L.B.; Mario, D.A.N.; de Loreto, E.S.; Nogueira, C.W.; Santurio, J.M.; Alves, S.H. Antifungal activities of diphenyl diselenide alone and in combination with fluconazole or amphotericin B against Candida glabrata. Mycopathologia, 2013, 176, 165-169.
[6]
Plano, D.; Baquedano, Y.; Moreno-Mateos, D.; Font, M.; Jiménez-Ruiz, A.; Palop, J.A.; Sanmartín, C. Selenocyanates and diselenides: A new class of potent antileishmanial agents. Eur. J. Med. Chem., 2011, 46, 3315-3323.
[7]
Font, M.; Baquedano, Y.; Plano, D.; Moreno, E.; Espuelas, S.; Sanmartín, C.; Palop, J.A. Molecular descriptors calculation as a tool in the analysis of the antileishmanial activity achieved by two series of diselenide derivatives. An insight into its potential action mechanism. J. Mol. Graph. Model., 2015, 60, 63-78.
[8]
Shaaban, S.; Negm, A.; Sobh, M.A.; Wessjohann, L.A. Organoselenocyanates and symmetrical diselenides redox modulators: Design, synthesis and biological evaluation. Eur. J. Med. Chem., 2015, 97, 190-201.
[9]
(a) Kloc, K.; Młochowski, J.; Osajda, K.; Syper, L.; Wojtowicz, H. New heterocyclic selenenamides: 1,2,4-benzoselenadiazin-3(4H)-ones and 1,3,2- benzodiselenazoles. Tetrahedron Lett., 2002, 43, 4071-4074.
(b) Barcellos, A.M.; Abenante, L.; Sarro, M.T.; Di Leo, I.; Lenardão, E.J.; Perin, G.; Santi, C. New prospective for redox modulation mediated by organoselenium and organotellurium compounds. Curr. Org. Chem., 2017, 21(20), 2044-2061.
[10]
(a) Jin, B.S.; Han, S.G.; Lee, W.K.; Ryoo, S.W.; Lee, S.J.; Suh, S.W.; Yu, Y.G. Inhibitory mechanism of novel inhibitors of UDP-N-Acetylglucosamine enolpyruvyl transferase from Haemophilus influenzae. J. Microbiol. Biotechnol., 2009, 19(12), 1582-1589.
(b) Gustafsson, T.N.; Osman, H.; Werngren, J.; Hoffner, S.; Engman, L.; Holmgren, A. Ebselen and analogs as inhibitors of Bacillus anthracis thioredoxin reductase and bactericidal antibacterials targeting Bacillus species, Staphylococcus aureus and Mycobacterium tuberculosis. Biochim. Biophys. Acta, 2016, 1860(6), 1265-1271.
(c) Lu, J.; Vlamis-Gardikas, A.; Kandasamy, K.; Zhao, R.; Gustafsson, T.N.; Engstrand, L.; Hoffner, S.; Engman, L.; Holmgren, A. Inhibition of bacterial thioredoxin reductase: An antibiotic mechanism targeting bacteria lacking glutathione. FASEB J., 2013, 27, 1394-1403.
(d) Favrot, L.; Grzegorzewicz, A.E.; Lajiness, D.H.; Marvin, R.K.; Boucau, J.; Isailovic, D.; Jackson, M.; Ronning, D.R. Mechanism of inhibition of Mycobacterium tuberculosis antigen 85 by ebselen. Nat. Commun., 2013, 4, 2748.
(e) Chiou, J.; Wan, S.; Chan, K.; So, P.; He, D.; Wai-chi, Chan W. E.; Chan, T.; Wong, K.; Tao, J.; Chen, S. Ebselen as a potent covalent inhibitor of New Delhi metallo-β-lactamase (NDM-1). Chem. Commun., 2015, 51, 9543.
(f) Zou, L.; Lu, J.; Wang, J.; Ren, X.; Zhang, L.; Gao, Y.; Rottenberg, M.E.; Holmgren, A. Synergistic antibacterial effect of silver and ebselen against multidrug‐resistant Gram-negative bacterial infections. EMBO Mol. Med., 2017, 9(8), 1165-1178.
(g) Mukherjee, S.; Weiner, W.S.; Schroeder, C.E.; Simpson, D.S.; Hanson, A.M.; Sweeney, N.L.; Marvin, R.K.; Ndjomou, J.; Kolli, R.; Isailovic, D.; Schoenen, F.J.; Frick, D.N. Ebselen inhibits hepatitis C virus NS3 helicase binding to nucleic acid and prevents viral replication. ACS Chem. Biol., 2014, 9(10), 2393-2403.
(h) Xu, K.; Zhang, Y.; Tang, B.; Laskin, J.; Roach, P.J.; Chen, H. Study of highly selective and efficient thiol derivatization using selenium reagents by mass spectrometry. Anal. Chem., 2010, 82(16), 6926-6932.
[11]
Macegoniuk, K.; Grela, E.; Palus, J.; Rudzinska-Szostak, E.; Grabowiecka, A.; Biernat, M.; Berlicki, Ł. 1,2-Benzisoselenazol-3(2H)-one derivatives as a new class of bacterial urease inhibitors. J. Med. Chem., 2016, 59, 8125-8133.
[12]
Wójtowicz, H.; Kloc, K.; Maliszewska, I.; Młochowski, J.; Pietka, M.; Piasecki, E. Azaanalogues of ebselen as antimicrobial and antiviral agents: Synthesis and properties. IL Farmaco, 2004, 59, 863-868.
[13]
Al-Rubaie, A.Z.; Al-Jadaan, S.A.S.; Muslim, S.K.; Saeed, E.A.; Ali, E.T.; Al-Hasani, A.K.J.; Al-Salman, H.N.K.; Al-Fadal, S.A.M. Synthesis, characterization and antibacterial activity of some new ferrocenyl selenazoles and 3,5-diferrocenyl-1,2,4-selenadiazole. J. Organomet. Chem., 2014, 774, 43-47.
[14]
(a) Wang, Y.; Venter, H.; Ma, S. Efflux pump inhibitors: A novel approach to combat efflux-mediated drug resistance in bacteria. Curr. Drug Targets, 2016, 17(6), 702-719.
(b) Sabatini, S.; Gosetto, F.; Iraci, N.; Barreca, M.L.; Massari, S.; Sancineto, L.; Manfroni, G.; Tabarrini, O.; Dimovska, M.; Kaatz, G.W.; Cecchetti, V. Re-evolution of the 2-phenylquinolines: Ligand-based design, synthesis, and biological evaluation of a potent new class of Staphylococcus aureus NorA efflux pump inhibitors to combat antimicrobial resistance. J. Med. Chem., 2013, 56(12), 4975-4989.
[15]
Mbaveng, A.T.; Ignat, A.G.; Ngameni, B.; Zaharia, V.; Ngadjui, B.T.; Kuete, V. In vitro antibacterial activities of p-toluenesulfonyl-hydrazinothiazoles and hydrazinoselenazoles against multi-drug resistant Gram-negative phenotypes. BMC Pharmacol. Toxicol., 2016, 17, 3.
[16]
(a) Singh, S.K.; Singh, S. A brief history of quinoline as antimalarial agents. Int. J. Pharm. Sci. Rev. Res., 2014, 25(1), 295-302.
(b) Desai, N.; Trivedi, A.; Pandit, U.; Dodiya, A.; Rao, V.K.; Desai, P. Hybrid bioactive heterocycles as potential antimicrobial agents: A review. Mini Rev. Med. Chem., 2016, 16(18), 1500-1526.
(c) Tabarrini, O.; Massari, S.; Sancineto, L.; Daelemans, D.; Sabatini, S.; Manfroni, G.; Cecchetti, V.; Pannecouque, C. Structural investigation of the naphthyridone scaffold: Identification of a 1,6-Naphthyridone derivative with potent and selective anti-HIV activity. ChemMedChem, 2011, 6, 1249-1257.
(d) Massari, S.; Mercorelli, B.; Sancineto, L.; Sabatini, S.; Cecchetti, V.; Gribaudo, G.; Palù, G.; Pannecouque, C.; Loregian, A.; Tabarrini, O. Design, synthesis, and evaluation of WC5 analogues as inhibitors of human cytomegalovirus immediate-early 2 protein, a promising target for anti-HCMV treatment. ChemMedChem, 2013, 8, 1403-1414.
[17]
Zhang, X.; Campo, M.A.; Yao, T.; Larock, R.C. Synthesis of substituted quinolines by electrophilic cyclization of N-(2-alkynyl)anilines. Org. Lett., 2005, 7(5), 763-766.
[18]
(a) Abdel-Hafez, S.H.; Hussein, M.A. Selenium-containing heterocycles: Synthesis and pharmacological activities of some new 4-Methylquinoline- 2(1H) Selenone derivatives. Arch. Pharm. Chem. Life Sci, 2008, 341, 240-246.
(b) Abdel Hafez, S.H. Synthesis of novel selenium containing sulfa drugs and their antibacterial activities. Russ. J. Bioorganic Chem., 2010, 36(3), 370-376.
[19]
Naik, H.R.P.; Naik, H.S.B.; Naik, T.R.R.; Naika, H.R.; Gouthamchandra, K.; Mahmood, R.; Ahamed, B.M.K. Synthesis of novel benzo[h]quinolines: Wound healing, antibacterial, DNA binding and in vitro antioxidant activity. Eur. J. Med. Chem., 2009, 44(3), 981-989.
[20]
Hayat, F.; Salahuddin, A.; Zargan, J.; Azam, A. Synthesis, characterization, antiamoebic activity and cytotoxicity of novel 2-(quinolin-8-yloxy) acetohydrazones and their cyclized products (1,2,3-thiadiazole and 1,2,3-selenadiazole derivatives). Eur. J. Med. Chem., 2010, 45, 6127-6134.
[21]
Savegnago, L.; Vieira, A.I.; Seus, N.; Goldani, B.S.; Castro, M.R.; Lenardão, E.J.; Alves, D. Synthesis and antioxidant properties of novel quinoline-chalcogenium compounds. Tetrahedron Lett., 2013, 54, 40-44.
[22]
Pinz, M.; Reis, A.S.; Duarte, V.; Da Rocha, M.J.; Goldani, B.S.; Alves, D.; Savegnago, L.; Luchese, C.; Wilhelm, E.A. 4-Phenylselenyl-7-chloroquinoline, a new quinoline derivative containing selenium, has potential antinociceptive and anti-inflammatory actions. Eur. J. Pharmacol., 2016, 780, 122-128.
[23]
Abdel-Hafez, S.H. Selenium containing heterocycles: Synthesis, anti-inflammatory, analgesic and anti-microbial activities of some new 4-cyanopyridazine-3(2H)selenone derivatives. Eur. J. Med. Chem., 2008, 43, 1971-1977.
[25]
Naka, T.; Minakawa, N.; Abe, H.; Kaga, D.; Matsuda, A. The stereoselective synthesis of 4′-β-Thioribonucleosides via the pummerer reaction. J. Am. Chem. Soc., 2000, 122, 7233-7243.
[26]
(a) Du, J.; Surzhykov, S.; Lin, J.S.; Newton, M.G.; Cheng, Y.C.; Schinazi, R.F.; Chu, C.K. Synthesis, anti-human immunodeficiency virus and anti-hepatitis B virus activities of novel oxaselenolane nucleosides. J. Med. Chem., 1997, 40, 2991-2993.
(b) Chu, C.K.; Ma, L.; Olgen, S.; Pierra, C.; Du, J.; Gumina, G.; Gullen, E.; Cheng, J.C.; Schinazi, R.F. Synthesis and antiviral activity of oxaselenolane nucleosides. J. Med. Chem., 2000, 43, 3906-3912.
[27]
(a) Jeong, L.S.; Choi, Y.N.; Tosh, D.K.; Choi, W.J.; Kim, H.O.; Choi, J. Design and synthesis of novel 2′,3′ -dideoxy-4′-selenonucleosides as potential antiviral agents. Bioorg. Med. Chem., 2008, 16, 9891-9897.
(b) Jayakanthan, K.; Johnston, B.D.; Pinto, B.M. Stereoselective synthesis of 4′-selenonucleosides using the Pummerer glycosylation reaction. Carbohydr. Res., 2008, 343, 1790-1800.
(c) Yu, J.; Kim, J.H.; Lee, H.W.; Alexander, V.; Ahn, H.C.; Choi, W.J.; Choi, J.; Jeong, L.S. New RNA purine building blocks, 4′-Selenopurine nucleosides: First synthesis and unusual mixture of sugar puckerings. Chem. Eur. J., 2013, 19, 5528-5532.
[28]
Sancineto, L.; Mariotti, A.; Bagnoli, L.; Marini, F.; Desantis, J.; Iraci, N.; Santi, C.; Pannecouque, C.; Tabarrini, O. Design and Synthesis of DiselenoBisBenzamides (DISeBAs) as Nucleocapsid Protein 7 (NCp7) inhibitors with anti-HIV activity. J. Med. Chem., 2015, 58(24), 9601-9614.
[29]
(a) Sancineto, L.; Iraci, N.; Tabarrini, O.; Santi, C. NCp7: Targeting a multitasking protein for next-generation anti-HIV drug development: Covalent inhibitors. Drug Discov. Today, 2018, 23(2), 260-271.
(b) Iraci, N.; Tabarrini, O.; Santi, C. Sancineto, L. NCp7: Targeting a multitask protein for next-generation anti-HIV drug development part 2. Noncovalent inhibitors and nucleic acid binders. Drug Discov. Today, 2018, 23(3), 687-695.
[30]
Taniike, H.; Inagaki, Y.; Matsuda, A.; Minakawa, N. Practical synthesis of 4′-selenopyrimidine nucleosides using hypervalent iodine. Tetrahedron, 2011, 67, 7977-7982.
[31]
Ishii, K.; Saito-Tarashima, N.; Ota, M.; Yamamoto, S.; Okamoto, Y.; Tanaka, Y.; Minakawa, N. Practical synthesis of 4′-selenopurine nucleosides by combining chlorinated purines and ‘armed’ 4-selenosugar. Tetrahedron, 2016, 72, 6589-6594.
[32]
(a) Sahu, P.K.; Naik, S.D.; Yu, J.; Jeong, L.S. 4′-Selenonucleosides as next-generation nucleosides. Eur. J. Org. Chem., 2015, 6115-6124.
(b) Sahu, P.K.; Kim, G.; Yu, J.; Ahn, J.Y.; Song, J.; Choi, Y.; Jin, X.; Kim, J.H.; Lee, S.K.; Park, S.; Jeong, L.S. Stereoselective synthesis of 4′-Selenonucleosides via seleno-michael reaction as potent antiviral agents. Org. Lett., 2014, 16, 5796-5799.
[33]
Sahu, P.K.; Umme, T.; Yu, J.; Nayak, A.; Kim, G.; Noh, M.; Lee, J.Y.; Kim, D.D.; Jeong, L.S. Selenoacyclovir and selenoganciclovir: Discovery of a new template for antiviral agents. J. Med. Chem., 2015, 58, 8734-8738.
[34]
(a) Bjarnsholt, T. The role of bacterial biofilms in chronic infections. APMIS, 2013, 121, 1-51.
(b) Drago, L.; Toscano, M. In In: Management of Prosthetic Joint Infections (PJIs); Arts, J.C.C.;
Geurts, J., Ed.; eISBN: 9780081002421, 2017. Elsevier-Woodhead
Publishing: Amsterdam. , 2017; p. pp. 25-39.
(c) Stewart, P.S.; Costerton, J.W. Antibiotic resistance of bacteria in biofilms. Lancet, 2001, 358(9276), 135-138.
[35]
Parsek, M.R.; Singh, P.K. Bacterial biofilms: An emerging link to disease pathogenesis. Annu. Rev. Microbiol., 2003, 57, 677-701.
[36]
Martins, C.H.G.; Pires, R.H.; Cunha, A.O.; Pereira, C.A.M.; Singulani, J.L.; Abrao, F.; De Moraes, T.; Mendes-Giannini, M.J.S. Candida/Candida biofilms. First description of dual species Candida albicans/C. rugosa biofilm. Fungal Biol., 2016, 120, 530-537.
[37]
Bueno, R.I.; Taube, J.P.; Barbosa, L.C.; Batista, T.J.; Silva, C.M. Biofilm formation by Candida albicans is inhibited by 4,4-dichloro diphenyl diselenide (pCl-PhSe)2. Curr. Drug Discov. Technol., 2014, 3, 234-238.
[38]
Sancineto, L.; Piccioni, M.; De Marco, S.; Pagiotti, R.; Nascimento, V.; Braga, A.L.; Santi, C.; Pietrella, D. Diphenyl diselenide derivatives inhibit microbial biofilm formation involved in wound infection. BMC Microbiol., 2016, 16, 220.
[39]
(a) Tran, P.L.; Hammond, A.A.; Mosley, T.; Cortez, J.; Gray, T.; Colmer-Hamood, J.A.; Shashtri, M.; Spallholz, J.E.; Hamood, A.N.; Reid, T.W. Organoselenium coating on cellulose inhibits the formation of biofilms by Pseudomonas aeruginosa and Staphylococcus aureus. Appl. Environ. Microbiol., 2009, 75, 3586-3592.
(b) Tran, P.L.; Lowry, N.; Campbell, T.; Reid, T.W.; Webster, D.R.; Tobin, E.; Aslani, A.; Mosley, T.; Dertien, J.; Colmer-Hamood, J.A.; Hamood, A.N. An organoselenium compound inhibits Staphylococcus aureus biofilms on hemodialysis catheters in vivo. Antimicrob. Agents Chemother., 2012, 56(2), 972-978.
[40]
(a) Langi, B.; Shah, C.; Singh, K.; Chaskar, A.; Kumar, M.; Bajaj, P.N. Ionic liquid induced synthesis of selenium nanoparticles. Mater. Res. Bull., 2010, 45(6), 668-671.
(b) Fesharaki, P.; Nazari, P.; Shakibaie, M.; Rezaie, S.; Banoee, M.; Abdollahi, M.; Shahverdi, A.R. Biosynthesis of selenium nanoparticles using Klebsiella pneumoniae and their recovery by a simple sterilization process. Braz. J. Microbiol., 2010, 41, 461-466.
(c) Shakibaie, M.; Forootanfar, H.; Golkari, Y.; Mohammadi-Khorsand, T.; Shakibaie, M.R. Anti-biofilm activity of biogenic selenium nanoparticles and selenium dioxide against clinical isolates of Staphylococcus aureus, Pseudomonas aeruginosa, and Proteus mirabilis. J. Trace Elem. Med. Biol., 2015, 29, 235-241.
(d) Ramya, S.; Shanmugasundaram, T.; Balagurunathan, R. Biomedical potential of actinobacterially synthesized selenium nanoparticles with special reference to anti-biofilm, anti-oxidant, wound healing, cytotoxic and anti-viral activities. J. Trace Elem. Med. Biol., 2015, 32, 30-39.
(e) Khiralla, G.M.; El-Deeb, B.A. Antimicrobial and antibiofilm effects of selenium nanoparticles on some foodborne pathogens. LWT Food Sci. Technol., 2015, 63, 1001-1007.