Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Profiling and Characterization of microRNAs Responding to Sodium Butyrate Treatment in Gastric Cancer Cells

Author(s): Gongping Sun, He Duan, Jin Meng and Dewei Zhang*

Volume 25, Issue 11, 2022

Published on: 10 February, 2022

Page: [1875 - 1888] Pages: 14

DOI: 10.2174/1386207325666211027154207

Price: $65

Abstract

Background: Short-chain fatty acids exert anti-cancer effects on tumor cells.

Objective: We aimed to reveal the signaling network altered by butyrate in Gastric Cancer (GC) using small RNA sequencing (sRNA-seq).

Methods: The effects of butyrate on the biological behavior of NCI-N87 and KATO III cells in vitro were assessed by functional assays and half-maximal inhibitory concentrations (IC50) of butyrate in KATO III cells were calculated. sRNA-seq was performed on KATO III cells. Differentially expressed miRNAs (DE-miRNAs) were identified between butyrate treatment and control groups using DESeq2, and miRNA targets were predicted. A protein-protein interaction (PPI) network of DE-miRNA targets was created using Metascape. Key MCODE complexes were identified using the MCODE algorithm and cluster Profiler. The relationship between DE-miRNA and GC overall survival (OS) was evaluated using Kaplan-Meier curves.

Results: Butyrate dose-dependently inhibited NCI-N87 and KATO III cell viability. KATO III cells were more sensitive to butyrate than NCI-N87 cells. Butyrate promoted apoptosis and inhibited KATO III cell migration. Total 324 DE-miRNAs were identified in KATO III cells, and 459 mRNAs were predicted as targets of 83 DE-miRNAs. Two key protein complexes were identified in a PPI network of the 459 targets. A key signaling network responding to butyrate was generated using targets in these key complexes and their miRNA regulators. The DE-miRNAs in the key signaling network were related to the OS of GC.

Conclusion: Butyrate altered the biological behavior of GC cells, which may be achieved by regulating miRNAs and related oncogenic pathways.

Keywords: Gastric cancer, microRNA, small RNA, sequencing, oncogenic signaling, sodium butyrate treatment.

[1]
Konishi, H.; Ichikawa, D.; Komatsu, S.; Shiozaki, A.; Tsujiura, M.; Takeshita, H.; Morimura, R.; Nagata, H.; Arita, T.; Kawaguchi, T.; Hirashima, S.; Fujiwara, H.; Okamoto, K.; Otsuji, E. Detection of gastric cancer-associated microRNAs on microRNA microarray compar-ing pre- and post-operative plasma. Br. J. Cancer, 2012, 106(4), 740-747.
[http://dx.doi.org/10.1038/bjc.2011.588] [PMID: 22262318]
[2]
Plummer, M.; Franceschi, S.; Vignat, J.; Forman, D.; de Martel, C. Global burden of gastric cancer attributable to Helicobacter pylori. Int. J. Cancer, 2015, 136(2), 487-490.
[http://dx.doi.org/10.1002/ijc.28999] [PMID: 24889903]
[3]
Guinane, C.M.; Cotter, P.D. Role of the gut microbiota in health and chronic gastrointestinal disease: understanding a hidden metabolic organ. Therap. Adv. Gastroenterol., 2013, 6(4), 295-308.
[http://dx.doi.org/10.1177/1756283X13482996] [PMID: 23814609]
[4]
Meng, C.; Bai, C.; Brown, T.D.; Hood, L.E.; Tian, Q. Human gut microbiota and gastrointestinal cancer. Gen Pro Bio, 2018, 16(1), 33-49.
[http://dx.doi.org/10.1016/j.gpb.2017.06.002] [PMID: 29474889]
[5]
Sivaprakasam, S.; Prasad, P.D.; Singh, N. Benefits of short-chain fatty acids and their receptors in inflammation and carcinogenesis. Pharmacol. Ther., 2016, 164, 144-151.
[http://dx.doi.org/10.1016/j.pharmthera.2016.04.007] [PMID: 27113407]
[6]
Perry, R.J.; Peng, L.; Barry, N.A.; Cline, G.W.; Zhang, D.; Cardone, R.L.; Petersen, K.F.; Kibbey, R.G.; Goodman, A.L.; Shulman, G.I. Acetate mediates a microbiome-brain-β-cell axis to promote metabolic syndrome. Nature, 2016, 534(7606), 213-217.
[http://dx.doi.org/10.1038/nature18309] [PMID: 27279214]
[7]
Chen, J.; Zhao, K-N.; Vitetta, L. Effects of intestinal microbial-elaborated butyrate on oncogenic signaling pathways. Nutrients, 2019, 11(5), 1026.
[http://dx.doi.org/10.3390/nu11051026]
[8]
Zeng, H.; Umar, S.; Rust, B.; Lazarova, D.; Bordonaro, M. Secondary bile acids and short chain fatty acids in the colon: A focus on colon-ic microbiome, cell proliferation, inflammation, and cancer. Int. J. Mol. Sci., 2019, 20(5), 1214.
[http://dx.doi.org/10.3390/ijms20051214] [PMID: 30862015]
[9]
Bindels, L.B.; Porporato, P.; Dewulf, E.M.; Verrax, J.; Neyrinck, A.M.; Martin, J.C.; Scott, K.P.; Buc Calderon, P.; Feron, O.; Muccioli, G.G.; Sonveaux, P.; Cani, P.D.; Delzenne, N.M. Gut microbiota-derived propionate reduces cancer cell proliferation in the liver. Br. J. Cancer, 2012, 107(8), 1337-1344.
[http://dx.doi.org/10.1038/bjc.2012.409] [PMID: 22976799]
[10]
Gao, S-M.; Chen, C-Q.; Wang, L-Y.; Hong, L-L.; Wu, J-B.; Dong, P-H. Histone deacetylases inhibitor sodium butyrate inhibits JAK2/STAT signaling through upregulation of SOCS1 and SOCS3 mediated by HDAC8 inhibition in myeloproliferative neoplasms. Exp. Hematol., 2013, 41(3), 261-270.
[11]
Pellizzaro, C.; Coradini, D.; Daidone, M.G. Modulation of angiogenesis-related proteins synthesis by sodium butyrate in colon cancer cell line HT29. Carcinogenesis, 2002, 23(5), 735-740.
[http://dx.doi.org/10.1093/carcin/23.5.735] [PMID: 12016145]
[12]
Ruemmele, F.M.; Schwartz, S.; Seidman, E.G.; Dionne, S.; Levy, E.; Lentze, M.J. Butyrate induced Caco-2 cell apoptosis is mediated via the mitochondrial pathway. Gut, 2003, 52(1), 94-100.
[http://dx.doi.org/10.1136/gut.52.1.94] [PMID: 12477768]
[13]
Zhang, Y.; Zhou, L.; Bao, Y.L.; Wu, Y.; Yu, C.L.; Huang, Y.X.; Sun, Y.; Zheng, L.H.; Li, Y.X. Butyrate induces cell apoptosis through activation of JNK MAP kinase pathway in human colon cancer RKO cells. Chem. Biol. Interact., 2010, 185(3), 174-181.
[http://dx.doi.org/10.1016/j.cbi.2010.03.035] [PMID: 20346929]
[14]
Bordonaro, M.; Lazarova, D. Amlexanox and UPF1 modulate Wnt signaling and apoptosis in HCT-116 colorectal cancer cells. J. Cancer, 2019, 10(2), 287-292.
[http://dx.doi.org/10.7150/jca.28331] [PMID: 30719122]
[15]
Wu, X.; Wu, Y.; He, L.; Wu, L.; Wang, X.; Liu, Z. Effects of the intestinal microbial metabolite butyrate on the development of colorectal cancer. J. Cancer, 2018, 9(14), 2510-2517.
[http://dx.doi.org/10.7150/jca.25324] [PMID: 30026849]
[16]
Kopp, R.; Fichter, M.; Assert, R.; Pfeiffer, A.F.; Classen, S. Butyrate-induced alterations of phosphoinositide metabolism, protein kinase C activity and reduced CD44 variant expression in HT-29 colon cancer cells. Int. J. Mol. Med., 2009, 23(5), 639-649.
[http://dx.doi.org/10.3892/ijmm_00000175] [PMID: 19360323]
[17]
Orchel, A.; Dzierżewicz, Z.; Parfiniewicz, B.; Weglarz, L.; Wilczok, T. Butyrate-induced differentiation of colon cancer cells is PKC and JNK dependent. Dig. Dis. Sci., 2005, 50(3), 490-498.
[http://dx.doi.org/10.1007/s10620-005-2463-6] [PMID: 15810631]
[18]
Arpaia, N.; Campbell, C.; Fan, X.; Dikiy, S.; van der Veeken, J.; deRoos, P.; Liu, H.; Cross, J.R.; Pfeffer, K.; Coffer, P.J.; Rudensky, A.Y. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature, 2013, 504(7480), 451-455.
[http://dx.doi.org/10.1038/nature12726] [PMID: 24226773]
[19]
Furusawa, Y.; Obata, Y.; Fukuda, S.; Endo, T.A.; Nakato, G.; Takahashi, D.; Nakanishi, Y.; Uetake, C.; Kato, K.; Kato, T.; Takahashi, M.; Fukuda, N.N.; Murakami, S.; Miyauchi, E.; Hino, S.; Atarashi, K.; Onawa, S.; Fujimura, Y.; Lockett, T.; Clarke, J.M.; Topping, D.L.; To-mita, M.; Hori, S.; Ohara, O.; Morita, T.; Koseki, H.; Kikuchi, J.; Honda, K.; Hase, K.; Ohno, H. Commensal microbe-derived butyrate in-duces the differentiation of colonic regulatory T cells. Nature, 2013, 504(7480), 446-450.
[http://dx.doi.org/10.1038/nature12721] [PMID: 24226770]
[20]
Sauer, J.; Richter, K.K.; Pool-Zobel, B.L. Physiological concentrations of butyrate favorably modulate genes of oxidative and metabolic stress in primary human colon cells. J. Nutr. Biochem., 2007, 18(11), 736-745.
[http://dx.doi.org/10.1016/j.jnutbio.2006.12.012] [PMID: 17434725]
[21]
Farazi, T.A.; Hoell, J.I.; Morozov, P.; Tuschl, T. MicroRNAs in human cancer. In: MicroRNA cancer regulation; Springer, 2013, pp. 1-20.
[22]
Interplay between epigenetic abnormalities and deregulated expression of microRNAs in cancer. In: Farooqi, A.A.; Fuentes-Mattei, E.; Fayyaz, S.; Raj, P.; Goblirsch, M.; Poltronieri, P., Eds.;Seminars in cancer biology; Elsevier,, 2019. 58,47-55.
[23]
Hu, S.; Dong, T.S.; Dalal, S.R.; Wu, F.; Bissonnette, M.; Kwon, J.H.; Chang, E.B. The microbe-derived short chain fatty acid butyrate tar-gets miRNA-dependent p21 gene expression in human colon cancer. PLoS One, 2011, 6(1), e16221.
[http://dx.doi.org/10.1371/journal.pone.0016221] [PMID: 21283757]
[24]
Hu, S.; Liu, L.; Chang, E.B.; Wang, J-Y.; Raufman, J-P. Butyrate inhibits pro-proliferative miR-92a by diminishing c-Myc-induced miR-17-92a cluster transcription in human colon cancer cells. Mol. Cancer, 2015, 14(1), 180.
[http://dx.doi.org/10.1186/s12943-015-0450-x] [PMID: 26463716]
[25]
Schmieder, R.; Edwards, R. Quality control and preprocessing of metagenomic datasets. Bioinformatics, 2011, 27(6), 863-864.
[http://dx.doi.org/10.1093/bioinformatics/btr026] [PMID: 21278185]
[26]
Langmead, B.; Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods, 2012, 9(4), 357-359.
[http://dx.doi.org/10.1038/nmeth.1923] [PMID: 22388286]
[27]
Kozomara, A.; Birgaoanu, M.; Griffiths-Jones, S. miRBase: from microRNA sequences to function. Nucleic Acids Res., 2019, 47(D1), D155-D162.
[http://dx.doi.org/10.1093/nar/gky1141] [PMID: 30423142]
[28]
Kalvari, I.; Argasinska, J.; Quinones-Olvera, N.; Nawrocki, E.P.; Rivas, E.; Eddy, S.R.; Bateman, A.; Finn, R.D.; Petrov, A.I. Rfam 13.0: shifting to a genome-centric resource for non-coding RNA families. Nucleic Acids Res., 2018, 46(D1), D335-D342.
[http://dx.doi.org/10.1093/nar/gkx1038] [PMID: 29112718]
[29]
Mackowiak, SD Identification of novel and known miRNAs in deep-sequencing data with miRDeep2. Curr. Protoc. Bioinformatics., 2011, 36(1) 12.0.1-12.0.5.
[http://dx.doi.org/10.1002/0471250953.bi1210s36]
[30]
Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol., 2014, 15(12), 550.
[http://dx.doi.org/10.1186/s13059-014-0550-8] [PMID: 25516281]
[31]
Enright, A.J.; John, B.; Gaul, U.; Tuschl, T.; Sander, C.; Marks, D.S. MicroRNA targets in Drosophila. Genome Biol., 2003, 5(1), R1.
[http://dx.doi.org/10.1186/gb-2003-5-1-r1] [PMID: 14709173]
[32]
Chou, C-H.; Shrestha, S.; Yang, C-D.; Chang, N-W.; Lin, Y-L.; Liao, K-W.; Huang, W.C.; Sun, T.H.; Tu, S.J.; Lee, W.H.; Chiew, M.Y.; Tai, C.S.; Wei, T.Y.; Tsai, T.R.; Huang, H.T.; Wang, C.Y.; Wu, H.Y.; Ho, S.Y.; Chen, P.R.; Chuang, C.H.; Hsieh, P.J.; Wu, Y.S.; Chen, W.L.; Li, M.J.; Wu, Y.C.; Huang, X.Y.; Ng, F.L.; Buddhakosai, W.; Huang, P.C.; Lan, K.C.; Huang, C.Y.; Weng, S.L.; Cheng, Y.N.; Liang, C.; Hsu, W.L.; Huang, H.D. miRTarBase update 2018: a resource for experimentally validated microRNA-target interactions. Nucleic Acids Res., 2018, 46(D1), D296-D302.
[http://dx.doi.org/10.1093/nar/gkx1067] [PMID: 29126174]
[33]
Davis, A.P.; Grondin, C.J.; Johnson, R.J.; Sciaky, D.; McMorran, R.; Wiegers, J.; Wiegers, T.C.; Mattingly, C.J. The comparative toxicoge-nomics database: update 2019. Nucleic Acids Res., 2019, 47(D1), D948-D954.
[http://dx.doi.org/10.1093/nar/gky868] [PMID: 30247620]
[34]
Stelzer, G.; Rosen, N.; Plaschkes, I.; Zimmerman, S.; Twik, M.; Fishilevich, S. The GeneCards suite: from gene data mining to disease genome sequence analyses. Curr. Protoc. Bioinformatics., 2016, 54(1) 1.30.1.
[http://dx.doi.org/10.1002/cpbi.5]
[35]
Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res., 2003, 13(11), 2498-2504.
[http://dx.doi.org/10.1101/gr.1239303] [PMID: 14597658]
[36]
Zhou, Y.; Zhou, B.; Pache, L.; Chang, M.; Khodabakhshi, A.H.; Tanaseichuk, O.; Benner, C.; Chanda, S.K. Metascape provides a biolo-gist-oriented resource for the analysis of systems-level datasets. Nat. Commun., 2019, 10(1), 1523.
[http://dx.doi.org/10.1038/s41467-019-09234-6] [PMID: 30944313]
[37]
Yu, G.; Wang, L-G.; Han, Y.; He, Q-Y. clusterProfiler: An R package for comparing biological themes among gene clusters. OMICS, 2012, 16(5), 284-287.
[http://dx.doi.org/10.1089/omi.2011.0118] [PMID: 22455463]
[38]
Chatr-Aryamontri, A.; Oughtred, R.; Boucher, L.; Rust, J.; Chang, C.; Kolas, N.K.; O’Donnell, L.; Oster, S.; Theesfeld, C.; Sellam, A.; Stark, C.; Breitkreutz, B.J.; Dolinski, K.; Tyers, M. The BioGRID interaction database: 2017 update. Nucleic Acids Res., 2017, 45(D1), D369-D379.
[http://dx.doi.org/10.1093/nar/gkw1102] [PMID: 27980099]
[39]
Li, T.; Wernersson, R.; Hansen, R.B.; Horn, H.; Mercer, J.; Slodkowicz, G.; Workman, C.T.; Rigina, O.; Rapacki, K.; Stærfeldt, H.H.; Bru-nak, S.; Jensen, T.S.; Lage, K. A scored human protein-protein interaction network to catalyze genomic interpretation. Nat. Methods, 2017, 14(1), 61-64.
[http://dx.doi.org/10.1038/nmeth.4083] [PMID: 27892958]
[40]
Türei, D.; Korcsmáros, T.; Saez-Rodriguez, J. OmniPath: guidelines and gateway for literature-curated signaling pathway resources. Nat. Methods, 2016, 13(12), 966-967.
[http://dx.doi.org/10.1038/nmeth.4077] [PMID: 27898060]
[41]
Han, R.; Sun, Q.; Wu, J.; Zheng, P.; Zhao, G. Sodium butyrate upregulates miR-203 expression to exert anti-proliferation effect on colo-rectal cancer cells. Cell. Physiol. Biochem., 2016, 39(5), 1919-1929.
[http://dx.doi.org/10.1159/000447889] [PMID: 27771718]
[42]
Pant, K.; Yadav, A.K.; Gupta, P.; Islam, R.; Saraya, A.; Venugopal, S.K. Butyrate induces ROS-mediated apoptosis by modulating miR-22/SIRT-1 pathway in hepatic cancer cells. Redox Biol., 2017, 12, 340-349.
[http://dx.doi.org/10.1016/j.redox.2017.03.006] [PMID: 28288414]
[43]
Matthews, G.M.; Howarth, G.S.; Butler, R.N. Short-chain fatty acid modulation of apoptosis in the Kato III human gastric carcinoma cell line. Cancer Biol. Ther., 2007, 6(7), 1051-1057.
[http://dx.doi.org/10.4161/cbt.6.7.4318] [PMID: 17611404]
[44]
Pan, Y.; Xu, T.; Liu, Y.; Li, W.; Zhang, W. Upregulated circular RNA circ_0025033 promotes papillary thyroid cancer cell proliferation and invasion via sponging miR-1231 and miR-1304. Biochem. Biophys. Res. Commun., 2019, 510(2), 334-338.
[http://dx.doi.org/10.1016/j.bbrc.2019.01.108] [PMID: 30709584]
[45]
Shen, W.; Pang, H.; Xin, B.; Duan, L.; Liu, L.; Zhang, H. Biological effects of BMP7 on small-cell lung cancer cells and its bone metasta-sis. Int. J. Oncol., 2018, 53(3), 1354-1362.
[http://dx.doi.org/10.3892/ijo.2018.4469] [PMID: 30015928]
[46]
Naber, H.P.; Wiercinska, E.; Pardali, E.; van Laar, T.; Nirmala, E.; Sundqvist, A.; van Dam, H.; van der Horst, G.; van der Pluijm, G.; Heckmann, B.; Danen, E.H.; Ten Dijke, P. BMP-7 inhibits TGF-β-induced invasion of breast cancer cells through inhibition of integrin β(3) expression. Cell Oncol. (Dordr.), 2012, 35(1), 19-28.
[http://dx.doi.org/10.1007/s13402-011-0058-0] [PMID: 21935711]
[47]
Dituri, F.; Cossu, C.; Mancarella, S.; Giannelli, G. The interactivity between TGFβ and BMP signaling in organogenesis, fibrosis, and can-cer. Cells, 2019, 8(10), 1130.
[http://dx.doi.org/10.3390/cells8101130] [PMID: 31547567]
[48]
Duangkumpha, K.; Techasen, A.; Loilome, W.; Namwat, N.; Thanan, R.; Khuntikeo, N.; Yongvanit, P. BMP-7 blocks the effects of TGF-β-induced EMT in cholangiocarcinoma. Tumour Biol., 2014, 35(10), 9667-9676.
[http://dx.doi.org/10.1007/s13277-014-2246-9] [PMID: 24969562]
[49]
Ninio-Many, L.; Grossman, H.; Levi, M.; Zilber, S.; Tsarfaty, I.; Shomron, N.; Tuvar, A.; Chuderland, D.; Stemmer, S.M.; Ben-Aharon, I.; Shalgi, R. MicroRNA miR-125a-3p modulates molecular pathway of motility and migration in prostate cancer cells. Oncoscience, 2014, 1(4), 250-261.
[http://dx.doi.org/10.18632/oncoscience.30] [PMID: 25594017]
[50]
Ninio-Many, L.; Grossman, H.; Shomron, N.; Chuderland, D.; Shalgi, R. microRNA-125a-3p reduces cell proliferation and migration by targeting Fyn. J. Cell Sci., 2013, 126(Pt 13), 2867-2876.
[http://dx.doi.org/10.1242/jcs.123414] [PMID: 23606749]
[51]
Wang, Q.; Liu, S.; Zhao, X.; Wang, Y.; Tian, D.; Jiang, W. MiR-372-3p promotes cell growth and metastasis by targeting FGF9 in lung squamous cell carcinoma. Cancer Med., 2017, 6(6), 1323-1330.
[http://dx.doi.org/10.1002/cam4.1026] [PMID: 28440022]
[52]
Fan, X.; Huang, X.; Li, Z.; Ma, X. MicroRNA-372-3p promotes the epithelial-mesenchymal transition in breast carcinoma by activating the Wnt pathway. J. BUON, 2018, 23(5), 1309-1315.
[PMID: 30570852]
[53]
Raman, M.; Earnest, S.; Zhang, K.; Zhao, Y.; Cobb, M.H. TAO kinases mediate activation of p38 in response to DNA damage. EMBO J., 2007, 26(8), 2005-2014.
[http://dx.doi.org/10.1038/sj.emboj.7601668] [PMID: 17396146]
[54]
Plouffe, S.W.; Meng, Z.; Lin, K.C.; Lin, B.; Hong, A.W.; Chun, J.V.; Guan, K.L. Characterization of Hippo pathway components by gene inactivation. Mol. Cell, 2016, 64(5), 993-1008.
[http://dx.doi.org/10.1016/j.molcel.2016.10.034] [PMID: 27912098]
[55]
Ast, V.; Kordaß, T.; Oswald, M.; Kolte, A.; Eisel, D.; Osen, W.; Eichmüller, S.B.; Berndt, A.; König, R. MiR-192, miR-200c and miR-17 are fibroblast-mediated inhibitors of colorectal cancer invasion. Oncotarget, 2018, 9(85), 35559-35580.
[http://dx.doi.org/10.18632/oncotarget.26263] [PMID: 30473751]
[56]
Zou, P.; Zhu, M.; Lian, C.; Wang, J.; Chen, Z.; Zhang, X.; Yang, Y.; Chen, X.; Cui, X.; Liu, J.; Wang, H.; Wen, Q.; Yi, J. miR-192-5p sup-presses the progression of lung cancer bone metastasis by targeting TRIM44. Sci. Rep., 2019, 9(1), 19619.
[http://dx.doi.org/10.1038/s41598-019-56018-5] [PMID: 31873114]
[57]
Abiatari, I.; Esposito, I.; Oliveira, T.D.; Felix, K.; Xin, H.; Penzel, R.; Giese, T.; Friess, H.; Kleeff, J. Moesin-dependent cytoskeleton re-modelling is associated with an anaplastic phenotype of pancreatic cancer. J. Cell. Mol. Med., 2010, 14(5), 1166-1179.
[PMID: 19432821]
[58]
Wu, Q.; Chen, D.; Luo, Q.; Yang, Q.; Zhao, C.; Zhang, D.; Zeng, Y.; Huang, L.; Zhang, Z.; Qi, Z. Extracellular matrix protein 1 recruits moesin to facilitate invadopodia formation and breast cancer metastasis. Cancer Lett., 2018, 437, 44-55.
[http://dx.doi.org/10.1016/j.canlet.2018.08.022] [PMID: 30165197]
[59]
Misra, S; Hascall, VC; Atanelishvili, I; Moreno Rodriguez, R; Markwald, RR Ghatak, S Utilization of glycosaminoglycans/ proteoglycans as carriers for targeted therapy delivery. Int. J. Cell. Biol., 2015, 2015

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy