Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Review Article

Biotransformation of Coumarins by Filamentous Fungi: An Alternative Way for Achievement of Bioactive Analogs

Author(s): Jainara Santos do Nascimento, João Carlos Silva Conceição and Eliane de Oliveira Silva*

Volume 16, Issue 6, 2019

Page: [568 - 577] Pages: 10

DOI: 10.2174/1570193X15666180803094216

Price: $65

Abstract

Coumarins are natural 1,2-benzopyrones, present in remarkable amounts as secondary metabolites in edible and medicinal plants. The low yield in the coumarins isolation from natural sources, along with the difficulties faced by the total synthesis, make them attractive for biotechnological studies. The current literature contains several reports on the biotransformation of coumarins by fungi, which can generate chemical analogs with high selectivity, using mild and eco-friendly conditions. Prompted by the enormous pharmacological interest in the coumarin-related compounds, their alimentary and chemical applications, this review covers the biotransformation of coumarins by filamentous fungi. The chemical structures of the analogs were presented and compared with those from the pattern structures. The main chemical reactions catalyzed the insertion of functional groups, and the impact on the biological activities caused by the chemical transformations were discussed. Several chemical reactions can be catalyzed by filamentous fungi in the coumarin scores, mainly lactone ring opening, C3-C4 reduction and hydroxylation. Chunninghamella sp. and Aspergillus sp. are the most common fungi used in these transformations. Concerning the substrates, the biotransformation of pyranocoumarins is a rarer process. Sometimes, the bioactivities were improved by the chemical modifications and coincidences with the mammalian metabolism were pointed out.

Keywords: Biotransformation, coumarin derivatives, coumarins, filamentous fungi, natural products, structural analogs.

Graphical Abstract

[1]
Matos, M.J.; Santana, L.; Uriarte, E.; Abreu, O.A.; Molina, E.; Yordi, E.G. Coumarins - An important class of phytochemicals. In: Phytochemicals - Isolation, Characterisation and Role in Human Health, IntechOpen: London. 2015.
[http://dx.doi.org/10.5772/59982]
[2]
Yamane, H.; Konno, K.; Sabelis, M.; Takabayashi, J.; Sassa, T.; Oikawa, H. Chemical defence and toxins of plants. In Comprehensive Natural Products II, Mander, L., Liu, H.-W. Eds.; Elsevier Science: Amsterdam. 2010, pp 339-385.
[3]
Borges, F.; Roleira, F.; Milhazes, N.; Santana, L.; Uriarte, E. Simple coumarins and analogues in medicinal chemistry: Occurrence, synthesis and biological activity. Curr. Med. Chem., 2005, 12, 887-916.
[4]
Bone, K.; Mills, S. Principles and Practice of Phytotherapy- Modern Herbal Medicine, 2nded.; Churchell Livingstone: London. 2013.
[5]
Bourgaud, F.; Hehn, A.; Larbat, R.; Doerper, S.; Gontier, E.; Kellner, S.; Matern, U. Biosynthesis of coumarins in plants: A major pathway still to be unravelled for cytochrome P450 enzymes. Phytochem. Rev., 2006, 5(2-3), 293-308.
[6]
Dewick, P.M. Medicinal Natural Products - A Biosynthetic Approach, 3rded.; John Wiley & Sons, Ltd.: Chicheste. 2009.
[7]
Venugopala, K.N.; Rashmi, V.; Odhav, B. Review on natural coumarin lead compounds for their pharmacological activity Biomed Res. Int, 2013, 2013(Article ID 963248), 14 pages.
[8]
Gobbo-Neto, L.; Lopes, N.P. Plantas medicinais: Fatores de influência no conteúdo de metabólitos secundários. Quim., 2007, 30(2), 374-381.
[9]
Atanasov, A.G.; Waltenberger, B.; Pferschy-Wenzig, E.M.; Linder, T.; Wawrosch, C.; Uhrin, P.; Temml, V.; Wang, L.; Schwaiger, S.; Heiss, E.H.; Rollinger, J.M.; Schuster, D.; Breuss, J.M.; Bochkov, V.; Mihovilovic, M.D.; Kopp, B.; Bauer, R.; Dirsch, V.M.; Stuppner, H. Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnol. Adv Nov., 2015, 33(8), 1582-1614.
[10]
Hu, Y.; Shen, Y.; Wu, X.; Tu, X.; Wang, G.X. Synthesis and biological evaluation of coumarin derivatives containing imidazole skeleton as potential antibacterial agents. Eur. J. Med. Chem., 2018, 143, 958-969.
[11]
Yang, G.; Jin, Q.; Xu, C.; Fan, S.; Wang, C.; Xie, P. Synthesis, characterization and antifungal activity of coumarin-functionalized chitosan derivatives. Int. J. Biol. Macromol., 2018, 106, 179-184.
[12]
Lake, B.G. Coumarin metabolism, toxicity and carcinogenicity: Relevance for human risk assessment. Food Chem. Toxicol., 1999, 37, 423-453.
[13]
Vargas-Soto, F.A.; Céspedes-Acuña, C.L.; Aqueveque-Muñoz, P.M.; Alarcón-Enos, J.E. Toxicity of coumarins synthesized by pechmann-duisberg condensation against Drosophila melanogaster larvae and antibacterial effects. Food Chem. Toxicol., 2017, 109, 1118-1124.
[14]
Vekariya, R.H.; Patel, H.D. Recent advances in the synthesis of coumarin derivatives via knoevenagel condensation: A review. Synth. Commun. Rev., 2014, 44, 2756-2788.
[15]
Zareyee, D.; Serehneh, M. Recyclable CMK-5 supported sulfonic acid as an environmentally benign catalyst for solvent-free one-pot construction of coumarin through pechmann condensation. J. Mol. Catal. A Chem., 2014, 391(1), 88-91.
[16]
Maheswara, M.; Siddaiah, V.; Damu, G.L.V.; Rao, Y.K.; Rao, C.V. A solvent-free synthesis of coumarins via pechmann condensation using heterogeneous catalyst. J. Mol. Catal. A Chem., 2006, 255, 49-52.
[17]
Qi-he, C.; Jing, L.; Hai-feng, Z.; Guo-qing, H.; Ming-liang, F. The betulinic acid production from betulin through biotransformation by fungi. Enzyme Microb. Technol., 2009, 45, 175-180.
[18]
Hai-feng, Z.; Guo-qing, H.; Jing, L.; Hui, R.; Qi-he, C.; Qiang, Z.; Jin-ling, W.; Hong-bo, Z. Production of gastrodin through biotransformation of P-2-hydroxybenzyl alcohol by cultured cells of Armillaria luteo-virens sacc. Enzyme Microb. Technol., 2008, 43, 25-30.
[19]
Müller, M. Chemical diversity through biotransformations. Curr. Opin. Biotechnol., 2004, 15(6), 591-598.
[20]
Silva, E.O.; Furtado, N.A.J.C.; Aleu, J.; Collado, I.G. Non-terpenoid biotransformations by mucor species. Phytochem. Rev., 2015, 14(5), 745-764.
[21]
Faber, K. Biotransformations in Organic Chemistry: A Textbook; Springer-Verlag: Berlin, 2004, p. 1953.
[22]
Faber, K. Biotransformations.In: Advances in Biochemical Engineering / Biotechnology; Scheper, T., Ed.; Springer: Berlin, 1999.
[23]
De Carvalho, C.C.C.R. Whole cell biocatalysts: Essential workers from nature to the industry. Microb. Biotechnol., 2017, 10(2), 250-263.
[24]
Boaventura, M.A.D.; Lopes, R.F.A.P.; Takahashi, J.A. Microor-ganisms as tools in modern chemistry: The biotransformation of 3-indolylacetonitrile and tryptamine by fungi. Braz. J. Microbiol., 2004, 345-347.
[25]
Smith, R.V.; Rosazza, J.P. Microbial models of mammalian metabolism. J. Pharm. Sci., 1975, 64(11), 1737.
[26]
Hwang, C.H.; Jaki, B.U.; Klein, L.L.; Lankin, D.C.; McAlpine, J.B.; Napolitano, J.G.; Fryling, N.A.; Franzblau, S.G.; Cho, S.H.; Stamets, P.E.; Wang, Y.; Pauli, G.F. Chlorinated coumarins from the polypore mushroom Fomitopsis officinalis and their activity against Mycobacterium tuberculosis. J. Nat. Prod., 2013, 76, 1916-1922.
[27]
Celeghini, R.M.S.; Vilegas, J.H.Y.; Laças, F.M. Extraction and quantitative HPLC analysis of coumarin in hydroalcoholic: Extracts of Mikania glomerata spreng. (“guaco”) leaves. J. Braz. Chem. Soc., 2001, 12(6), 706-709.
[28]
Ahn, M.; Lee, M.K.; Kim, Y.C.; Sung, S.H. The simultaneous determination of coumarins in Angelica gigas root by high performance liquid chromatography - diode array detector coupled with electrospray ionization/mass spectrometry. J. Pharm. Biomed. Anal., 2008, 46, 258-266.
[29]
Ren, Z.; Nie, B.; Liu, T.; Yuan, F.; Feng, F.; Zhang, Y.; Zhou, W.; Xu, X.; Yao, M.; Zhang, F. Simultaneous determination of coumarin and its derivatives in tobacco products by liquid chromatography-tandem mass spectrometry. Molecules, 2016, 21, 1511-1524.
[30]
Vilegas, J.H.Y.; Marchi, E.; Lanças, F.M. Determination of coumarin and kaurenoic acid in Mikania glomerata (“Guaco”) leaves by capillary gas chromatography. Phytochem. Anal., 1997, 8, 74-77.
[31]
Lou, L.; Guo, R.; Cheng, Z.; Zhao, P.; Yao, G.; Wang, X. Coumarins from Juglans mandshurica maxim and their apoptosis-inducing activities in hepatocarcinoma cells. Phytochem. Lett., 2018, 24, 15-20.
[32]
Nofal, Z.M.; El-Zahar, M.I.; El-Karim, S.S.A. Novel coumarin derivatives with expected biological activity. Molecules, 2000, 5, 99-113.
[33]
Marumoto, S.; Miyazawa, M. Microbial reduction of coumarin, psoralen, and xanthyletin by Glomerella cingulata. Tetrahedron, 2011, 67(2), 495-500.
[34]
Taniguchi, K.; Funasaki, M.; Kishida, A.; Sadhu, S.K.; Ahmed, F.; Ishibashi, M.; Ohsaki, A. Two new coumarins and a new xanthone from the leaves of Rhizophora mucronata. Bioorg. Med. Chem. Lett., 2018, 28, 1063-1066.
[35]
Lacy, A.; O’Kennedy, R. Studies on coumarins and coumarin-related compounds to determine their therapeutic role in the treatment of cancer. Curr. Pharm. Des., 2004, 10, 3797-3811.
[36]
Khoobi, M.; Foroumadi, A.; Emami, S.; Safavi, M.; Dehghan, G.; Alizadeh, B.H.; Ramazani, A.; Ardestani, S.K.; Shafiee, A. Coumarin-based bioactive compounds: Facile synthesis and biological evaluation of coumarin-fused 1,4-thiazepines. Chem. Biol. Drug Des., 2011, 78(4), 580-586.
[37]
Chen, Y.; Fan, G.; Chen, B.; Xie, Y.; Wu, H.; Wu, Y.; Yan, C.; Wang, J. Separation and quantitative analysis of coumarin compounds from Angelica dahurica (Fisch. Ex Hoffm) Benth. et Hook. F by pressurized capillary electrochromatography. J. Pharm. Biomed. Anal., 2006, 41(1), 105-116.
[38]
Bubols, G.B.; Vianna, D.R.; Medina-Remon, A.; Poser, G Von.; Lamuela-Raventos, R.M.; Eifler-Lima, V.L.; Garcia, S.C. The antioxidant activity of coumarins and flavonoids. Mini Rev. Med. Chem., 2013, 13, 318-334.
[39]
Souza, S.M.; Monache, F.D.; Smânia, A.J. Antibacterial Activity of Coumarins. Zeitschrift für. Naturforsch. C, 2005, 60, 693-700.
[40]
Hassan, M.Z.; Osman, H.; Ali, M.A.; Ahsan, M.J. Therapeutic potential of coumarins as antiviral agents. Eur. J. Med. Chem., 2016, 123, 236-255.
[41]
Bansal, Y.; Sethi, P.; Bansal, G. Coumarin: A potential nucleus for anti-inflammatory molecules. Med. Chem. Res., 2013, 22(7), 3049-3060.
[42]
Capra, J.C.; Cunha, M.P.; Machado, D.G.; Zomkowski, A.D.E.; Mendes, B.G.; Santos, A.R.S.; Pizzolatti, M.G.; Rodrigues, A.L.S. Antidepressant-like effect of scopoletin, a coumarin isolated from Polygala Sabulosa (Polygalaceae) in mice: Evidence for the involvement of monoaminergic systems. Eur. J. Pharmacol., 2010, 643(2-3), 232-238.
[43]
Kawase, M.; Sakagami, H.; Motohashi, N.; Hauer, H.; Chatterjee, S.S.; Spengler, G.; Vigyikanne, A.V.; Molnár, A.; Molnár, J. Coumarin derivatives with tumor-specific cytotoxicity and multidrug resistance reversal activity. In Vivo (Brooklyn), 2005, 19(4), 705-712.
[44]
Atmaca, M.; Bilgin, H.M.; Obay, B.D.; Diken, H.; Kelle, M.; Kale, E. The hepatoprotective effect of coumarin and coumarin derivates on carbon tetrachloride-induced hepatic injury by antioxidative activities in rats. J. Physiol. Biochem., 2011, 67(4), 569-576.
[45]
Li, D.; Wu, L. Coumarins from the roots of Angelica dahurica cause anti-allergic inflammation. Exp. Ther. Med., 2017, 14, 874-880.
[46]
Song, P.P.; Zhao, J.; Liu, Z.L.; Duan, Y.B.; Hou, Y.P.; Zhao, C.Q.; Wu, M.; Wei, M.; Wang, N.H.; Lv, Y.; Han, Z.J. Evaluation of antifungal activities and structure-activity relationships of coumarin derivatives. Pest Manag. Sci., 2017, 73, 94-101.
[47]
Kostova, I. Coumarins as inhibitors of HIV reverse transcriptase. Curr. HIV Res., 2006, 4, 347-363.
[48]
Rangappa, K.S.; Sasidhar, B.S.; Nagaraja, B.M.; Santos, M.A. Recent progress in the drug development of coumarin derivatives as potent antituberculosis agents. Eur. J. Med. Chem., 2015, 100, 257-269.
[49]
De Souza, L.G.; Rennó, M.N.; Figueroa-Villar, J.D. Coumarins as cholinesterase inhibitors: A review. Chem. Biol. Interact., 2016, 254, 11-23.
[50]
Stern, R.S. Psoralen and ultraviolet a light therapy for psoriasis. N. Engl. J. Med., 2007, 357, 682-690.
[51]
Cai, J.; Liu, B.; Ling, P.; Su, Q. Analysis of free and bound volatiles by gas chromatography and gas chromatography-mass spectrometry in uncased and cased tobaccos. J. Chromatogr. A, 2002, 947, 267-275.
[52]
Krüger, S.; Winheim, L.; Morlock, G.E. Planar chromatographic screening and quantification of coumarin in food, confirmed by mass spectrometry. Food Chem., 2018, 239, 1182-1191.
[53]
Sproll, C.; Ruge, W.; Andlauer, C.; Godelmann, R.; Lachenmeier, D.W. HPLC analysis and safety assessment of coumarin in foods. Food Chem., 2008, 109(2), 462-469.
[54]
Rastogi, S.C.; Johansen, J.D.; Frosch, P.; Menne, T.; Bruze, M.; Lepoittevin, J.P.; Dreier, B.; Andersen, K.E.; White, I.R. Deodorants on the European market: Quantitative chemical analysis of 21 fragrances. Contact Dermat., 1998, 38(1), 29-35.
[55]
Adams, T.B.; Greer, D.B.; Doull, J.; Munro, I.C.; Newberne, P.; Portoghese, P.S.; Smith, R.L.; Wagner, B.M.; Weil, C.S.; Woods, L.A.; Ford, R.A. The FEMA GRAS assessment of lactones used as a flavour ingredients. The flavor and extract manufacturers’ association. generally recognized as safe. Food Chem. Toxicol., 1998, 36, 249-278.
[56]
Moreira, M.D.; Picanço, M.C.; Barbosa, L.C.D.A.; Guedes, R.N.C.; De Campos, M.R.; Silva, G.A.; Martins, J.C. Plant compounds insecticide activity against Coleoptera pests of stored products. Pesqui. Agropecu. Bras., 2007, 42(7), 909-915.
[57]
Jung, H.S.; Kwon, P.S.; Lee, J.W.; Kim, J. Il; Hong, C.S.; Kim, J.W.; Yan, S.; Lee, J.Y.; Lee, J.H.; Joo, T.; Kim, J.S. Coumarin-derived Cu2+ -selective fluorescence sensor: Synthesis, mechanisms, and applications in living cells. J. Am. Chem. Soc., 2009, 131, 2008-2012.
[58]
Tasior, M.; Kim, D.; Singha, S.; Krzeszewski, M.; Ahn, K.H.; Gryko, D.T. π-Expanded coumarins: Synthesis, optical properties and applications. J. Mater. Chem. C, 2015, 3, 1421-1446.
[59]
Harms, H.; Schlosser, D.; Wick, L.Y. Untapped potential: Exploiting fungi in bioremediation of hazardous chemicals. Nat. Rev. Microbiol., 2011, 9(3), 177-192.
[60]
Paludo, C.R.; Da Silva-Junior, E.A.; Silva, E.O.; Vessecchi, R.; Lopes, N.P.; Pupo, M.T.; Emery, F.S.; Gonçalves, N.S.; Dos Santos, R.A.; Furtado, N.A.J.C. Inactivation of β-lapachone cytotoxicity by filamentous fungi that mimic the human blood metabolism. Eur. J. Drug Metab. Pharmacokinet., 2017, 42, 213-220.
[61]
Attia, G.A.; Abou-el-seoud, K.A.; Ibrahim, A.S. Biotransformation of coumarins by cunninghamella elegans., 2016, 10, (18), 411-418.
[62]
Cravotto, G.; Nano, G.M.; Palmisano, G.; Tagliapietra, S. An asymmetric approach to coumarin anticoagulants via hetero-diels-alder cycloaddition. tetrahedron. Asymetry, 2001, 12, 707-709.
[63]
Wong, Y.W.J.; Davis, P.J. Microbial models of mammalian metabolism: Stereoselective metabolism of warfarin in the fungus cunninghamella elegans. Pharm. Res., 1989, 6, 982-987.
[64]
Azerad, R. Microbial models for drug metabolism.In: Advances in Biochemical Engineering/Biotechnology; Scheper, T., Ed.; Springer-Verlag: Berlin, Heidelberg, 1999, pp. 169-213.
[65]
Aguirre-Pranzoni, C.; Orden, A.A.; Bisogno, F.R.; Ardanaz, C.E.; Tonn, C.E.; Kurina-sanz, M. Coumarin metabolic routes in Aspergillus Spp. Fungal Biol., 2011, 115, 245-252.
[66]
Matsuzaki, F.; Wariishi, H. Functional diversity of cytochrome P450s of the white-rot fungus Phanerochaete chrysosporium. Biochem. Biophys. Res. Commun., 2004, 324, 387-393.
[67]
Fan, N.; Du, C.H.; Xu, J.Q.; Xu, Y.X.; Yu, B.Y.; Zhang, J. Glycosylation and sulfation of 4-methylumbelliferone by Gliocladium deliquescens NRRL 1086. Appl. Biochem. Microbiol., 2017, 53(1), 85-93.
[68]
Kumar, K.A.; Kumar, B.S.V.; Laxminarayana, B.; Ananthanaraya-nana, S. Biotransformation of 4-methyl umbelliferone derivatives fungal mediated o-dealkylations. Recent Adv. Basic Appl. Asp. Ind. Catal., 1998, 113, 541-546.
[69]
Lv, X.; Xin, X.; Deng, S.; Zhang, B.; Hou, J.; Ma, X.; Wang, C.; Wang, Z.; Kuang, H. Biotransformation of Osthole by Mucor Spinosus. Process Biochem., 2012, 47(12), 2542-2546.
[70]
Xin, X.L.; Dong, P.P.; Wang, G.; Xi, R.G.; Liu, D.; Wu, Z.M.; Sun, X.C.; Lan, R.; Wang, X.B. Biotransformation of Osthole by Alternaria Longipes. J. Asian Nat. Prod. Res., 2013, 15(7), 717-722.
[71]
Aguirre-Pranzoni, C.B.; Furque, G.I.; Ardanaz, C.E.; Pacciaroni, A.; Sosa, V.; Tonn, C.E.; Kurina-sanz, M. Biotransformation of Dihydrocoumarin by Aspergillus niger ATCC 11394. ARKIVOC, 2011, vii, 170-181.
[72]
Marumoto, S.; Miyazawa, M. Biotransformation of isoimperatorin and imperatorin by Glomerella cingulata and β-secretase inhibitory activity. Bioorg. Med. Chem., 2010, 18(1), 455-459.
[73]
Attia, G.I.E.A.; Abou-El-seoud, K.A.; Ibrahim, A.R.S. Biotrans-formation of furanocoumarins by Cunninghamella elegans. Bull. Fac. Pharm. Cairo Univ., 2015, 53, 1-4.
[74]
Lv, X.; Liu, D.; Hou, J.; Dong, P.; Zhan, L.; Wang, L.; Deng, S.; Wang, C.; Yao, J.; Shu, X.; Liu, K.; Ma, X. Biotransformation of imperatorin by Penicillium janthinellum. Anti-osteoporosis activities of its metabolites. Food Chem., 2013, 138(4), 2260-2266.
[75]
Yang, X.; Hou, J.; Liu, D.; Deng, S.; Wang, Z. Bin Kuang, H.X.; Wang, C.; Yao, J.H.; Liu, K.X.; Ma, X.C. Biotransformation of isoimperatorin by Cunninghamella blakesleana AS 3.970. J. Mol. Catal. B Enzym. B, 2013, 88, 1-6.
[76]
Shi, X.; Liu, M.; Zhang, M.; Zhang, K.; Liu, S.; Qiao, S.; Shi, R.; Jiang, X.; Wang, Q. Identification of in vitro and in vivo metabolites of isoimperatorin using liquid chromatography/mass spectrometry. Food Chem., 2013, 141(1), 357-365.
[77]
Marumoto, S.; Miyazawa, M. Microbial transformation of isopimpinellin by Glomerella cingulata. J. Oleo Sci., 2011, 60(11), 575-578.
[78]
Mira, A.; Alkhiary, W.; Zhu, Q.; Nakagawa, T.; Tran, H.B.; Amen, Y.M.; Shimizu, K. Improved biological activities of isoepoxypteryxin by biotransformation. Chem. Biodivers., 2016, 13, 1307-1315.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy