[1]
Blattner WA, Biggar RJ, Weiss SH, Melbye M, Goedert JJ. Epidemiology of human T-lymphotropic virus type III and the risk of the acquired immunodeficiency syndrome. Ann Intern Med 1985; 103(5): 665-70.
[2]
Weber G. AIDS: Incubation or latency? Nature 1987; 330(6150): 690.
[3]
Connor S. HIV is active even in latency, say scientists. BMJ 1993; 306(6883): 949.
[4]
Lackner AA, Veazey RS. Current concepts in AIDS pathogenesis: Insights from the SIV/macaque model. Annu Rev Med 2007; 58: 461-76.
[5]
Picker LJ, Hansen SG, Lifson JD. New paradigms for HIV/AIDS vaccine development. Annu Rev Med 2012; 63: 95-111.
[6]
Xu H, Wang X, Veazey RS. Mucosal immunology of HIV infection. Immunol Rev 2013; 254(1): 10-33.
[7]
Abraham C, Medzhitov R. Interactions between the host innate immune system and microbes in inflammatory bowel disease. Gastroenterology 2011; 140(6): 1729-37.
[8]
Powell N, Walker MM, Talley NJ. The mucosal immune system: Master regulator of bidirectional gut-brain communications. Nat Rev Gastroenterol Hepatol 2017; 14: 143-59.
[9]
Byrareddy SN, Arthos J, Cicala C, et al. Sustained virologic control in SIV+ macaques after antiretroviral and α4β7 antibody therapy. Science 2016; 354(6309): 197-202.
[10]
Gottlieb MS, Schroff R, Schanker HM, et al. Pneumocystis carinii pneumonia and mucosal candidiasis in previously healthy homosexual men: Evidence of a new acquired cellular immunodeficiency. N Engl J Med 1981; 305(24): 1425-31.
[11]
Siegal FP, Lopez C, Hammer GS, et al. Severe acquired immunodeficiency in male homosexuals, manifested by chronic perianal ulcerative herpes simplex lesions. N Engl J Med 1981; 305(24): 1439-44.
[12]
Masur H, Michelis MA, Wormser GP, et al. Opportunistic infection in previously healthy women. Initial manifestations of a community-acquired cellular immunodeficiency. Ann Intern Med 1982; 97(4): 533-9.
[13]
King NW, Hunt RD, Letvin NL. Histopathologic changes in macaques with an Acquired Immunodeficiency Syndrome (AIDS). Am J Pathol 1983; 113(3): 382-8.
[14]
Kotler DP, Gaetz HP, Lange M, Klein EB, Holt PR. Enteropathy associated with the acquired immunodeficiency syndrome. Ann Intern Med 1984; 101(4): 421-8.
[15]
Anton PA, Elliott J, Poles MA, et al. Enhanced levels of functional HIV-1 co-receptors on human mucosal T cells demonstrated using intestinal biopsy tissue. AIDS 2000; 14(12): 1761-5.
[16]
Veazey RS, DeMaria M, Chalifoux LV, et al. Gastrointestinal tract as a major site of CD4+ T cell depletion and viral replication in SIV infection. Science 1998; 280(5362): 427-31.
[17]
Veazey RS, Marx PA, Lackner AA. The mucosal immune system: Primary target for HIV infection and AIDS. Trends Immunol 2001; 22(11): 626-33.
[18]
Veazey RS, Marx PA, Lackner AA. Vaginal CD4+ T cells express high levels of CCR5 and are rapidly depleted in Simian Immunodeficiency Virus infection. J Infect Dis 2003; 187(5): 769-76.
[19]
Mehandru S, Poles MA, Tenner-Racz K, et al. Primary HIV-1 infection is associated with preferential depletion of CD4+ T lymphocytes from effector sites in the gastrointestinal tract. J Exp Med 2004; 200(6): 761-70.
[20]
Brenchley JM, Schacker TW, Ruff LE, et al. CD4+ T cell depletion during all stages of HIV disease occurs predominantly in the gastrointestinal tract. J Exp Med 2004; 200(6): 749-59.
[21]
Veazey RS, Lackner AA. HIV swiftly guts the immune system. Nat Med 2005; 11(5): 469-70.
[22]
Mehandru S, Poles MA, Tenner-Racz K, et al. Mechanisms of gastrointestinal CD4+ T cell depletion during acute and early HIV-1 infection. J Virol 2006; 81: 599-612.
[23]
Veazey RS, Mansfield KG, Tham IC, et al. Dynamics of CCR5 expression by CD4(+) T cells in lymphoid tissues during Simian Immunodeficiency Virus infection. J Virol 2000; 74(23): 11001-7.
[24]
Olsson J, Poles M, Spetz AL, et al. Human Immunodeficiency Virus type 1 infection is associated with significant mucosal inflammation characterized by increased expression of CCR5, CXCR4, and beta-chemokines. J Infect Dis 2000; 182(6): 1625-35.
[25]
Wang X, Xu H, Pahar B, et al. Simian immunodeficiency virus selectively infects proliferating CD4+ T cells in neonatal rhesus macaques. Blood 2010; 116(20): 4168-74.
[26]
Wang X, Rasmussen T, Pahar B, et al. Massive infection and loss of CD4+ T cells occurs in the intestinal tract of neonatal rhesus macaques in acute SIV infection. Blood 2007; 109(3): 1174-81.
[27]
Bunders MJ, van der Loos CM, Klarenbeek PL, et al. Memory CD4(+)CCR5(+) T cells are abundantly present in the gut of newborn infants to facilitate mother-to-child transmission of HIV-1. Blood 2012; 120(22): 4383-90.
[28]
Wang X, Das A, Lackner AA, Veazey RS, Pahar B. Intestinal double-positive CD4+CD8+ T cells of neonatal Rhesus Macaques are proliferating, activated memory cells and primary targets for SIVMAC251 infection. Blood 2008; 112(13): 4981-90.
[29]
Jimenez E, Marin ML, Martin R, et al. Is meconium from healthy newborns actually sterile? Res Microbiol 2008; 159(3): 187-93.
[30]
Aagaard K, Ma J, Antony KM, Ganu R, Petrosino J, Versalovic J. The placenta harbors a unique microbiome. Sci Transl Med 2014; 6(237): 237ra65.
[31]
Chahroudi A, Cartwright E, Lee ST, et al. Target Cell Availability, Rather than breast milk factors, dictates mother-to-infant transmission of SIV in Sooty Mangabeys and Rhesus Macaques. PLoS Pathog 2014; 10(3): e1003958.
[32]
Corneau A, Cosma A, Even S, et al. Comprehensive mass cytometry analysis of cell cycle, activation, and coinhibitory receptors expression in CD4 T Cells from healthy and HIV-Infected individuals. Cytometry B Clin Cytom 2017; 92(1): 21-32.
[33]
Turner DL, Farber DL. Mucosal resident memory CD4 T cells in protection and immunopathology. Front Immunol 2014; 5: 331.
[34]
Collier FM, Tang ML, Martino D, et al. The ontogeny of naive and regulatory CD4(+) T-cell subsets during the first postnatal year: A cohort study. Clin Transl Immunology 2015; 4(3): e34.
[35]
Kunkel EJ, Campbell DJ, Butcher EC. Chemokines in lymphocyte trafficking and intestinal immunity. Microcirculation 2003; 10(3-4): 313-23.
[36]
Gebhardt T, Wakim LM, Eidsmo L, Reading PC, Heath WR, Carbone FR. Memory T cells in nonlymphoid tissue that provide enhanced local immunity during infection with herpes simplex virus. Nat Immunol 2009; 10(5): 524-30.
[37]
Teijaro JR, Turner D, Pham Q, Wherry EJ, Lefrancois L, Farber DL. Cutting edge: Tissue-retentive lung memory CD4 T cells mediate optimal protection to respiratory virus infection. J Immunol 2011; 187(11): 5510-4.
[38]
Papadakis KA, Landers C, Prehn J, et al. CC chemokine receptor 9 expression defines a subset of peripheral blood lymphocytes with mucosal T cell phenotype and Th1 or T-regulatory 1 cytokine profile. J Immunol 2003; 171(1): 159-65.
[39]
Sallusto F, Lenig D, Forster R, Lipp M, Lanzavecchia A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 1999; 401(6754): 708-12.
[40]
Richards H, Longhi MP, Wright K, Gallimore A, Ager A. CD62L (L-selectin) down-regulation does not affect memory T cell distribution but failure to shed compromises anti-viral immunity. J Immunol 2008; 180(1): 198-206.
[41]
Kim CH, Rott L, Kunkel EJ, et al. Rules of chemokine receptor association with T cell polarization in vivo. J Clin Invest 2001; 108(9): 1331-9.
[42]
Loetscher P, Uguccioni M, Bordoli L, et al. CCR5 is characteristic of Th1 lymphocytes. Nature 1998; 391(6665): 344-5.
[43]
Sallusto F, Mackay CR, Lanzavecchia A. The role of chemokine receptors in primary, effector, and memory immune responses. Annu Rev Immunol 2000; 18: 593-620.
[44]
Breitfeld D, Ohl L, Kremmer E, et al. Follicular B helper T cells express CXC chemokine receptor 5, localize to B cell follicles, and support immunoglobulin production. J Exp Med 2000; 192(11): 1545-52.
[45]
Xu H, Wang X, Malam N, Lackner AA, Veazey RS. Persistent simian immunodeficiency virus infection causes ultimate depletion of follicular Th cells in AIDS. J Immunol 2015; 195(9): 4351-7.
[46]
Xu H, Wang X, Malam N, et al. Persistent Simian Immunodeficiency Virus infection drives differentiation, aberrant accumulation, and latent infection of germinal center follicular T helper cells. J Virol 2015; 90(3): 1578-87.
[47]
Iellem A, Mariani M, Lang R, et al. Unique chemotactic response profile and specific expression of chemokine receptors CCR4 and CCR8 by CD4(+)CD25(+) regulatory T cells. J Exp Med 2001; 194(6): 847-53.
[48]
Carbone FR, Mackay LK, Heath WR, Gebhardt T. Distinct resident and recirculating memory T cell subsets in non-lymphoid tissues. Curr Opin Immunol 2013; 25(3): 329-33.
[49]
Veazey RS, Rosenzweig M, Shvetz DE, et al. Characterization of Gut-Associated Lymphoid Tissue (GALT) of normal Rhesus Macaques. Clin Immunol Immunopathol 1997; 82(3): 230-42.
[50]
Sathaliyawala T, Kubota M, Yudanin N, et al. Distribution and compartmentalization of human circulating and tissue-resident memory T cell subsets. Immunity 2013; 38(1): 187-97.
[51]
Wang X, Xu H, Alvarez X, et al. Distinct expression patterns of CD69 in mucosal and systemic lymphoid tissues in primary SIV infection of rhesus macaques. PLoS One 2011; 6(11): e27207.
[52]
Simms PE, Ellis TM. Utility of flow cytometric detection of CD69 expression as a rapid method for determining poly- and oligoclonal lymphocyte activation. Clin Diagn Lab Immunol 1996; 3(3): 301-4.
[53]
Crotty S. Do memory CD4 T cells keep their cell-type programming: Plasticity versus fate commitment? complexities of interpretation due to the heterogeneity of memory CD4 T cells, including T follicular helper cells. Cold Spring Harb Perspect Biol 2017; •••: a029421.
[54]
Mosmann TR, Cherwinski H, Bond MW, Giedlin MA, Coffman RL. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol 1986; 136(7): 2348-57.
[55]
Noack M, Miossec P. Th17 and regulatory T cell balance in autoimmune and inflammatory diseases. Autoimmun Rev 2014; 13(6): 668-77.
[56]
Miossec P, Korn T, Kuchroo VK. Interleukin-17 and type 17 helper T cells. N Engl J Med 2009; 361(9): 888-98.
[57]
Oestreich KJ, Weinmann AS. Master regulators or lineage-specifying? Changing views on CD4+ T cell transcription factors. Nat Rev Immunol 2012; 12(11): 799-804.
[58]
Kiss EA, Diefenbach A. Role of the aryl hydrocarbon receptor in controlling maintenance and functional programs of RORgammat(+) innate lymphoid cells and intraepithelial lymphocytes. Front Immunol 2012; 3: 124.
[59]
Eisenstein EM, Williams CB. The T(reg)/Th17 cell balance: A new paradigm for autoimmunity. Pediatr Res 2009; 65(5 Pt 2): 26R-31R.
[60]
Manel N, Unutmaz D, Littman DR. The differentiation of human T(H)-17 cells requires transforming growth factor-beta and induction of the nuclear receptor RORgammat. Nat Immunol 2008; 9(6): 641-9.
[61]
Veldhoen M, Hirota K, Westendorf AM, et al. The aryl hydrocarbon receptor links TH17-cell-mediated autoimmunity to environmental toxins. Nature 2008; 453(7191): 106-9.
[62]
Wan YY, Flavell RA. How diverse--CD4 effector T cells and their functions. J Mol Cell Biol 2009; 1(1): 20-36.
[63]
Couturier J, Hutchison AT, Medina MA, et al. HIV replication in conjunction with granzyme B production by CCR5+ memory CD4 T cells: Implications for bystander cell and tissue pathologies. Virology 2014; 462-463: 175-88.
[64]
Fevrier M, Dorgham K, Rebollo A. CD4+ T cell depletion in Human Immunodeficiency Virus (HIV) infection: Role of apoptosis. Viruses 2011; 3(5): 586-612.
[65]
Ho IC, Hodge MR, Rooney JW, Glimcher LH. The proto-oncogene c-maf is responsible for tissue-specific expression of interleukin-4. Cell 1996; 85(7): 973-83.
[66]
Zheng W, Flavell RA. The transcription factor GATA-3 is necessary and sufficient for Th2 cytokine gene expression in CD4 T cells. Cell 1997; 89(4): 587-96.
[67]
Yun AJ, Lee PY. The link between T helper balance and lymphoproliferative disease. Med Hypotheses 2005; 65(3): 587-90.
[68]
Olaitan A, Johnson MA, Reid WM, Poulter LW. Changes to the cytokine microenvironment in the genital tract mucosa of HIV+ women. Clin Exp Immunol 1998; 112(1): 100-4.
[69]
Levesque MC, Moody MA, Hwang KK, et al. Polyclonal B cell differentiation and loss of gastrointestinal tract germinal centers in the earliest stages of HIV-1 infection. PLoS Med 2009; 6(7): e1000107.
[70]
Chen Y, Kuchroo VK, Inobe J, Hafler DA, Weiner HL. Regulatory T cell clones induced by oral tolerance: Suppression of autoimmune encephalomyelitis. Science 1994; 265(5176): 1237-40.
[71]
Weiner HL. Induction and mechanism of action of transforming growth factor-beta-secreting Th3 regulatory cells. Immunol Rev 2001; 182: 207-14.
[72]
Mayne CG, Williams CB. Induced and natural regulatory T cells in the development of inflammatory bowel disease. Inflamm Bowel Dis 2013; 19(8): 1772-88.
[73]
Gol-Ara M, Jadidi-Niaragh F, Sadria R, Azizi G, Mirshafiey A. The role of different subsets of regulatory T cells in immunopathogenesis of rheumatoid arthritis. Arthritis (Egypt) 2012; 2012: 805875.
[74]
Benoist C, Mathis D. Treg cells, life history, and diversity. Cold Spring Harb Perspect Biol 2012; 4(9): a007021.
[75]
Lopez-Abente J, Correa-Rocha R, Pion M. Functional mechanisms of Treg in the context of HIV infection and the Janus Face of immune suppression. Front Immunol 2016; 7: 192.
[76]
Sebastian M, Lopez-Ocasio M, Metidji A, Rieder SA, Shevach EM, Thornton AM. Helios controls a limited subset of regulatory T cell functions. J Immunol 2016; 196(1): 144-55.
[77]
Singh K, Hjort M, Thorvaldson L, Sandler S. Concomitant analysis of Helios and Neuropilin-1 as a marker to detect thymic derived regulatory T cells in naive mice. Sci Rep 2015; 5: 7767.
[78]
Carrier Y, Yuan J, Kuchroo VK, Weiner HL. Th3 cells in peripheral tolerance. I. Induction of Foxp3-positive regulatory T cells by Th3 cells derived from TGF-beta T cell-transgenic mice. J Immunol 2007; 178(1): 179-85.
[79]
Chayavichitsilp P, Buckwalter JV, Krakowski AC, Friedlander SF. Herpes simplex Pediatrics in review / Am Acad Ped 2009; 30(4): 119-29; quiz 30
[80]
Miyara M, Yoshioka Y, Kitoh A, et al. Functional delineation and differentiation dynamics of human CD4+ T cells expressing the FoxP3 transcription factor. Immunity 2009; 30(6): 899-911.
[81]
Adeegbe DO, Nishikawa H. Natural and induced T regulatory cells in cancer. Front Immunol 2013; 4: 190.
[82]
Bonertz A, Weitz J, Pietsch DH, et al. Antigen-specific Tregs control T cell responses against a limited repertoire of tumor antigens in patients with colorectal carcinoma. J Clin Invest 2009; 119(11): 3311-21.
[83]
Thornton AM, Korty PE, Tran DQ, et al. Expression of Helios, an Ikaros transcription factor family member, differentiates thymic-derived from peripherally induced Foxp3+ T regulatory cells. J Immunol 2010; 184(7): 3433-41.
[84]
Vieira PL, Christensen JR, Minaee S, et al. IL-10-secreting regulatory T cells do not express Foxp3 but have comparable regulatory function to naturally occurring CD4+CD25+ regulatory T cells. J Immunol 2004; 172(10): 5986-93.
[85]
Jonuleit H, Schmitt E. The regulatory T cell family: Distinct subsets and their interrelations. J Immunol 2003; 171(12): 6323-7.
[86]
Saurer L, Mueller C. T cell-mediated immunoregulation in the gastrointestinal tract. Allergy 2009; 64(4): 505-19.
[87]
Pozo-Balado MM, Rosado-Sanchez I, Mendez-Lagares G, et al. Maraviroc contributes to the restoration of the homeostasis of
regulatory T-cell subsets in antiretroviral-naive HIV-infected
subjects. Clin Microbiol Infect 2016; 22(5): 461 e1-5.
[88]
Danese S, Rutella S. The Janus face of CD4+CD25+ regulatory T cells in cancer and autoimmunity. Curr Med Chem 2007; 14(6): 649-66.
[89]
Pion M, Jaramillo-Ruiz D, Martinez A, Munoz-Fernandez MA, Correa-Rocha R. HIV infection of human regulatory T cells downregulates Foxp3 expression by increasing DNMT3b levels and DNA methylation in the FOXP3 gene. AIDS 2013; 27(13): 2019-29.
[90]
Card CM, Keynan Y, Lajoie J, et al. HIV controllers are distinguished by chemokine expression profile and HIV-specific T-cell proliferative potential. J Acquir Immune Defic Syndr 2012; 59(5): 427-37.
[91]
Nilsson J, Boasso A, Velilla PA, et al. HIV-1-driven regulatory T-cell accumulation in lymphoid tissues is associated with disease progression in HIV/AIDS. Blood 2006; 108(12): 3808-17.
[92]
Presicce P, Orsborn K, King E, Pratt J, Fichtenbaum CJ, Chougnet CA. Frequency of circulating regulatory T cells increases during chronic HIV infection and is largely controlled by highly active antiretroviral therapy. PLoS One 2011; 6(12): e28118.
[93]
Lackner AA, Mohan M, Veazey RS. The gastrointestinal tract and AIDS pathogenesis. Gastroenterology 2009; 136(6): 1965-78.
[94]
Wang X, Xu H, Shen C, et al. Profound loss of intestinal Tregs in acutely SIV-infected neonatal macaques. J Leukoc Biol 2015; 97(2): 391-400.
[95]
Park H, Li Z, Yang XO, et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol 2005; 6(11): 1133-41.
[96]
Harrington LE, Hatton RD, Mangan PR, et al. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol 2005; 6(11): 1123-32.
[97]
Xu H, Wang X, Veazey RS. Th17 cells coordinate with Th22 cells in maintaining homeostasis of intestinal tissues and both are depleted in SIV-Infected Macaques. J AIDS Clin Res 2014; 5(5): 302.
[98]
Plank MW, Kaiko GE, Maltby S, et al. Th22 cells form a distinct Th lineage from Th17 cells in vitro with unique transcriptional properties and Tbet-dependent Th1 plasticity. J Immunol 2017; 198(5): 2182-90.
[99]
Page EE, Greathead L, Metcalf R, et al. Loss of Th22 cells is associated with increased immune activation and IDO-1 activity in HIV-1 infection. J Acquir Immune Defic Syndr 2014; 67(3): 227-35.
[100]
Sallusto F, Zielinski CE, Lanzavecchia A. Human Th17 subsets. Eur J Immunol 2012; 42(9): 2215-20.
[101]
Sun H, Kim D, Li X, et al. Th1/17 polarization of CD4 T cells supports HIV-1 persistence during antiretroviral therapy. J Virol 2015; 89(22): 11284-93.
[102]
Kader M, Bixler S, Roederer M, Veazey R, Mattapallil JJ. CD4 T cell subsets in the mucosa are CD28+Ki-67-HLA-DR-CD69+ but show differential infection based on alpha4beta7 receptor expression during acute SIV infection. J Med Primatol 2009; 38(Suppl. 1): 24-31.
[103]
Alvarez Y, Tuen M, Shen G, et al. Preferential HIV infection of CCR6+ Th17 cells is associated with higher levels of virus receptor expression and lack of CCR5 ligands. J Virol 2013; 87(19): 10843-54.
[104]
Gosselin A, Wiche Salinas TR, Planas D, et al. HIV persists in CCR6+CD4+ T cells from colon and blood during antiretroviral therapy. AIDS 2017; 31(1): 35-48.
[105]
Xu H, Wang X, Liu DX, Moroney-Rasmussen T, Lackner AA, Veazey RS. IL-17-producing innate lymphoid cells are restricted to mucosal tissues and are depleted in SIV-infected macaques. Mucosal Immunol 2012; 5(6): 658-69.
[106]
Sonnenberg GF, Monticelli LA, Alenghat T, et al. Innate lymphoid cells promote anatomical containment of lymphoid-resident commensal bacteria. Science 2012; 336(6086): 1321-5.
[107]
Lee JS, Tato CM, Joyce-Shaikh B, et al. Interleukin-23-independent IL-17 production regulates intestinal epithelial permeability. Immunity 2015; 43(4): 727-38.
[108]
Ryan ES, Micci L, Fromentin R, et al. Loss of function of intestinal IL-17 and IL-22 producing cells contributes to inflammation and viral persistence in SIV-Infected Rhesus Macaques. PLoS Pathog 2016; 12(2): e1005412.
[109]
Serriari NE, Eoche M, Lamotte L, et al. Innate Mucosal-Associated Invariant T (MAIT) cells are activated in inflammatory bowel diseases. Clin Exp Immunol 2014; 176(2): 266-74.
[110]
Cecchinato V, Franchini G. Th17 cells in pathogenic simian immunodeficiency virus infection of macaques. Curr Opin HIV AIDS 2010; 5(2): 141-5.
[111]
Brenchley JM, Paiardini M, Knox KS, et al. Differential Th17 CD4 T-cell depletion in pathogenic and nonpathogenic lentiviral infections. Blood 2008; 112(7): 2826-35.
[112]
Dandekar S, George MD, Baumler AJ. Th17 cells, HIV and the gut mucosal barrier. Curr Opin HIV AIDS 2010; 5(2): 173-8.
[113]
Kanwar B, Favre D, McCune JM. Th17 and regulatory T cells: Implications for AIDS pathogenesis. Curr Opin HIV AIDS 2010; 5(2): 151-7.
[114]
Raffatellu M, Santos RL, Verhoeven DE, et al. Simian immunodeficiency virus-induced mucosal interleukin-17 deficiency promotes Salmonella dissemination from the gut. Nat Med 2008; 14(4): 421-8.
[115]
Mitsuki YY, Tuen M, Hioe CE. Differential effects of HIV transmission from monocyte-derived dendritic cells vs. monocytes to IL-17+CD4+ T cells. J Leukoc Biol 2017; 101(1): 339-50.
[116]
Stieh DJ, Matias E, Xu H, et al. Th17 cells are preferentially infected very early after vaginal transmission of SIV in Macaques. Cell Host Microbe 2016; 19(4): 529-40.
[117]
Cleret-Buhot A, Zhang Y, Planas D, et al. Identification of novel HIV-1 dependency factors in primary CCR4(+)CCR6(+)Th17 cells via a genome-wide transcriptional approach. Retrovirology 2015; 12: 102.
[118]
Lee GQ, Lichterfeld M. Diversity of HIV-1 reservoirs in CD4+ T-cell subpopulations. Curr Opin HIV AIDS 2016; 11(4): 383-7.
[119]
El Hed A, Khaitan A, Kozhaya L, et al. Susceptibility of human Th17 cells to human immunodeficiency virus and their perturbation during infection. J Infect Dis 2010; 201(6): 843-54.
[120]
Christensen-Quick A, Lafferty M, Sun L, Marchionni L, DeVico A, Garzino-Demo A. Human Th17 cells lack HIV-inhibitory RNases and are hghly permissive to productive HIV infection. J Virol 2016; 90(17): 7833-47.
[121]
Brenchley JM, Price DA, Schacker TW, et al. Microbial translocation is a cause of systemic immune activation in chronic HIV infection. Nat Med 2006; 12(12): 1365-71.
[122]
Klatt NR, Chomont N, Douek DC, Deeks SG. Immune activation and HIV persistence: Implications for curative approaches to HIV infection. Immunol Rev 2013; 254(1): 326-42.
[123]
Ortiz AM, Klase ZA, DiNapoli SR, et al. IL-21 and probiotic therapy improve Th17 frequencies, microbial translocation, and microbiome in ARV-treated, SIV-infected macaques. Mucosal Immunol 2016; 9(2): 458-67.
[124]
Pallikkuth S, Micci L, Ende ZS, et al. Maintenance of intestinal Th17 cells and reduced microbial translocation in SIV-infected rhesus macaques treated with interleukin (IL)-21. PLoS Pathog 2013; 9(7): e1003471.
[125]
Perreau M, Savoye AL, De Crignis E, et al. Follicular helper T cells serve as the major CD4 T cell compartment for HIV-1 infection, replication, and production. J Exp Med 2013; 210(1): 143-56.
[126]
Cubas RA, Mudd JC, Savoye AL, et al. Inadequate T follicular cell help impairs B cell immunity during HIV infection. Nat Med 2013; 19(4): 494-9.
[127]
Ma CS, Phan TG. Here, there and everywhere: T follicular helper cells on the move. Immunology 2017; 152(3): 382-7.
[128]
Moukambi F, Rodrigues V, Fortier Y, et al. CD4 T follicular helper cells and HIV infection: Friends or enemies? Front Immunol 2017; 8: 135.
[129]
Xu H, Wang X, Lackner AA, Veazey RS. PD-1(HIGH) follicular CD4 T helper cell subsets residing in lymph node germinal centers correlate with B cell maturation and IgG production in Rhesus Macaques. Front Immunol 2014; 5: 85.
[130]
Xu H, Wang X, Malam N, et al. Persistent Simian Immunodeficiency Virus infection drives differentiation, aberrant accumulation, and latent infection of germinal center Follicular T helper cells. J Virol 2016; 90(3): 1578-87.
[131]
Morita R, Schmitt N, Bentebibel SE, et al. Human blood CXCR5(+)CD4(+) T cells are counterparts of T follicular cells and contain specific subsets that differentially support antibody secretion. Immunity 2011; 34(1): 108-21.
[132]
Miller SM, Miles B, Guo K, et al. Follicular regulatory T cells are highly permissive to R5-tropic HIV-1. J Virol 2017; 91(17): e00430-17.
[133]
Zaunders J, Xu Y, Kent SJ, Koelsch KK, Kelleher AD. Divergent Expression of CXCR5 and CCR5 on CD4+ T Cells and the Paradoxical Accumulation of T Follicular Helper Cells during HIV Infection. Front Immunol 2017; 8: 495.
[134]
Krautler NJ, Suan D, Butt D, et al. Differentiation of germinal center B cells into plasma cells is initiated by high-affinity antigen and completed by Tfh cells. J Exp Med 2017; 214(5): 1259-67.
[135]
Ling B, Mohan M, Lackner AA, et al. The large intestine as a major reservoir for simian immunodeficiency virus in macaques with long-term, nonprogressing infection. J Infect Dis 2010; 202(12): 1846-54.
[136]
Apostolaki M, Manoloukos M, Roulis M, et al. Role of beta7 integrin and the chemokine/chemokine receptor pair CCL25/CCR9 in modeled TNF-dependent Crohn’s disease. Gastroenterology 2008; 134(7): 2025-35.
[137]
Wagner N, Lohler J, Kunkel EJ, et al. Critical role for b7 integrins in formation of the gut-associated lymphoid tissue. Nature 1996; 382: 366-70.
[138]
Cepek KL, Shaw SK, Parker CM, et al. Adhesion between epithelial cells and T lymphocytes mediated by E-cadherin and the alpha E beta 7 integrin. Nature 1994; 372(6502): 190-3.
[139]
Mavigner M, Cazabat M, Dubois M, et al. Altered CD4+ T cell homing to the gut impairs mucosal immune reconstitution in treated HIV-infected individuals. J Clin Invest 2012; 122(1): 62-9.
[140]
Parra M, Herrera D, Calvo-Calle JM, et al. Circulating human rotavirus specific CD4 T cells identified with a class II tetramer express the intestinal homing receptors alpha4beta7 and CCR9. Virology 2014; 452-453: 191-201.
[141]
Butcher EC, Picker LJ. Lymphocyte homing and homeostasis. Science 1996; 272: 60-6.
[142]
Arthos J, Cicala C, Martinelli E, et al. HIV-1 envelope protein binds to and signals through integrin alpha4beta7, the gut mucosal homing receptor for peripheral T cells. Nat Immunol 2008; 9(3): 301-9.
[143]
Guzzo C, Ichikawa D, Park C, et al. Virion incorporation of integrin alpha4beta7 facilitates HIV-1 infection and intestinal homing. Sci Immunol 2017; 2(11): eaam7341.
[144]
Byrareddy SN, Kallam B, Arthos J, et al. Targeting alpha4beta7 integrin reduces mucosal transmission of simian immunodeficiency virus and protects gut-associated lymphoid tissue from infection. Nat Med 2014; 20(12): 1397-400.
[145]
Ansari AA, Reimann KA, Mayne AE, et al. Blocking of alpha4beta7 gut-homing integrin during acute infection leads to decreased plasma and gastrointestinal tissue viral loads in simian immunodeficiency virus-infected rhesus macaques. J Immunol 2011; 186(2): 1044-59.
[146]
Wang X, Xu H, Gill AF, et al. Monitoring alpha4beta7 integrin expression on circulating CD4+ T cells as a surrogate marker for tracking intestinal CD4+ T-cell loss in SIV infection. Mucosal Immunol 2009; 2(6): 518-26.
[147]
Kader M, Wang X, Piatak M, et al. Alpha4(+)beta7(hi)CD4(+) memory T cells harbor most Th-17 cells and are preferentially infected during acute SIV infection. Mucosal Immunol 2009; 2(5): 439-49.
[148]
Pandrea IV, Gautam R, Ribeiro RM, Brenchley JM, Butler IF, Pattison M, et al. Acute loss of intestinal CD4+ T cells is not predictive of simian immunodeficiency virus virulence. J Immunol 2007; 179(5): 3035-46.
[149]
Ling B, Veazey RS, Hart M, et al. Early restoration of mucosal CD4 memory CCR5 T cells in the gut of SIV-infected rhesus predicts long term non-progression. AIDS 2007; 21(18): 2377-85.
[150]
Girard A, Vergnon-Miszczycha D, Depince-Berger AE, et al. Brief Report: A high rate of beta7+ gut-homing lymphocytes in HIV-infected immunological nonresponders is associated with poor CD4 T-Cell Recovery During Suppressive HAART. J Acquir Immune Defic Syndr 2016; 72(3): 259-65.
[151]
Allers K, Puyskens A, Epple HJ, et al. The effect of timing of antiretroviral therapy on CD4+ T-cell reconstitution in the intestine of HIV-infected patients. Mucosal Immunol 2016; 9(1): 265-74.
[152]
George MD, Reay E, Sankaran S, Dandekar S. Early antiretroviral therapy for simian immunodeficiency virus infection leads to mucosal CD4+ T-cell restoration and enhanced gene expression regulating mucosal repair and regeneration. J Virol 2005; 79(5): 2709-19.
[153]
Guadalupe M, Sankaran S, George MD, Reay E, Verhoeven D, Shacklett BL, et al. Viral suppression and immune restoration in the gastrointestinal mucosa of human immunodeficiency virus type 1-infected patients initiating therapy during primary or chronic infection. J Virol 2006; 80(16): 8236-47.
[154]
Hartigan-O’connor DJ, Hirao LA, McCune JM, Dandekar S. Th17 cells and regulatory T cells in elite control over HIV and SIV. Curr Opin HIV AIDS 2011; 6(3): 221-7.
[155]
Rueda CM, Velilla PA, Chougnet CA, Rugeles MT. Incomplete normalization of regulatory t-cell frequency in the gut mucosa of Colombian HIV-infected patients receiving long-term antiretroviral treatment. PLoS One 2013; 8(8): e71062.
[156]
d’Ettorre G, Rossi G, Scagnolari C, et al. Probiotic supplementation promotes a reduction in T-cell activation, an increase in Th17 frequencies, and a recovery of intestinal epithelium integrity and mitochondrial morphology in ART-treated HIV-1-positive patients. Immun Inflamm Dis 2017; 5(3): 244-60.
[157]
Costiniuk CT, Angel JB. Human immunodeficiency virus and the gastrointestinal immune system: does highly active antiretroviral therapy restore gut immunity? Mucosal Immunol 2012; 5(6): 596-604.
[158]
Guadalupe M, Reay E, Sankaran S, et al. Severe CD4+ T-cell depletion in gut lymphoid tissue during primary human immunodeficiency virus type 1 infection and substantial delay in restoration following highly active antiretroviral therapy. J Virol 2003; 77(21): 11708-17.
[159]
Verhoeven D, Sankaran S, Silvey M, Dandekar S. Antiviral therapy during primary simian immunodeficiency virus infection fails to prevent acute loss of CD4+ T cells in gut mucosa but enhances their rapid restoration through central memory T cells. J Virol 2008; 82(8): 4016-27.
[160]
Sheth PM, Chege D, Shin LY, et al. Immune reconstitution in the sigmoid colon after long-term HIV therapy. Mucosal Immunol 2008; 1(5): 382-8.
[161]
Yukl SA, Shergill AK, Girling V, et al. Site-specific differences in T cell frequencies and phenotypes in the blood and gut of HIV-uninfected and ART-treated HIV+ adults. PLoS One 2015; 10(3): e0121290.
[162]
Estes J, Baker JV, Brenchley JM, et al. Collagen deposition limits immune reconstitution in the gut. J Infect Dis 2008; 198(4): 456-64.
[163]
Mestecky J, McGhee JR, Bienenstock J, et al. Historical aspects of mucosal immunology.In: Mestecky J, Strober W, Russell MW, Kelsall BL, Cheroutre H, Lambrecht BN, editors. Mucosal immunology. 1. Amsterdam: Elsevier; 2015. p. xxxi-lvii.
[164]
Waksman BH, Ozer H. Specialized amplification elements in the immune system. The role of nodular lymphoid organs in the mucous membranes. Prog Allergy 1976; 21: 1-113.
[165]
Yasuda M, Jenne CN, Kennedy LJ, Reynolds JD. The sheep and cattle Peyer’s patch as a site of B-cell development. Vet Res 2006; 37(3): 401-15.
[166]
Yanai H, Atsumi N, Tanaka T, et al. Intestinal stem cells contribute to the maturation of the neonatal small intestine and colon independently of digestive activity. Sci Rep 2017; 7(1): 9891.
[167]
Saito H, Kanamori Y, Takemori T, et al. Generation of intestinal T cells from progenitors residing in gut cryptopatches. Science 1998; 280(5361): 275-8.
[168]
Guy-Grand D, Azogui O, Celli S, Darche S, Nussenzweig MC, Kourilsky P, et al. Extrathymic T cell lymphopoiesis: Ontogeny and contribution to gut intraepithelial lymphocytes in athymic and euthymic mice. J Exp Med 2003; 197(3): 333-41.
[169]
Lugering A, Ross M, Sieker M, et al. CCR6 identifies lymphoid tissue inducer cells within cryptopatches. Clin Exp Immunol 2010; 160(3): 440-9.
[170]
Lugli E, Gattinoni L, Roberto A, et al. Identification, isolation and in vitro expansion of human and nonhuman primate T stem cell memory cells. Nat Protoc 2013; 8(1): 33-42.
[171]
Lu X, Song B, Weng W, Xia H, Su B, Wu H, et al. CD4+ T Memory Stem Cells Correlate with Disease Progression in Chronically HIV-1-Infected Patients. Viral Immunol 2017; 30(9): 642-8.
[172]
Chahroudi A, Silvestri G, Lichterfeld M. T memory stem cells and HIV: A long-term relationship. Curr HIV/AIDS Rep 2015; 12(1): 33-40.
[173]
Gray GE, Moodie Z, Metch B, et al. Recombinant adenovirus type 5 HIV gag/pol/nef vaccine in South Africa: unblinded, long-term follow-up of the phase 2b HVTN 503/Phambili study. Lancet Infect Dis 2014; 14(5): 388-96.
[174]
Tenbusch M, Ignatius R, Temchura V, et al. Risk of immunodeficiency virus infection may increase with vaccine-induced immune response. J Virol 2012; 86(19): 10533-9.
[175]
Perdigao P, Gaj T, Santa-Marta M, Barbas CF III, Goncalves J. Reactivation of Latent HIV-1 Expression by Engineered TALE Transcription Factors. PLoS One 2016; 11(3): e0150037.