Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Review Article

Recent Progress in Chemistry of β-Lactams

Author(s): Japheth O. Ombito and Girija S. Singh*

Volume 16, Issue 6, 2019

Page: [544 - 567] Pages: 24

DOI: 10.2174/1570193X15666180914165303

Price: $65

Abstract

The β-lactams constitute a well-known class of compounds having tremendous biological significance. Besides being a motif of biological interest, they serve as versatile synthons in organic chemistry. In fact, their easy accessibility in the laboratory by several methods combined with inherent reactivity of the β -lactam ring due to ring-strain places it among the most sought for substrate in the arsenal of synthetic organic chemists. Several chemical reagents, heat, and light promote its ring-opening, ring-expansions and rearrangement reactions yielding a wide variety of biologically relevant nitrogen-containing acyclic and heterocyclic compounds. In recent years, the reactivity of differently functionalized β-lactam rings towards diverse kinds of reagents has been investigated. These investigations exploit selective bond cleavage of the β-lactam nucleus via N1-C2, C3- C4, C2-C3 or N1-C4 bond cleavage using simple reagents. The reduction of amide carbonyl group, thionation, and pyrolysis/photolysis have also been explored. These investigations have led to the discovery of many easy synthetic methods for biologically important classes of compounds such as β-amino acids, β-amino esters, amino sugars, amino alcohols, peptides, azetidines, and other heterocyclic compounds. This article discusses the advances made in the studies on the reactivity of β- lactam ring during the last ten years.

Keywords: Amide-reduction, amino acids, amino alcohols, aza-heterocycles, ring-opening, β-lactams.

Graphical Abstract

[1]
Fleming, A. On the antibacterial action of cultures of a penicillium, with special reference to their use in the isolation of B. influenzae. Br. J. Exp. Pathol., 1929, 10(3), 226-236.
[2]
Crowfoot, D.; Bunn, C.; Rogers-Low, B.; Turner-Jones, A. The X-ray crystallographic investigation of the structure of penicillin.In: The Chemistry of Penicillin; Clarke, H.; Johnson, J.; Robinson, R., Eds.; Princeton University Press: New Jersey, 1949, pp. 310-311.
[3]
Reading, C.; Cole, M. Clavulanic acid: A β-lactamase-inhibiting β-lactam from Streptomyces clavuligerus. Antimicrob. Agents Chemother., 1977, 11, 852-857.
[4]
Clader, J.W. The discovery of ezetimibe: A view from outside the receptor. J. Med. Chem., 2004, 47(1), 1-9.
[5]
Banik, B.K.; Becker, F.F. Selective anticancer activity of β-lactams derived from polyaromatic compounds. Mol. Med. Rep., 2010, 3, 315-316.
[6]
Ojima, I. Recent advances in the. β-lactam synthon method. Acc. Chem. Res., 1995, 28(9), 383-389.
[7]
Ojima, I.; Delaloge, F. Asymmetric synthesis of building-blocks for peptides and peptidomimetics by means of the β-lactam synthon method. Chem. Soc. Rev., 1997, 26(5), 377-386.
[8]
Singh, G.S. Recent progress in the synthesis and chemistry of azetidinones. Tetrahedron, 2003, 59(39), 7631-7649.
[9]
Deshmukh, A.; Bhawal, B.; Krishnaswamy, D.; Govande, V.V.; Shinkre, B.A.; Jayanthi, A. Azetidin-2-ones, synthon for biologically important compounds. Curr. Med. Chem., 2004, 11(14), 1889-1920.
[10]
Alcaide, B.; Almendros, P.; Aragoncillo, C. β-Lactams: Versatile building blocks for the stereoselective synthesis of non-β-lactam products. Chem. Rev., 2007, 107(11), 4437-4492.
[11]
Mehta, P.D.; Sengar, N.; Pathak, A. 2-Azetidinone-A new profile of various pharmacological activities. Eur. J. Med. Chem., 2010, 45(12), 5541-5560.
[12]
Singh, G.S.; D’hooghe, M.; De Kimpe, N. Azetidines, azetines and azetes: Monocyclic.In: Comprehensive Heterocyclic Chemistry-III; Katritzky, A.R.; Ramsden, C.; Scriven, E.; Taylor, R., Eds.; Elsevier: UK, 2008, Vol. 2, pp. 1-110.
[13]
D’hooghe, M.; Dekeukeleire, S.; Leemans, E.; De Kimpe, N. Use of functionalized β-lactams as building blocks in heterocyclic chemistry. Pure Appl. Chem., 2010, 82(9), 1749-1759.
[14]
Troisi, L.; Granito, C.; Pindinelli, E. Novel and recent synthesis and applications of β-lactams.In: Heterocyclic scaffolds I; Banik, B.K., Ed.; Springer: Berlin, 2010, Vol. 22, pp. 101-209.
[15]
Singh, G.S.; Sudheesh, S. Advances in synthesis of monocyclic β-lactams. ARKIVOC, 2014, 1, 337-385.
[16]
Kumar, Y.; Singh, P.; Bhargava, G. Recent developments in the synthesis of condensed β-lactams. RSC Advances, 2016, 6(101), 99220-99250.
[17]
Thi, H.D.; Guyen, T.V.; D’googhe, M. Synthesis and reactivity of 4-(trifluoromethyl)azetidin-2-ones. Monatsh. Chem., 2018, 149, 687-700.
[18]
Staudinger, H. On the knowledge of the ketene. Diphenylketene. Eur. J. Org. Chem., 1907, 356(1-2), 51-123.
[19]
Bari, S.; Bhalla, A.; Nagpal, Y.; Mehta, S.; Bhasin, K. Synthesis and characterization of novel trans-3-benzyl/(diphenyl)methyl/ naphthyl seleno substituted monocyclic β-lactams: X-ray structure of trans-1-(4′-methoxyphenyl)-3-(diphenyl)methylseleno-4-(4′-me-thoxyphenyl) azetidin-2-one. J. Organomet. Chem., 2010, 695(17), 1979-1985.
[20]
Nejad, N.K.; Islami, M.R. Synthesis of polysubstituted 2-azetidinones via in situ generation of vnillinyl ketene and electrocyclic reaction of corresponding zwitterionic intermediate. Res. Chem. Intermed., 2018, 44, 691-703.
[21]
Toyoda, T.; Ninomiya, M.; Ebihara, M.; Koketsu, M. The Staudinger reaction with 2-imino-1,3-thiaselenanes toward the synthesis of C4 spiro-β-lactams. Org. Biomol. Chem., 2013, 11, 2652-2659.
[22]
Sakamoto, M.; Kawanishi, H.; Mino, T.; Fujita, T. Asymmetric synthesis of β-lactams using chiral-memory effect on photochemical γ-hydrogen abstraction by thiocarbonyl group. Chem. Commun., 2008, 2008(18), 2132-2133.
[23]
Dema, H.K.; Foubelo, F.; Yus, M. Diastereoselective coupling of N-(tert-butyl)sulfinyl imines and dimethyl malonate: Synthesis of enantiomerically enriched β-amino esters and β-lactams. Helv. Chim. Acta, 2012, 95, 1790-1798.
[24]
Zhao, Q.; Li, C. Preference of β-lactam formation on Cu(I)-catalyzed intramolecular coupling amides with vinyl bromides. Org. Lett., 2008, 10(18), 4037-4040.
[25]
Ojima, I.; Zuniga, E.S.; Seitz, J.D. Advances in the use of enantiopure β-Lactams for the synthesis of biologically active compounds of medicinal interests. In: β-Lactams: Unique structures of distinction for novel molecules, Banik B.K., Ed.; Springer: Berlin; 2012, Vol. 30, pp. 1-63.
[26]
Ojima, I.; Kuznetsova, L.; Ungureanu, I.M.; Pepe, A.; Zanardi, I.; Chen, J. Fluoro-β-lactams as useful building blocks for the synthesis of fluorinated amino acids, dipeptides, and taxoids. ACS Symp. Ser., 2005, 911, 544-561.
[27]
Banfi, L.; Guanti, G.; Rasparini, M. Intramolecular opening of β‐lactams with amines as a strategy toward enzymatically or photochemically triggered activation of lactenediyne prodrugs. Eur. J. Org. Chem., 2003, 2003(7), 1319-1336.
[28]
Alcaide, B.; Aly, M.F.; Rodríguez, C.; Rodríguez-Vicente, A. Base-promoted isomerization of cis-4-formyl-2-azetidinones: Chemoselective C4-epimerization vs. rearrangement to cyclic enaminones. J. Org. Chem., 2000, 65(11), 3453-3459.
[29]
Palomo, C.; Aizpurua, J.M.; Gracenea, J.J. Diastereoselective conjugate reduction and enolate trapping with glyoxylate imines. A concise approach to β-lactams that involves a ternary combination of components. J. Org. Chem., 1999, 64(5), 1693-1698.
[30]
Alcaide, B.; Almendros, P.; Cabrero, G.; Ruiz, M.P. Stereoselective cyanation of 4-formyl and 4-imino-β-lactams: Application to the synthesis of polyfunctionalized γ-lactams. Tetrahedron, 2012, 68(52), 10761-10768.
[31]
Leemans, E.; D’hooghe, M.; Dejaegher, Y.; Tornroos, K.W.; De Kimpe, N. Synthesis of 3,4-fused bicyclic β-lactams and their transformation into methyl cis-3-aminotetrahydrofuran-2-carboxy-lates. Eur. J. Org. Chem., 2010, 2010(2), 352-358.
[32]
Takahashi, M.; Atsumi, J.; Sengoku, T.; Yoda, H. Synthesis of β-amino-functionalized α-exo-methylene-γ-butyrolactones via a β-lactam synthon strategy. Synthesis, 2010, 19, 3282-3288.
[33]
Forró, E.; Galla, Z.; Fülöp, F. The N-hydroxymethyl group as a traceless activating group for the CAL-B-catalysed ring cleavage of β-lactams: A type of two-step cascade reaction. Eur. J. Org. Chem., 2016, 2016(15), 2647-2652.
[34]
Sundell, R.; Kanerva, L.T. Studies on N‐activation for the lipase‐catalyzed enantioselective preparation of β‐amino esters from 4‐phenylazetidin‐2‐one. Eur. J. Org. Chem., 2015, 2015(7), 1500-1506.
[35]
Alcaide, B.; Almendros, P.; Quiros, M.T. Accessing skeletal diversity under iron catalysis using substrate control: Formation of pyrroles versus lactones. Adv. Synth. Catal., 2011, 353(4), 585-594.
[36]
Barbier, V.; Marrot, J.; Couty, F.; David, O.R. β‐Lactams as formal dipoles through amide‐bond activation. Eur. J. Org. Chem., 2016, 2016(3), 549-555.
[37]
Fang, Y.; Rogness, D.C.; Larock, R.C.; Shi, F. Formation of acridones by ethylene extrusion in the reaction of arynes with β-lactams and dihydroquinolinones. J. Org. Chem., 2012, 77(14), 6262-6270.
[38]
Núnez-Villanueva, D.; Bonache, M.Á.; Infantes, L.; García-López, M.T.; Martín-Martínez, M.; González-Muniz, R. Quaternary α,α-2-oxoazepane α-amino acids: Synthesis from ornithine-derived β-lactams and incorporation into model dipeptides. J. Org. Chem., 2011, 76(16), 6592-6603.
[39]
Forró, E.; Fülöp, F. New enzymatic two‐step cascade reaction for the preparation of a key intermediate for the taxol side-chain. Eur. J. Org. Chem., 2010, 2010(16), 3074-3079.
[40]
Gianolio, E.; Mohan, R.; Berkessel, A. Enantiopure N‐benzyloxy-carbonyl‐β-2‐amino acid allyl esters from racemic β‐lactams by dynamic kinetic resolution using Candida antarctica Lipase B. Adv. Synth. Catal., 2016, 358(1), 30-33.
[41]
Anand, A.; Bhargava, G.; Kumar, V.; Mahajan, M.P. A regio and diastereoselective transformation of 3-dienyl-2-azetidinones to novel pyrroloxazine. Tetrahedron Lett., 2010, 51(17), 2312-2315.
[42]
Dražić, T.; Vazdar, K.; Vazdar, M.; Đaković, M.; Mikecin, A.M.; Kralj, M.; Malnar, M.; Hećimović, S.; Habuš, I. Synthesis of new 2-aminoimidazolones with antiproliferative activity via base promoted amino-β-lactam rearrangement. Tetrahedron, 2015, 71(49), 9202-9215.
[43]
Petrik, V.; Röschenthaler, G.V.; Cahard, D. Diastereoselective synthesis of trans-trifluoromethyl-β-lactams and α-alkyl-β-tri-fluoromethyl-β-amino esters. Tetrahedron, 2011, 67(18), 3254-3259.
[44]
Thi, H.D.; Decuyper, L.; Mollet, K.; Kenis, S.; De Kimpe, N.; Van Nguyen, T.; D’hooghe, M. Synthesis of trifluoromethylated azetidines, aminopropanes, 1,3-oxazinanes, and 1,3-oxazinan-2-ones starting from 4-trifluoromethyl-β-lactam building blocks. Synlett, 2016, 27(7), 1100-1105.
[45]
Yada, A.; Okajima, S.; Murakami, M. Palladium-catalyzed intramolecular insertion of alkenes into the carbon-nitrogen bond of β-lactams. J. Am. Chem. Soc., 2015, 137(27), 8708-8711.
[46]
Sundell, R.; Siirola, E.; Kanerva, L.T. Regio‐and stereoselective lipase‐catalysed acylation of methyl α‐D‐glycopyranosides with fluorinated β‐lactams. Eur. J. Org. Chem., 2014, 2014(30), 6753-6760.
[47]
Raj, R.; Mehra, V.; Singh, P.; Kumar, V.; Bhargava, G.; Mahajan, M.P.; Handa, S.; Slaughter, L.M. β‐Lactam‐synthon‐interceded, facile, one‐pot, diastereoselective synthesis of functionalized tetra/octahydroisoquinolone derivatives. Eur. J. Org. Chem., 2011, 2011(14), 2697-2704.
[48]
Anand, A.; Mehra, V.; Kumar, V. Triflic acid mediated Fries rearrangement of 3-dienyl-2-azetidinones: Facile synthesis of 3-(but-2-enylidene)quinolin-4(3H)-ones. Synlett, 2013, 24(7), 865-867.
[49]
Mehra, V.; Singh, P.; Kumar, V. β-Lactam-synthon-interceded diastereoselective synthesis of functionally enriched thioxo-imidazolidines, imidazolidin-2-ones, piperazine-5, 6-diones and 4, 5-dihydroimidazoles. Tetrahedron, 2012, 68(40), 8395-8402.
[50]
Lange, J.; Bissember, A.C.; Banwell, M.G.; Cade, I.A. Synthesis of 2,3-dihydro-4(1H)-quinolones and the corresponding 4(1H)-quinolones via low-temperature Fries rearrangement of N-arylazetidin-2-ones. Aust. J. Chem., 2011, 64(4), 454-470.
[51]
Singh, P.; Raj, R.; Bhargava, G.; Hendricks, D.T.; Handa, S.; Slaughter, L.M.; Kumar, V. β-Lactam synthon-interceded diastereoselective synthesis of functionalized octahydroindole-based molecular scaffolds and their in vitro cytotoxic evaluation. Eur. J. Med. Chem., 2012, 58, 513-518.
[52]
Mehra, V.; Kumar, V. Facile, diastereoselective synthesis of functionally enriched hexahydroisoquinolines, hexahydroisoquinolones and hexahydroisochromones via inter-/intramolecular amidolysis of C-3 functionalized 2-azetidinones. Tetrahedron, 2013, 69(19), 3857-3866.
[53]
Singh, P.; Hendricks, D.T.; Bisetty, K.; Kumar, V. β-Lactam-synthon-interceded synthesis of isatin-imidazolidine-2-thione conjugates with structural validation using molecular dynamic simulations and cytotoxic evaluation. Synlett, 2013, 24(14), 1865-1869.
[54]
Forró, E.; Kiss, L.; Árva, J.; Fülöp, F. Efficient enzymatic routes for the synthesis of new eight-membered cyclic β-amino acid and β-lactam enantiomers. Molecules, 2017, 22(12), 2211.
[55]
Dražić, T.; Molčanov, K.; Jurin, M.; Roje, M. Synthesis of marine alkaloids leucettamines B and C by β-lactam ring rearrangement. Synth. Commun., 2017, 47(8), 764-770.
[56]
Dekeukeleire, S.; D’hooghe, M.; De Kimpe, N. Diastereoselective synthesis of bicyclic γ-lactams via ring expansion of monocyclic β-lactams. J. Org. Chem., 2009, 74(4), 1644-1649.
[57]
Singh, P.; Singh, P.; Kumar, K. Synthetic studies on the role of substituents at C-3 position on C3-C4 bond cleavage of β-lactam ring: Convenient route for diastereoselective synthesis of pyridin-2-ones. Heterocycles, 2012, 86(2), 1301-1322.
[58]
Mollet, K.; Goossens, H.; Piens, N.; Catak, S.; Waroquier, M.; Törnroos, K.W.; Van Speybroeck, V.; D’hooghe, M.; De Kimpe, N. Synthesis of 2‐hydroxy‐1,4‐oxazin‐3‐ones through ring transformation of 3‐hydroxy‐4‐(1,2‐dihydroxyethyl)‐β‐lactams and a study of their reactivity. Chem. Eur. J., 2013, 19(10), 3383-3396.
[59]
Almendros, P.; Aragoncillo, C.; Cabrero, G.; Callejo, R.; Carrascosa, R.; Luna, A.; Del Campo, T.M.; Pardo, M.C.; Quirós, M.T.; Redondo, M.C. Thermal cope reaction of 2-azetidinone-tethered 1, 5-dienes: Synthesis of tetrahydroazocinones. ARKIVOC, 2010, 2010, 74-92.
[60]
Palomo, C.; Aizpurua, J.; Ganboa, I.; Oiarbide, M. From β-lactams to α-and β-amino acid derived peptides. Amino Acids, 1999, 16(3-4), 321-343.
[61]
Alcaide, B.; Almendros, P.; Luna, A.; Torres, M.R. Divergent reactivity of 2‐azetidinone‐tethered allenols with electrophilic reagents: Controlled ring expansion versus spirocyclization. Adv. Synth. Catal., 2010, 352(4), 621-626.
[62]
Thi, H.D.; Danneels, B.; Desmet, T.; Van Hecke, K.; Van Nguyen, T.; D’hooghe, M. Synthesis and applications of 3‐methylene‐4‐(trifluoromethyl) azetidin‐2‐ones as building blocks for the preparation of mono‐and spirocyclic 4‐CF3‐β‐lactams. Asian J. Org. Chem., 2016, 5(12), 1480-1491.
[63]
King, F.D.; Caddick, S. Novel acid-mediated reactions of phenyl-substituted lactams. Tetrahedron Lett., 2011, 52(50), 6783-6784.
[64]
Alcaide, B.; Almendros, P.; Cembellin, S.; Martinez del Campo, T. Gold as catalyst for the hydroarylation and domino hydroarylation/N1-C4 cleavage of β-lactam-tethered allenyl indoles. J. Org. Chem., 2015, 80(9), 4650-4660.
[65]
Tarbe, M.; Azcune, I.; Balentová, E.; Miles, J.J.; Edwards, E.E.; Miles, K.M.; Do, P.; Baker, B.M.; Sewell, A.K.; Aizpurua, J.M. Design, synthesis and evaluation of β-lactam antigenic peptide hybrids; unusual opening of the β-lactam ring in acidic media. Org. Biomol. Chem., 2010, 8(23), 5345-5353.
[66]
Rao, B.G.; Prasad, A.; Rao, P.V. Synthesis and biological evaluation of novel azetidine derivative. Int. J. Innov. Res. Dev., 2013, 2(10), 72-75.
[67]
Couty, F.; Evano, G. Azetidines: New tools for the synthesis of nitrogen heterocycles. Synlett, 2009, 2009(19), 3053-3064.
[68]
Mollet, K.; Catak, S.; Waroquier, M.; Van Speybroeck, V.; D’hooghe, M.; De Kimpe, N. Stereoselective synthesis of cis-3,4-disubstituted piperidines through ring transformation of 2-(2-mesy-loxyethyl) azetidines. J. Org. Chem., 2011, 76(20), 8364-8375.
[69]
Mollet, K.; Broeckx, L.; D’hooghe, M.; De Kimpe, N. Synthesis of stereodefined 3, 4-disubstituted piperidines through rearrangement of 2-(2-bromo-1,1-dimethylethyl) azetidines. Heterocycles, 2012, 84, 431-447.
[70]
Dekeukeleire, S.; D’hooghe, M.; Törnroos, K.W.; De Kimpe, N. Stereoselective synthesis of chiral 4-(1-chloroalkyl)-β-lactams starting from amino acids and their transformation into functionalized chiral azetidines and pyrrolidines. J. Org. Chem., 2010, 75(17), 5934-5940.
[71]
Mehra, V.; Kumar, V. Diastereoselective synthesis of 2, 3-disubs-tituted 1-arylazetidines via NaBH4-promoted facile reduction of C-3 functionalized azetidin-2-ones. Tetrahedron Lett., 2013, 54(35), 4763-4766.
[72]
Alcaide, B.; Almendros, P.; Aragoncillo, C.; Gómez‐Campillos, G. Synthesis of functionalized azetidines through chemoselective zinc‐catalyzed reduction of β‐lactams with silanes. Adv. Synth. Catal., 2013, 355(10), 2089-2094.
[73]
Creary, X.; Losch, A. Hydroxy-β-thiolactams to oxazole-2-thiones. A novel DMSO-promoted oxidation. Org. Lett., 2008, 10(21), 4975-4978.
[74]
Zarei, M. Thionation of β-lactams to β-thiolactams by silica-supported P2S5. J. Sulfur Chem., 2013, 34(4), 370-376.
[75]
Al-Hamdan, N.S.; Habib, O.M.; Ibrahim, Y.A.; Al-Awadi, N.A.; El-Dusouqui, O.M. Pyrolysis of azetidinone derivatives: A versatile route towards electron-rich alkenes, C-1 allylation and/or homologation of aldehydes. RSC Adv., 2014, 4(40), 21023-21031.
[76]
Paquette, L.A.; Wyvratt, M.J.; Allen, G.R. Unsaturated heterocyclic systems. LXXX. Stereochemistry of the thermal fragmentation of beta-lactams. Comparison with the pyrolysis of 1-azetines. J. Am. Chem. Soc., 1970, 92, 1763-1765.
[77]
Bartnik, R.; Leśniak, S. Flash vacuum photolysis of four membered ring containing nitrogen atom. Part-III. Thermal decomposition of β-lactams. Pol. J. Chem., 1994, 68, 2605-2611.
[78]
Fischer, M. Photochemical reactions, IV. Photochemical fragmentation of β-lactams. Chem. Reports, 1968, 101(8), 2669-2678.
[79]
Singh, G.S. A novel photofragmentation of 1-diphenylmethyl-3,3-diphenyl-4-aryl/(2-thientyl)-2-azetidinones. Asian J. Chem., 1993, 5, 783-787.
[80]
Upadhyaya, A.K.; Mehrotra, K.N. A novel photofragmentation of 2-azetidinones. Indian J. Chem. Sect. B, 1988, 87B, 944.
[81]
Leśniak, S.; Chrostowska, A.; Kuc, D.; Maciejczyk, M.; Khayar, S.; Nazarski, R.B.; Urbaniak, Ł. Synthesis of aryliminoacetonitriles under FVT conditions or by dehydrogenation of arylaminoacetonitriles: An NMR and UV-photoelectron spectroscopy study. Tetrahedron, 2009, 65(51), 10581-10589.
[82]
Pérez-Ruiz, R.; Sáez, J.A.; Domingo, L.R.; Jiménez, M.C.; Miranda, M.A. Ring splitting of azetidin-2-ones via radical anions. Org. Biomol. Chem., 2012, 10(39), 7928-7932.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy