Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Pharmacokinetic and Pharmacogenetic Markers of Irinotecan Toxicity

Author(s): Roberta Zilles Hahn, Marina Venzon Antunes, Simone Gasparin Verza, Magda Susana Perassolo, Edna Sayuri Suyenaga, Gilberto Schwartsmann and Rafael Linden*

Volume 26, Issue 12, 2019

Page: [2085 - 2107] Pages: 23

DOI: 10.2174/0929867325666180622141101

Price: $65

Abstract

Background: Irinotecan (IRI) is a widely used chemotherapeutic drug, mostly used for first-line treatment of colorectal and pancreatic cancer. IRI doses are usually established based on patient’s body surface area, an approach associated with large inter-individual variability in drug exposure and high incidence of severe toxicity. Toxic and therapeutic effects of IRI are also due to its active metabolite SN-38, reported to be up to 100 times more cytotoxic than IRI. SN-38 is detoxified by the formation of SN-38 glucuronide, through UGT1A1. Genetic polymorphisms in the UGT1A1 gene are associated to higher exposures to SN-38 and severe toxicity. Pharmacokinetic models to describe IRI and SN-38 kinetic profiles are available, with few studies exploring pharmacokinetic and pharmacogenetic-based dose individualization. The aim of this manuscript is to review the available evidence supporting pharmacogenetic and pharmacokinetic dose individualization of IRI in order to reduce the occurrence of severe toxicity during cancer treatment.

Methods: The PubMed database was searched, considering papers published in the period from 1995-2017, using the keywords irinotecan, pharmacogenetics, metabolic genotyping, dose individualization, therapeutic drug monitoring, pharmacokinetics and pharmacodynamics, either alone or in combination, with original papers being selected based on the presence of relevant data.

Conclusion: The findings of this review confirm the importance of considering individual patient characteristics to select IRI doses. Currently, the most straightforward approach for IRI dose individualization is UGT1A1 genotyping. However, this strategy is sub-optimal due to several other genetic and environmental contributions to the variable pharmacokinetics of IRI and its active metabolite. The use of dried blood spot sampling could allow the clinical application of limited sampling and population pharmacokinetic models for IRI doses individualization.

Keywords: Irinotecan, SN-38, pharmacokinetics, pharmacogenetics, dose individualization, UGT1A1 genotyping.

[1]
Carrillo, J.A.; Munoz, C.A. Alternative chemotherapeutic agents: nitrosoureas, cisplatin, irinotecan. Neurosurg. Clin. N. Am., 2012, 23(2), 297-306.
[http://dx.doi.org/10.1016/j.nec.2012.01.005] [PMID: 22440873]
[2]
Kawamura, K.; Hashimoto, H.; Ogawa, M.; Yui, J.; Wakizaka, H.; Yamasaki, T.; Hatori, A.; Xie, L.; Kumata, K.; Fujinaga, M.; Zhang, M.R. Synthesis, metabolite analysis, and in vivo evaluation of [(11)C]irinotecan as a novel positron emission tomography (PET) probe. Nucl. Med. Biol., 2013, 40(5), 651-657.
[http://dx.doi.org/10.1016/j.nucmedbio.2013.03.004] [PMID: 23583082]
[3]
Basu, S.; Zeng, M.; Yin, T.; Gao, S.; Hu, M. Development and validation of an UPLC-MS/MS method for the quantification of irinotecan, SN-38 and SN-38 glucuronide in plasma, urine, feces, liver and kidney: Application to a pharmacokinetic study of irinotecan in rats. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2016, 1015-1016, 34-41.
[http://dx.doi.org/10.1016/j.jchromb.2016.02.012] [PMID: 26894853]
[4]
Fuchs, C.; Mitchell, E.P.; Hoff, P.M. Irinotecan in the treatment of colorectal cancer. Cancer Treat. Rev., 2006, 32(7), 491-503.
[http://dx.doi.org/10.1016/j.ctrv.2006.07.001] [PMID: 16959432]
[5]
Petrelli, F.; Inno, A.; Ghidini, A.; Rimassa, L.; Tomasello, G.; Labianca, R.; Barni, S. Second line with oxaliplatin- or irinotecan-based chemotherapy for gemcitabine-pretreated pancreatic cancer: A systematic review. Eur. J. Cancer, 2017, 81, 174-182.
[http://dx.doi.org/10.1016/j.ejca.2017.05.025] [PMID: 28633088]
[6]
Schønnemann, K.R.; Yilmaz, M.; Bjerregaard, J.K.; Nielsen, K.M.; Pfeiffer, P.; Phase, I.I. Phase II study of biweekly cetuximab in combination with irinotecan as second-line treatment in patients with platinum-resistant gastro-oesophageal cancer. Eur. J. Cancer, 2012, 48(4), 510-517.
[http://dx.doi.org/10.1016/j.ejca.2011.12.005] [PMID: 22244801]
[7]
Ueda, Y.; Miyatake, T.; Nagamatsu, M.; Yamasaki, M.; Nishio, Y.; Yoshino, K.; Fujita, M.; Tsutsui, T.; Enomoto, T.; Kimura, T. A phase II study of combination chemotherapy using docetaxel and irinotecan for TC-refractory or TC-resistant ovarian carcinomas (GOGO-OV2 study) and for primary clear or mucinous ovarian carcinomas (GOGO-OV3 Study). Eur. J. Obstet. Gynecol. Reprod. Biol., 2013, 170(1), 259-263.
[http://dx.doi.org/10.1016/j.ejogrb.2013.06.035] [PMID: 23880598]
[8]
Algeciras-Schimnich, A.; O’Kane, D.J.; Snozek, C.L.H. Pharmacogenomics of tamoxifen and irinotecan therapies. Clin. Lab. Med., 2008, 28(4), 553-567.
[http://dx.doi.org/10.1016/j.cll.2008.05.004] [PMID: 19059062]
[9]
Etienne-Grimaldi, M.C.; Boyer, J.C.; Thomas, F.; Quaranta, S.; Picard, N.; Loriot, M.A.; Narjoz, C.; Poncet, D.; Gagnieu, M.C.; Ged, C.; Broly, F.; Le Morvan, V.; Bouquié, R.; Gaub, M.P.; Philibert, L.; Ghiringhelli, F.; Le Guellec, C. UGT1A1 genotype and irinotecan therapy: general review and implementation in routine practice. Fundam. Clin. Pharmacol., 2015, 29(3), 219-237.
[http://dx.doi.org/10.1111/fcp.12117] [PMID: 25817555]
[10]
Zashikhina, N.N.; Volokitina, M.V.; Korzhikov-Vlakh, V.A.; Tarasenko, I.I.; Lavrentieva, A.; Scheper, T.; Rühl, E.; Orlova, R.V.; Tennikova, T.B.; Korzhikova-Vlakh, E.G. Self-assembled polypeptide nanoparticles for intracellular irinotecan delivery. Eur. J. Pharm. Sci., 2017, 109(July), 1-12.
[http://dx.doi.org/10.1016/j.ejps.2017.07.022] [PMID: 28735041]
[11]
Alimonti, A.; Gelibter, A.; Pavese, I.; Satta, F.; Cognetti, F.; Ferretti, G.; Rasio, D.; Vecchione, A.; Di Palma, M. New approaches to prevent intestinal toxicity of irinotecan-based regimens. Cancer Treat. Rev., 2004, 30(6), 555-562.
[http://dx.doi.org/10.1016/j.ctrv.2004.05.002] [PMID: 15325035]
[12]
Kweekel, D.; Guchelaar, H.J.; Gelderblom, H. Clinical and pharmacogenetic factors associated with irinotecan toxicity. Cancer Treat. Rev., 2008, 34(7), 656-669.
[http://dx.doi.org/10.1016/j.ctrv.2008.05.002] [PMID: 18558463]
[13]
Lam, S.W.; Guchelaar, H.J.; Boven, E. The role of pharmacogenetics in capecitabine efficacy and toxicity. Cancer Treat. Rev., 2016, 50, 9-22.
[http://dx.doi.org/10.1016/j.ctrv.2016.08.001] [PMID: 27569869]
[14]
Wang-Gillam, A.; Li, C.P.; Bodoky, G.; Dean, A.; Shan, Y.S.; Jameson, G.; Macarulla, T.; Lee, K.H.; Cunningham, D.; Blanc, J.F.; Hubner, R.A.; Chiu, C.F.; Schwartsmann, G.; Siveke, J.T.; Braiteh, F.; Moyo, V.; Belanger, B.; Dhindsa, N.; Bayever, E.; Von Hoff, D.D.; Chen, L.T. Nanoliposomal irinotecan with fluorouracil and folinic acid in metastatic pancreatic cancer after previous gemcitabine-based therapy (NAPOLI-1): a global, randomised, open-label, phase 3 trial. Lancet, 2016, 387(10018), 545-557.
[http://dx.doi.org/10.1016/S0140-6736(15)00986-1] [PMID: 26615328]
[15]
van der Bol, J.M.; Mathijssen, R.H.J.; Creemers, G.J.M.; Planting, A.S.T.; Loos, W.J.; Wiemer, E.A.C.; Friberg, L.E.; Verweij, J.; Sparreboom, A.; de Jong, F.A.A.A. CYP3A4 phenotype-based dosing algorithm for individualized treatment of irinotecan. Clin. Cancer Res., 2010, 16(2), 736-742.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-1526] [PMID: 20068078]
[16]
Adiwijaya, B.S.; Kim, J.; Lang, I.; Csõszi, T.; Cubillo, A.; Chen, J-S.; Wong, M.; Park, J.O.; Kim, J.S.; Rau, K.M.; Melichar, B.; Gallego, J.B.; Fitzgerald, J.; Belanger, B.; Molnar, I.; Ma, W.W. Population Pharmacokinetics of Liposomal Irinotecan in Patients With Cancer. Clin. Pharmacol. Ther., 2017, 102(6), 997-1005.
[http://dx.doi.org/10.1002/cpt.720] [PMID: 28445610]
[17]
Xu, Y.; Villalona-Calero, M.A. Irinotecan: mechanisms of tumor resistance and novel strategies for modulating its activity. Ann. Oncol., 2002, 13(12), 1841-1851.
[http://dx.doi.org/10.1093/annonc/mdf337] [PMID: 12453851]
[18]
Martino, E.; Della Volpe, S.; Terribile, E.; Benetti, E.; Sakaj, M.; Centamore, A.; Sala, A.; Collina, S. The long story of camptothecin: From traditional medicine to drugs. Bioorg. Med. Chem. Lett., 2017, 27(4), 701-707.
[http://dx.doi.org/10.1016/j.bmcl.2016.12.085] [PMID: 28073672]
[19]
Morham, S.G.; Kluckman, K.D.; Voulomanos, N.; Smithies, O. Targeted disruption of the mouse topoisomerase I gene by camptothecin selection. Mol. Cell. Biol., 1996, 16(12), 6804-6809.
[http://dx.doi.org/10.1128/MCB.16.12.6804] [PMID: 8943335]
[20]
Fan, Y.; Mansoor, N.; Ahmad, T.; Khan, R.A.; Czejka, M.; Sharib, S.; Yang, D-H.; Ahmed, M. Physiologically based pharmacokinetic modeling for predicting irinotecan exposure in human body. Oncotarget, 2017, 8(29), 48178-48185.
[http://dx.doi.org/10.18632/oncotarget.18380] [PMID: 28636998]
[21]
Lu, A.J.; Zhang, Z.S.; Zheng, M.Y.; Zou, H.J.; Luo, X.M.; Jiang, H.L. 3D-QSAR study of 20 (S)-camptothecin analogs. Acta Pharmacol. Sin., 2007, 28(2), 307-314.
[http://dx.doi.org/10.1111/j.1745-7254.2007.00477.x] [PMID: 17241535]
[22]
Staker, B.L.; Hjerrild, K.; Feese, M.D.; Behnke, C.A.; Burgin, A.B., Jr; Stewart, L. The mechanism of topoisomerase I poisoning by a camptothecin analog. Proc. Natl. Acad. Sci. USA, 2002, 99(24), 15387-15392.
[http://dx.doi.org/10.1073/pnas.242259599] [PMID: 12426403]
[23]
Huisman, S.A.; de Bruijn, P.; Ghobadi Moghaddam-Helmantel, I.M.; IJzermans, J.N.M.; Wiemer, E.A.C.; Mathijssen, R.H.J.; de Bruin, R.W.F. Fasting protects against the side effects of irinotecan treatment but does not affect anti-tumour activity in mice. Br. J. Pharmacol., 2016, 173(5), 804-814.
[http://dx.doi.org/10.1111/bph.13317] [PMID: 26332723]
[24]
Zhang, X.; Yin, J.F.; Zhang, J.; Kong, S.J.; Zhang, H.Y.; Chen, X.M. UGT1A1*6 polymorphisms are correlated with irinotecan-induced neutropenia: a systematic review and meta-analysis. Cancer Chemother. Pharmacol., 2017, 80(1), 135-149.
[http://dx.doi.org/10.1007/s00280-017-3344-3] [PMID: 28585035]
[25]
Conklin, K.A. Chemotherapy-associated oxidative stress: impact on chemotherapeutic effectiveness. Integr. Cancer Ther., 2004, 3(4), 294-300.
[http://dx.doi.org/10.1177/1534735404270335] [PMID: 15523100]
[26]
Chen, Y.; Jungsuwadee, P.; Vore, M.; Butterfield, D.A.; St Clair, D.K. Collateral damage in cancer chemotherapy: oxidative stress in nontargeted tissues. Mol. Interv., 2007, 7(3), 147-156.
[http://dx.doi.org/10.1124/mi.7.3.6] [PMID: 17609521]
[27]
Rothenberg, M.L.; Kuhn, J.G.; Schaaf, L.J.; Rodriguez, G.I.; Eckhardt, S.G.; Villalona-Calero, M.A.; Rinaldi, D.A.; Hammond, L.A.; Hodges, S.; Sharma, A.; Elfring, G.L.; Petit, R.G.; Locker, P.K.; Miller, L.L.; von Hoff, D.D.; Phase, I. Phase I dose-finding and pharmacokinetic trial of irinotecan (CPT-11) administered every two weeks. Ann. Oncol., 2001, 12(11), 1631-1641.
[http://dx.doi.org/10.1023/A:1013157727506] [PMID: 11822765]
[28]
Poujol, S.; Pinguet, F.; Ychou, M.; Abderrahim, A.G.; Duffour, J.; Bressolle, F.M.M. A limited sampling strategy to estimate the pharmacokinetic parameters of irinotecan and its active metabolite, SN-38, in patients with metastatic digestive cancer receiving the FOLFIRI regimen. Oncol. Rep., 2007, 18(6), 1613-321.
[http://dx.doi.org/10.3892/or.18.6.1613] [PMID: 17982652]
[29]
Klein, C.E.; Gupta, E.; Reid, J.M.; Atherton, P.J.; Sloan, J.A.; Pitot, H.C.; Ratain, M.J.; Kastrissios, H. Population pharmacokinetic model for irinotecan and two of its metabolites, SN-38 and SN-38 glucuronide. Clin. Pharmacol. Ther., 2002, 72(6), 638-647.
[http://dx.doi.org/10.1067/mcp.2002.129502] [PMID: 12496745]
[30]
Chabot, G.G.; Abigerges, D.; Catimel, G.; Culine, S.; de Forni, M.; Extra, J.M.; Mahjoubi, M.; Hérait, P.; Armand, J.P.; Bugat, R. Population pharmacokinetics and pharmacodynamics of irinotecan (CPT-11) and active metabolite SN-38 during phase I trials. Ann. Oncol., 1995, 6(2), 141-151.
[http://dx.doi.org/10.1093/oxfordjournals.annonc.a059109] [PMID: 7786822]
[31]
Canal, P.; Gay, C.; Dezeuze, A.; Douillard, J.Y.; Bugat, R.; Brunet, R.; Adenis, A.; Herait, P.; Lokiec, F.; Mathieu-Boue, A. Pharmacokinetics and pharmacodynamics of irinotecan during a phase II clinical trial in colorectal cancer. J. Clin. Oncol., 1996, 14(10), 2688-2695.
[http://dx.doi.org/10.1200/JCO.1996.14.10.2688] [PMID: 8874328]
[32]
Saltz, L.B.; Kanowitz, J.; Kemeny, N.E.; Schaaf, L.; Spriggs, D.; Staton, B.A.; Berkery, R.; Steger, C.; Eng, M.; Dietz, A.; Locker, P.; Kelsen, D.P.; Phase, I. Phase I clinical and pharmacokinetic study of irinotecan, fluorouracil, and leucovorin in patients with advanced solid tumors. J. Clin. Oncol., 1996, 14(11), 2959-2967.
[http://dx.doi.org/10.1200/JCO.1996.14.11.2959] [PMID: 8918493]
[33]
Sparreboom, A.; de Jonge, M.J.; de Bruijn, P.; Brouwer, E.; Nooter, K.; Loos, W.J.; van Alphen, R.J.; Mathijssen, R.H.; Stoter, G.; Verweij, J. Irinotecan (CPT-11) metabolism and disposition in cancer patients. Clin. Cancer Res., 1998, 4(11), 2747-2754.
[PMID: 9829738]
[34]
Pitot, H.C.; Goldberg, R.M.; Reid, J.M.; Sloan, J.A.; Skaff, P.A.; Erlichman, C.; Rubin, J.; Burch, P.A.; Adjei, A.A.; Alberts, S.A.; Schaaf, L.J.; Elfring, G.; Miller, L.L.; Phase, I. Phase I dose-finding and pharmacokinetic trial of irinotecan hydrochloride (CPT-11) using a once-every-three-week dosing schedule for patients with advanced solid tumor malignancy. Clin. Cancer Res., 2000, 6(6), 2236-2244.
[PMID: 10873073]
[35]
de Jonge, M.J.A.; Verweij, J.; de Bruijn, P.; Brouwer, E.; Mathijssen, R.H.J.; van Alphen, R.J.; de Boer-Dennert, M.M.; Vernillet, L.; Jacques, C.; Sparreboom, A. Pharmacokinetic, metabolic, and pharmacodynamic profiles in a dose-escalating study of irinotecan and cisplatin. J. Clin. Oncol., 2000, 18(1), 195-203.
[http://dx.doi.org/10.1200/JCO.2000.18.1.195] [PMID: 10623710]
[36]
Slatter, J.G.; Schaaf, L.J.; Sams, J.P.; Feenstra, K.L.; Johnson, M.G.; Bombardt, P.A.; Cathcart, K.S.; Verburg, M.T.; Pearson, L.K.; Compton, L.D.; Miller, L.L.; Baker, D.S.; Pesheck, C.V.; Lord, R.S. III Pharmacokinetics, metabolism, and excretion of irinotecan (CPT-11) following I.V. infusion of [(14)C]CPT-11 in cancer patients. Drug Metab. Dispos., 2000, 28(4), 423-433.
[PMID: 10725311]
[37]
Poujol, S.; Pinguet, F.; Malosse, F.; Astre, C.; Ychou, M.; Culine, S.; Bressolle, F. Sensitive HPLC-fluorescence method for irinotecan and four major metabolites in human plasma and saliva: application to pharmacokinetic studies. Clin. Chem., 2003, 49(11), 1900-1908.
[http://dx.doi.org/10.1373/clinchem.2003.023481] [PMID: 14578322]
[38]
Satoh, T.; Yasui, H.; Muro, K.; Komatsu, Y.; Sameshima, S.; Yamaguchi, K.; Sugihara, K. Pharmacokinetic assessment of irinotecan, SN-38, and SN-38-glucuronide: a substudy of the FIRIS study. Anticancer Res., 2013, 33(9), 3845-3853.
[PMID: 24023318]
[39]
Ramesh, M.; Ahlawat, P.; Srinivas, N.R. Irinotecan and its active metabolite, SN-38: review of bioanalytical methods and recent update from clinical pharmacology perspectives. Biomed. Chromatogr., 2010, 24(1), 104-123.
[http://dx.doi.org/10.1002/bmc.1345] [PMID: 19852077]
[40]
Boyd, G.; Smyth, J.F.; Jodrell, D.I.; Cummings, J. High-performance liquid chromatographic technique for the simultaneous determination of lactone and hydroxy acid forms of camptothecin and SN-38 in tissue culture media and cancer cells. Anal. Biochem., 2001, 297(1), 15-24.
[http://dx.doi.org/10.1006/abio.2001.5317] [PMID: 11567523]
[41]
Poujol, S.; Bressolle, F.; Duffour, J.; Abderrahim, A.G.; Astre, C.; Ychou, M.; Pinguet, F. Pharmacokinetics and pharmacodynamics of irinotecan and its metabolites from plasma and saliva data in patients with metastatic digestive cancer receiving Folfiri regimen. Cancer Chemother. Pharmacol., 2006, 58(3), 292-305.
[http://dx.doi.org/10.1007/s00280-005-0166-5] [PMID: 16369821]
[42]
Hirose, K.; Yamashita, K.; Takada, H.; Kaneda, N.; Fukami, K.; Maruo, E.; Kitamura, M.; Hasegawa, J.; Maeda, Y. Usefulness of one-point plasma SN-38G/SN-38 concentration ratios as a substitute for UGT1A1 genetic information after irinotecan administration. Int. J. Clin. Oncol., 2014, 19(2), 397-402.
[http://dx.doi.org/10.1007/s10147-013-0558-1] [PMID: 23605141]
[43]
van Schaik, R.H.N. Implications of cytochrome P450 genetic polymorphisms on the toxicity of antitumor agents. Ther. Drug Monit., 2004, 26(2), 236-240.
[http://dx.doi.org/10.1097/00007691-200404000-00027] [PMID: 15228172]
[44]
Santos, A.; Zanetta, S.; Cresteil, T.; Deroussent, A.; Pein, F.; Raymond, E.; Vernillet, L.; Risse, M.L.; Boige, V.; Gouyette, A.; Vassal, G. Metabolism of irinotecan (CPT-11) by CYP3A4 and CYP3A5 in humans. Clin. Cancer Res., 2000, 6(5), 2012-2020.
[PMID: 10815927]
[45]
Kehrer, D.F.S.; Mathijssen, R.H.J.; Verweij, J.; de Bruijn, P.; Sparreboom, A. Modulation of irinotecan metabolism by ketoconazole. J. Clin. Oncol., 2002, 20(14), 3122-3129.
[http://dx.doi.org/10.1200/JCO.2002.08.177] [PMID: 12118026]
[46]
Mathijssen, R.H.J.; Verweij, J.; de Bruijn, P.; Loos, W.J.; Sparreboom, A. Effects of St. John’s wort on irinotecan metabolism. J. Natl. Cancer Inst., 2002, 94(16), 1247-1249.
[http://dx.doi.org/10.1093/jnci/94.16.1247] [PMID: 12189228]
[47]
Khanna, R.; Morton, C.L.; Danks, M.K.; Potter, P.M. Proficient metabolism of irinotecan by a human intestinal carboxylesterase. Cancer Res., 2000, 60(17), 4725-4728.
[PMID: 10987276]
[48]
Humerickhouse, R.; Lohrbach, K.; Li, L.; Bosron, W.F.; Dolan, M.E. Characterization of CPT-11 hydrolysis by human liver carboxylesterase isoforms hCE-1 and hCE-2. Cancer Res., 2000, 60(5), 1189-1192.
[PMID: 10728672]
[49]
Hatfield, M.J.; Tsurkan, L.; Garrett, M.; Shaver, T.M.; Hyatt, J.L.; Edwards, C.C.; Hicks, L.D.; Potter, P.M. Organ-specific carboxylesterase profiling identifies the small intestine and kidney as major contributors of activation of the anticancer prodrug CPT-11. Biochem. Pharmacol., 2011, 81(1), 24-31.
[http://dx.doi.org/10.1016/j.bcp.2010.09.001] [PMID: 20833148]
[50]
Iusuf, D.; Ludwig, M.; Elbatsh, A.; van Esch, A.; van de Steeg, E.; Wagenaar, E.; van der Valk, M.; Lin, F.; van Tellingen, O.; Schinkel, A.H. OATP1A/1B transporters affect irinotecan and SN-38 pharmacokinetics and carboxylesterase expression in knockout and humanized transgenic mice. Mol. Cancer Ther., 2014, 13(2), 492-503.
[http://dx.doi.org/10.1158/1535-7163.MCT-13-0541] [PMID: 24194565]
[51]
Fujiwara, Y.; Minami, H. An Overview of the Recent Progress in Irinotecan Pharmacogenetics R Eview. , 391-406. 2010.
[52]
Innocenti, F.; Kroetz, D.L.; Schuetz, E.; Dolan, M.E.; Ramírez, J.; Relling, M.; Chen, P.; Das, S.; Rosner, G.L.; Ratain, M.J. Comprehensive pharmacogenetic analysis of irinotecan neutropenia and pharmacokinetics. J. Clin. Oncol., 2009, 27(16), 2604-2614.
[http://dx.doi.org/10.1200/JCO.2008.20.6300] [PMID: 19349540]
[53]
Sai, K.; Saito, Y.; Maekawa, K.; Kim, S.R.; Kaniwa, N.; Nishimaki-Mogami, T.; Sawada, J.; Shirao, K.; Hamaguchi, T.; Yamamoto, N.; Kunitoh, H.; Ohe, Y.; Yamada, Y.; Tamura, T.; Yoshida, T.; Matsumura, Y.; Ohtsu, A.; Saijo, N.; Minami, H. Additive effects of drug transporter genetic polymorphisms on irinotecan pharmacokinetics/pharmacodynamics in Japanese cancer patients. Cancer Chemother. Pharmacol., 2010, 66(1), 95-105.
[http://dx.doi.org/10.1007/s00280-009-1138-y] [PMID: 19771428]
[54]
Innocenti, F.; Schilsky, R.L.; Ramírez, J.; Janisch, L.; Undevia, S.; House, L.K.; Das, S.; Wu, K.; Turcich, M.; Marsh, R.; Karrison, T.; Maitland, M.L.; Salgia, R.; Ratain, M.J. Dose-finding and pharmacokinetic study to optimize the dosing of irinotecan according to the UGT1A1 genotype of patients with cancer. J. Clin. Oncol., 2014, 32(22), 2328-2334.
[http://dx.doi.org/10.1200/JCO.2014.55.2307] [PMID: 24958824]
[55]
Ratain, M.J.; Innocenti, F. Individualizing dosing of irinotecan. Clin. Cancer Res., 2010, 16(2), 371-372.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-2936] [PMID: 20068075]
[56]
Di Paolo, A.; Bocci, G.; Polillo, M.; Del Re, M.; Di Desidero, T.; Lastella, M.; Danesi, R. Pharmacokinetic and pharmacogenetic predictive markers of irinotecan activity and toxicity. Curr. Drug Metab., 2011, 12(10), 932-943.
[http://dx.doi.org/10.2174/138920011798062283] [PMID: 21787264]
[57]
Hirose, K.; Kozu, C.; Yamashita, K.; Maruo, E.; Kitamura, M.; Hasegawa, J.; Omoda, K.; Murakami, T.; Maeda, Y. Correlation between plasma concentration ratios of SN-38 glucuronide and SN-38 and neutropenia induction in patients with colorectal cancer and wild-type UGT1A1 gene. Oncol. Lett., 2012, 3(3), 694-698.
[http://dx.doi.org/10.3892/ol.2011.533] [PMID: 22740978]
[58]
Gupta, E.; Lestingi, T.M.; Mick, R.; Ramirez, J.; Vokes, E.E.; Ratain, M.J. Metabolic fate of irinotecan in humans: correlation of glucuronidation with diarrhea. Cancer Res., 1994, 54(14), 3723-3725.
[PMID: 8033091]
[59]
Mick, R.; Gupta, E.; Vokes, E.E.; Ratain, M.J. Limited-sampling models for irinotecan pharmacokinetics-pharmacodynamics: prediction of biliary index and intestinal toxicity. J. Clin. Oncol., 1996, 14(7), 2012-2019.
[http://dx.doi.org/10.1200/JCO.1996.14.7.2012] [PMID: 8683231]
[60]
Chabot, G.G. Clinical pharmacokinetics of irinotecan. Clin. Pharmacokinet., 1997, 33(4), 245-259.
[http://dx.doi.org/10.2165/00003088-199733040-00001] [PMID: 9342501]
[61]
Masi, G.; Falcone, A.; Di Paolo, A.; Allegrini, G.; Danesi, R.; Barbara, C.; Cupini, S.; Del Tacca, M. A phase I and pharmacokinetic study of irinotecan given as a 7-day continuous infusion in metastatic colorectal cancer patients pretreated with 5-fluorouracil or raltitrexed. Clin. Cancer Res., 2004, 10(5), 1657-1663.
[http://dx.doi.org/10.1158/1078-0432.CCR-1585-3] [PMID: 15014016]
[62]
Roy, A.C.; Park, S.R.; Cunningham, D.; Kang, Y.K.; Chao, Y.; Chen, L.T.; Rees, C.; Lim, H.Y.; Tabernero, J.; Ramos, F.J.; Kujundzic, M.; Cardic, M.B.; Yeh, C.G.; de Gramont, A. A randomized phase II study of PEP02 (MM-398), irinotecan or docetaxel as a second-line therapy in patients with locally advanced or metastatic gastric or gastro-oesophageal junction adenocarcinoma. Ann. Oncol., 2013, 24(6), 1567-1573.
[http://dx.doi.org/10.1093/annonc/mdt002] [PMID: 23406728]
[63]
Ando, Y.; Saka, H.; Ando, M.; Sawa, T.; Muro, K.; Ueoka, H.; Yokoyama, A.; Saitoh, S.; Shimokata, K.; Hasegawa, Y. Polymorphisms of UDP-glucuronosyltransferase gene and irinotecan toxicity: a pharmacogenetic analysis. Cancer Res., 2000, 60(24), 6921-6926.
[PMID: 11156391]
[64]
Iyer, L.; Das, S.; Janisch, L.; Wen, M.; Ramírez, J.; Karrison, T.; Fleming, G.F.; Vokes, E.E.; Schilsky, R.L.; Ratain, M.J. UGT1A1*28 polymorphism as a determinant of irinotecan disposition and toxicity. Pharmacogenomics J., 2002, 2(1), 43-47.
[http://dx.doi.org/10.1038/sj.tpj.6500072] [PMID: 11990381]
[65]
Innocenti, F.; Undevia, S.D.; Iyer, L.; Chen, P.X.; Das, S.; Kocherginsky, M.; Karrison, T.; Janisch, L.; Ramírez, J.; Rudin, C.M.; Vokes, E.E.; Ratain, M.J. Genetic variants in the UDP-glucuronosyltransferase 1A1 gene predict the risk of severe neutropenia of irinotecan. J. Clin. Oncol., 2004, 22(8), 1382-1388.
[http://dx.doi.org/10.1200/JCO.2004.07.173] [PMID: 15007088]
[66]
Marcuello, E.; Altés, A.; Menoyo, A.; Del Rio, E.; Gómez-Pardo, M.; Baiget, M. UGT1A1 gene variations and irinotecan treatment in patients with metastatic colorectal cancer. Br. J. Cancer, 2004, 91(4), 678-682.
[http://dx.doi.org/10.1038/sj.bjc.6602042] [PMID: 15280927]
[67]
McLeod, H.L. Individualizing cancer chemotherapy. Clin. Adv. Hematol. Oncol., 2006, 4(4), 259-261.
[PMID: 16728935]
[68]
Li, M.; Wang, Z.; Guo, J.; Liu, J.; Li, C.; Liu, L.; Shi, H.; Liu, L.; Li, H.; Xie, C.; Zhang, X.; Sun, W.; Fang, S.; Bi, X. Clinical significance of UGT1A1 gene polymorphisms on irinotecan-based regimens as the treatment in metastatic colorectal cancer. OncoTargets Ther., 2014, 7, 1653-1661.
[PMID: 25285015]
[69]
Shulman, K.; Cohen, I.; Barnett-Griness, O.; Kuten, A.; Gruber, S.B.; Lejbkowicz, F.; Rennert, G. Clinical implications of UGT1A1*28 genotype testing in colorectal cancer patients. Cancer, 2011, 117(14), 3156-3162.
[http://dx.doi.org/10.1002/cncr.25735] [PMID: 21287524]
[70]
Xiao, X.G.; Xia, S.; Zou, M.; Mei, Q.; Zhou, L.; Wang, S.J.; Chen, Y. The relationship between UGT1A1 gene polymorphism and irinotecan effect on extensive-stage small-cell lung cancer. OncoTargets Ther., 2015, 8, 3575-3583.
[http://dx.doi.org/10.2147/OTT.S95149] [PMID: 26664141]
[71]
Toffoli, G.; Cecchin, E.; Corona, G.; Russo, A.; Buonadonna, A.; D’Andrea, M.; Pasetto, L.M.; Pessa, S.; Errante, D.; De Pangher, V.; Giusto, M.; Medici, M.; Gaion, F.; Sandri, P.; Galligioni, E.; Bonura, S.; Boccalon, M.; Biason, P.; Frustaci, S. The role of UGT1A1*28 polymorphism in the pharmacodynamics and pharmacokinetics of irinotecan in patients with metastatic colorectal cancer. J. Clin. Oncol., 2006, 24(19), 3061-3068.
[http://dx.doi.org/10.1200/JCO.2005.05.5400] [PMID: 16809730]
[72]
Minami, H.; Sai, K.; Saeki, M.; Saito, Y.; Ozawa, S.; Suzuki, K.; Kaniwa, N.; Sawada, J.; Hamaguchi, T.; Yamamoto, N.; Shirao, K.; Yamada, Y.; Ohmatsu, H.; Kubota, K.; Yoshida, T.; Ohtsu, A.; Saijo, N. Irinotecan pharmacokinetics/pharmacodynamics and UGT1A genetic polymorphisms in Japanese: roles of UGT1A1*6 and *28. Pharmacogenet. Genomics, 2007, 17(7), 497-504.
[http://dx.doi.org/10.1097/FPC.0b013e328014341f] [PMID: 17558305]
[73]
Martinez-Balibrea, E.; Abad, A.; Martínez-Cardús, A.; Ginés, A.; Valladares, M.; Navarro, M.; Aranda, E.; Marcuello, E.; Benavides, M.; Massutí, B.; Carrato, A.; Layos, L.; Manzano, J.L.; Moreno, V. UGT1A and TYMS genetic variants predict toxicity and response of colorectal cancer patients treated with first-line irinotecan and fluorouracil combination therapy. Br. J. Cancer, 2010, 103(4), 581-589.
[http://dx.doi.org/10.1038/sj.bjc.6605776] [PMID: 20628391]
[74]
Carlini, L. E.; Meropol, N. J.; Bever, J.; Andria, M. L.; Hill, T.; Gold, P.; Rogatko, A.; Wang, H.; Blanchard, R. L. UGT1A7 and UGT1A9 Polymorphisms Predict Response and Toxicity in Colorectal Cancer Patients Treated with Capecitabine / Irinotecan UGT1A7 and UGT1A9 Polymorphisms Predict Response and Toxicity in Colorectal Cancer Patients Treated with Capecitabine / Irin. 11, 1226-1236. 2005.
[75]
Lévesque, E.; Bélanger, A-S.; Harvey, M.; Couture, F.; Jonker, D.; Innocenti, F.; Cecchin, E.; Toffoli, G.; Guillemette, C. Refining the UGT1A haplotype associated with irinotecan-induced hematological toxicity in metastatic colorectal cancer patients treated with 5-fluorouracil/irinotecan-based regimens. J. Pharmacol. Exp. Ther., 2013, 345(1), 95-101.
[http://dx.doi.org/10.1124/jpet.112.202242] [PMID: 23386248]
[76]
Kim, K.P.; Kim, H.S.; Sym, S.J.; Bae, K.S.; Hong, Y.S.; Chang, H.M.; Lee, J.L.; Kang, Y.K.; Lee, J.S.; Shin, J.G.; Kim, T.W.A.A. UGT1A1*28 and *6 genotype-directed phase I dose-escalation trial of irinotecan with fixed-dose capecitabine in Korean patients with metastatic colorectal cancer. Cancer Chemother. Pharmacol., 2013, 71(6), 1609-1617.
[http://dx.doi.org/10.1007/s00280-013-2161-6] [PMID: 23595344]
[77]
Teft, W.A.; Welch, S.; Lenehan, J.; Parfitt, J.; Choi, Y.H.; Winquist, E.; Kim, R.B. OATP1B1 and tumour OATP1B3 modulate exposure, toxicity, and survival after irinotecan-based chemotherapy. Br. J. Cancer, 2015, 112(5), 857-865.
[http://dx.doi.org/10.1038/bjc.2015.5] [PMID: 25611302]
[78]
Han, J-Y.; Lim, H-S.; Park, Y.H.; Lee, S.Y.; Lee, J.S. Integrated pharmacogenetic prediction of irinotecan pharmacokinetics and toxicity in patients with advanced non-small cell lung cancer. Lung Cancer, 2009, 63(1), 115-120.
[http://dx.doi.org/10.1016/j.lungcan.2007.12.003] [PMID: 18221820]
[79]
Glimelius, B.; Garmo, H.; Berglund, A.; Fredriksson, L.A.; Berglund, M.; Kohnke, H.; Byström, P.; Sørbye, H.; Wadelius, M. Prediction of irinotecan and 5-fluorouracil toxicity and response in patients with advanced colorectal cancer. Pharmacogenomics J., 2011, 11(1), 61-71.
[http://dx.doi.org/10.1038/tpj.2010.10] [PMID: 20177420]
[80]
Nomenclature Commitee, U.G.T. UGT Alleles Nomenclature Home, https://www.pharmacogenomics.pha.ulaval.ca/ugt-allelesnomenclature/
[81]
Hoskins, J.M.; Goldberg, R.M.; Qu, P.; Ibrahim, J.G.; McLeod, H.L. UGT1A1*28 genotype and irinotecan-induced neutropenia: dose matters. J. Natl. Cancer Inst., 2007, 99(17), 1290-1295.
[http://dx.doi.org/10.1093/jnci/djm115] [PMID: 17728214]
[82]
Saito, Y.; Maekawa, K.; Ozawa, S.; Sawada, J. Genetic polymorphisms and haplotypes of major drug metabolizing enzymes in east asians and their comparison with other ethnic populations. Curr. Pharmacogn., 2007, 5(1), 49-78.
[http://dx.doi.org/10.2174/157016007780077202]
[83]
Campbell, J.M.; Stephenson, M.D.; Bateman, E.; Peters, M.D.J.; Keefe, D.M.; Bowen, J.M. Irinotecan-induced toxicity pharmacogenetics: an umbrella review of systematic reviews and meta-analyses. Pharmacogenomics J., 2017, 17(1), 21-28.
[http://dx.doi.org/10.1038/tpj.2016.58] [PMID: 27503581]
[84]
Chen, X.; Liu, L.; Guo, Z.; Liang, W.; He, J.; Huang, L.; Deng, Q.; Tang, H.; Pan, H.; Guo, M.; Liu, Y.; He, Q.; He, J. UGT1A1 polymorphisms with irinotecan-induced toxicities and treatment outcome in Asians with Lung Cancer: a meta-analysis. Cancer Chemother. Pharmacol., 2017, 79(6), 1109-1117.
[http://dx.doi.org/10.1007/s00280-017-3306-9] [PMID: 28502040]
[85]
Kim, S.Y.; S., Hong Y.; K Shim, E.; Kong, S.Y.; Shin, A.; Baek, J.Y.; Jung, K.H. S-1 plus irinotecan and oxaliplatin for the first-line treatment of patients with metastatic colorectal cancer: a prospective phase II study and pharmacogenetic analysis. Br. J. Cancer, 2013, 109(6), 1420-1427.
[http://dx.doi.org/10.1038/bjc.2013.479] [PMID: 23963147]
[86]
Han, J.Y.; Lim, H.S.; Yoo, Y.K.; Shin, E.S.; Park, Y.H.; Lee, S.Y.; Lee, J.E.; Lee, D.H.; Kim, H.T.; Lee, J.S. Associations of ABCB1, ABCC2, and ABCG2 polymorphisms with irinotecan-pharmacokinetics and clinical outcome in patients with advanced non-small cell lung cancer. Cancer, 2007, 110(1), 138-147.
[http://dx.doi.org/10.1002/cncr.22760] [PMID: 17534875]
[87]
Sai, K.; Saito, Y.; Tatewaki, N.; Hosokawa, M.; Kaniwa, N.; Nishimaki-Mogami, T.; Naito, M.; Sawada, J.; Shirao, K.; Hamaguchi, T.; Yamamoto, N.; Kunitoh, H.; Tamura, T.; Yamada, Y.; Ohe, Y.; Yoshida, T.; Minami, H.; Ohtsu, A.; Matsumura, Y.; Saijo, N.; Okuda, H. Association of carboxylesterase 1A genotypes with irinotecan pharmacokinetics in Japanese cancer patients. Br. J. Clin. Pharmacol., 2010, 70(2), 222-233.
[http://dx.doi.org/10.1111/j.1365-2125.2010.03695.x] [PMID: 20653675]
[88]
De Mattia, E.; Toffoli, G.; Polesel, J.; D’Andrea, M.; Corona, G.; Zagonel, V.; Buonadonna, A.; Dreussi, E.; Cecchin, E. Pharmacogenetics of ABC and SLC transporters in metastatic colorectal cancer patients receiving first-line FOLFIRI treatment. Pharmacogenet. Genomics, 2013, 23(10), 549-557.
[http://dx.doi.org/10.1097/FPC.0b013e328364b6cf] [PMID: 24018773]
[89]
Camptosar Prescribing Information. 2012.
[90]
Swen, J.J.; Nijenhuis, M.; de Boer, A.; Grandia, L.; Maitland-van der Zee, A.H.; Mulder, H.; Rongen, G.A.P.J.M.; van Schaik, R.H.N.; Schalekamp, T.; Touw, D.J.; van der Weide, J.; Wilffert, B.; Deneer, V.H.M.; Guchelaar, H.J. Pharmacogenetics: from bench to byte--an update of guidelines. Clin. Pharmacol. Ther., 2011, 89(5), 662-673.
[http://dx.doi.org/10.1038/clpt.2011.34] [PMID: 21412232]
[91]
Etienne-Grimaldi, M-C.; Bennouna, J.; Formento, J-L.; Douillard, J-Y.; Francoual, M.; Hennebelle, I.; Chatelut, E.; Francois, E.; Faroux, R.; El Hannani, C.; Jacob, J-H.; Milano, G. Multifactorial pharmacogenetic analysis in colorectal cancer patients receiving 5-fluorouracil-based therapy together with cetuximab-irinotecan. Br. J. Clin. Pharmacol., 2012, 73(5), 776-785.
[http://dx.doi.org/10.1111/j.1365-2125.2011.04141.x] [PMID: 22486600]
[92]
Lee, L.S.U.; Seng, K.Y.; Wang, L.Z.; Yong, W.P.; Hee, K.H.; Soh, T.I.; Wong, A.; Cheong, P.F.; Soong, R.; Sapari, N.S.; Soo, R.; Fan, L.; Lee, S.C.; Goh, B.C. Phenotyping of UGT1A1 Activity Using Raltegravir Predicts Pharmacokinetics and Toxicity of Irinotecan in FOLFIRI. PLoS One, 2016, 11(1), e0147681.
[http://dx.doi.org/10.1371/journal.pone.0147681] [PMID: 26808671]
[93]
de Man, F.M.; Goey, A.K.L.; van Schaik, R.H.N.; Mathijssen, R.H.J.; Bins, S. Individualization of Irinotecan Treatment: A Review of Pharmacokinetics, Pharmacodynamics, and Pharmacogenetics. Clin. Pharmacokinet., 2018, 57(10), 1229-1254.
[http://dx.doi.org/10.1007/s40262-018-0644-7] [PMID: 29520731]
[94]
Mathijssen, R.H.; de Jong, F.A.; van Schaik, R.H.N.; Lepper, E.R.; Friberg, L.E.; Rietveld, T.; de Bruijn, P.; Graveland, W.J.; Figg, W.D.; Verweij, J.; Sparreboom, A. Prediction of irinotecan pharmacokinetics by use of cytochrome P450 3A4 phenotyping probes. J. Natl. Cancer Inst., 2004, 96(21), 1585-1592.
[http://dx.doi.org/10.1093/jnci/djh298] [PMID: 15523087]
[95]
Ramchandani, R.P.; Wang, Y.; Booth, B.P.; Ibrahim, A.; Johnson, J.R.; Rahman, A.; Mehta, M.; Innocenti, F.; Ratain, M.J.; Gobburu, J.V.S. The role of SN-38 exposure, UGT1A1*28 polymorphism, and baseline bilirubin level in predicting severe irinotecan toxicity. J. Clin. Pharmacol., 2007, 47(1), 78-86.
[http://dx.doi.org/10.1177/0091270006295060] [PMID: 17192505]
[96]
Toffoli, G.; Cecchin, E.; Gasparini, G.; D’Andrea, M.; Azzarello, G.; Basso, U.; Mini, E.; Pessa, S.; De Mattia, E.; Lo Re, G.; Buonadonna, A.; Nobili, S.; De Paoli, P.; Innocenti, F. Genotype-driven phase I study of irinotecan administered in combination with fluorouracil/leucovorin in patients with metastatic colorectal cancer. J. Clin. Oncol., 2010, 28(5), 866-871.
[http://dx.doi.org/10.1200/JCO.2009.23.6125] [PMID: 20038727]
[97]
Satoh, T.; Ura, T.; Yamada, Y.; Yamazaki, K.; Tsujinaka, T.; Munakata, M.; Nishina, T.; Okamura, S.; Esaki, T.; Sasaki, Y.; Koizumi, W.; Kakeji, Y.; Ishizuka, N.; Hyodo, I.; Sakata, Y. Genotype-directed, dose-finding study of irinotecan in cancer patients with UGT1A1*28 and/or UGT1A1*6 polymorphisms. Cancer Sci., 2011, 102(10), 1868-1873.
[http://dx.doi.org/10.1111/j.1349-7006.2011.02030.x] [PMID: 21740478]
[98]
Fukuda, M.; Shimada, M.; Kitazaki, T.; Nagashima, S.; Hashiguchi, K.; Ebi, N.; Takayama, K.; Nakanishi, Y.; Semba, H.; Harada, T.; Seto, T.; Okamoto, I.; Ichinose, Y.; Sugio, K.; Phase, I. Phase I study of irinotecan for previously treated lung cancer patients with the UGT1A1*28 or *6 polymorphism: Results of the Lung Oncology Group in Kyushu (LOGIK1004A). Thorac. Cancer, 2017, 8(1), 40-45.
[http://dx.doi.org/10.1111/1759-7714.12407] [PMID: 27883280]
[99]
Toffoli, G.; Sharma, M.R.; Marangon, E.; Posocco, B.; Gray, E.; Mai, Q.; Buonadonna, A.; Polite, B.N.; Miolo, G.; Tabaro, G.; Innocenti, F. Genotype-Guided Dosing Study of FOLFIRI plus Bevacizumab in Patients with Metastatic Colorectal Cancer. Clin. Cancer Res., 2017, 23(4), 918-924.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-1012] [PMID: 27507617]
[100]
Lu, C.Y.; Huang, C.W.; Hu, H.M.; Tsai, H.L.; Huang, C.M.; Yu, F.J.; Huang, M.Y.; Chang, S.F.; Huang, M.L.; Wang, J.Y. Prognostic advantage of irinotecan dose escalation according to uridine diphosphate glucuronosyltransferase 1A1 (UGT1A1) genotyping in patients with metastatic colorectal cancer treated with bevacizumab combined with 5-fluorouracil/leucovorin with irinotecan in a first-line setting. Transl. Res., 2014, 164(2), 169-176.
[http://dx.doi.org/10.1016/j.trsl.2013.12.009] [PMID: 24462762]
[101]
Marcuello, E.; Páez, D.; Paré, L.; Salazar, J.; Sebio, A.; del Rio, E.; Baiget, M. A genotype-directed phase I-IV dose-finding study of irinotecan in combination with fluorouracil/leucovorin as first-line treatment in advanced colorectal cancer. Br. J. Cancer, 2011, 105(1), 53-57.
[http://dx.doi.org/10.1038/bjc.2011.206] [PMID: 21654688]
[102]
Yamashita, K.; Nagashima, F.; Fujita, K.; Yamamoto, W.; Endo, H.; Miya, T.; Narabayashi, M.; Kawara, K.; Akiyama, Y.; Ando, Y.; Ando, M.; Sasaki, Y. Phase I/II study of FOLFIRI in Japanese patients with advanced colorectal cancer. Jpn. J. Clin. Oncol., 2011, 41(2), 204-209.
[http://dx.doi.org/10.1093/jjco/hyq197] [PMID: 20965940]
[103]
Roncato, R.; Cecchin, E.; Montico, M.; De Mattia, E.; Giodini, L.; Buonadonna, A.; Solfrini, V.; Innocenti, F.; Toffoli, G. Cost Evaluation of Irinotecan-Related Toxicities Associated With the UGT1A1*28 Patient Genotype. Clin. Pharmacol. Ther., 2017, 102(1), 123-130.
[http://dx.doi.org/10.1002/cpt.615] [PMID: 28074472]
[104]
Passero, F.C., Jr; Grapsa, D.; Syrigos, K.N.; Saif, M.W. The safety and efficacy of Onivyde (irinotecan liposome injection) for the treatment of metastatic pancreatic cancer following gemcitabine-based therapy. Expert Rev. Anticancer Ther., 2016, 16(7), 697-703.
[http://dx.doi.org/10.1080/14737140.2016.1192471] [PMID: 27219482]
[105]
Antunes, M.V.; Charão, M.F.; Linden, R. Dried blood spots analysis with mass spectrometry: Potentials and pitfalls in therapeutic drug monitoring. Clin. Biochem., 2016, 49(13-14), 1035-1046.
[http://dx.doi.org/10.1016/j.clinbiochem.2016.05.004] [PMID: 27179588]
[106]
Hahn, R.Z.; Arnhold, P.C.; Andriguetti, N.B.; Schneider, A.; Klück, H.M.; Dos Reis, S.L.; Bastiani, M.F.; Kael, I.; da Silva, A.C.C.; Schwartsmann, G.; Antunes, M.V.; Linden, R. Determination of irinotecan and its metabolite SN-38 in dried blood spots using high-performance liquid-chromatography with fluorescence detection. J. Pharm. Biomed. Anal., 2018, 150, 51-58.
[http://dx.doi.org/10.1016/j.jpba.2017.11.079] [PMID: 29216585]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy