Generic placeholder image

Current Immunology Reviews (Discontinued)

Editor-in-Chief

ISSN (Print): 1573-3955
ISSN (Online): 1875-631X

Review Article

HIV and SIV in Body Fluids: From Breast Milk to the Genitourinary Tract

Author(s): Kattayoun Kordy, Nicole H. Tobin and Grace M. Aldrovandi*

Volume 15, Issue 1, 2019

Page: [139 - 152] Pages: 14

DOI: 10.2174/1573395514666180605085313

Price: $65

conference banner
Abstract

HIV-1 is present in many secretions including oral, intestinal, genital, and breast milk. However, most people exposed to HIV-1 within these mucosal compartments do not become infected despite often frequent and repetitive exposure over prolonged periods of time. In this review, we discuss what is known about the levels of cell-free HIV RNA, cell-associated HIV DNA and cellassociated HIV RNA in external secretions. Levels of virus are usually lower than contemporaneously obtained blood, increased in settings of inflammation and infection, and decreased in response to antiretroviral therapy. Additionally, each mucosal compartment has unique innate and adaptive immune responses that affect the composition and presence of HIV-1 within each external secretion. We discuss the current state of knowledge about the types and amounts of virus present in the various excretions, touch on innate and adaptive immune responses as they affect viral levels, and highlight important areas for further study.

Keywords: Cell-associated virus, cell-associated RNA, cell-associated DNA, cell-free virus, HIV RNA, mucosal transmission, semen, breast milk, saliva, cervicovaginal fluids, HIV, SIV, non-human primates, genital tract, rectum, vagina, vertical disease transmission, infected leucocytes.

[1]
Lehman DA, Chung MH, John-Stewart GC, et al. HIV-1 persists in breast milk cells despite antiretroviral treatment to prevent mother-to-child transmission. AIDS 2008; 22(12): 1475-85.
[2]
Pilcher CD, Shugars DC, Fiscus SA, et al. HIV in body fluids during primary HIV infection: Implications for pathogenesis, treatment and public health. AIDS 2001; 15(7): 837-45.
[3]
Heath L, Conway S, Jones L, et al. Restriction of HIV-1 genotypes in breast milk does not account for the population transmission genetic bottleneck that occurs following transmission. PLoS One 2010; 5(4): e10213.
[4]
Pilcher CD, Joaki G, Hoffman IF, et al. Amplified transmission of HIV-1: Comparison of HIV-1 concentrations in semen and blood during acute and chronic infection. AIDS 2007; 21(13): 1723-30.
[5]
Boeras DI, Hraber PT, Hurlston M, et al. Role of donor genital tract HIV-1 diversity in the transmission bottleneck. Proc Natl Acad Sci USA 2011; 108(46): E1156-63.
[6]
Kuhn L, Trabattoni D, Kankasa C, et al. Hiv-specific secretory IgA in breast milk of HIV-positive mothers is not associated with protection against HIV transmission among breast-fed infants. J Pediatr 2006; 149(5): 611-6.
[7]
Mestecky J, Wei Q, Alexander R, Raska M, Novak J, Moldoveanu Z. Humoral immune responses to HIV in the mucosal secretions and sera of HIV-infected women. Am J Reprod Immunol 2014; 71(6): 600-7.
[8]
Wei Q, Moldoveanu Z, Huang WQ, Alexander RC, Goepfert PA, Mestecky J. Comparative evaluation of HIV-1 neutralization in external secretions and sera of HIV-1-infected women. Open AIDS J 2012; 6: 293-302.
[9]
Haynes BF, Gilbert PB, McElrath MJ, et al. Immune-correlates analysis of an HIV-1 vaccine efficacy trial. N Engl J Med 2012; 366(14): 1275-86.
[10]
Tomaras GD, Ferrari G, Shen X, et al. Vaccine-induced plasma IgA specific for the C1 region of the HIV-1 envelope blocks binding and effector function of IgG. Proc Natl Acad Sci USA 2013; 110(22): 9019-24.
[11]
Anderson DJ, Politch JA, Nadolski AM, Blaskewicz CD, Pudney J, Mayer KH. Targeting Trojan Horse leukocytes for HIV prevention. AIDS 2010; 24(2): 163-87.
[12]
Sagar M. Origin of the transmitted virus in HIV infection: Infected cells versus cell-free virus. J Infect Dis 2014; 210(Suppl. 3): S667-73.
[13]
Wahl SM, Worley P, Jin W, et al. Anatomic dissociation between HIV-1 and its endogenous inhibitor in mucosal tissues. Am J Pathol 1997; 150(4): 1275-84.
[14]
Shugars DC, Slade GD, Patton LL, Fiscus SA. Oral and systemic factors associated with increased levels of human immunodeficiency virus type 1 RNA in saliva. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2000; 89(4): 432-40.
[15]
Liuzzi G, Chirianni A, Clementi M, et al. Analysis of HIV-1 load in blood, semen and saliva: evidence for different viral compartments in a cross-sectional and longitudinal study. AIDS 1996; 10(14): F51-6.
[16]
Liuzzi G, Chirianni A, Clementi M, Zaccarelli M, Antinori A, Piazza M. Reduction of HIV-1 viral load in saliva by indinavir-containing antiretroviral regimen. AIDS 2002; 16(3): 503-4.
[17]
Maticic M, Poljak M, Kramar B, et al. Proviral HIV-1 DNA in gingival crevicular fluid of HIV-1-infected patients in various stages of HIV disease. J Dent Res 2000; 79(7): 1496-501.
[18]
Yeung SC, Kazazi F, Randle CG, et al. Patients infected with human immunodeficiency virus type 1 have low levels of virus in saliva even in the presence of periodontal disease. J Infect Dis 1993; 167(4): 803-9.
[19]
Navazesh M, Mulligan R, Kono N, et al. Oral and systemic health correlates of HIV-1 shedding in saliva. J Dent Res 2010; 89(10): 1074-9.
[20]
Barr CE, Miller LK, Lopez MR, et al. 1992.
[21]
Coppenhaver DH, Sriyuktasuth-Woo P, Baron S, Barr CE, Qureshi MN. Correlation of nonspecific antiviral activity with the ability to isolate infectious HIV-1 from saliva. N Engl J Med 1994; 330(18): 1314-5.
[22]
Moore BE, Flaitz CM, Coppenhaver DH, et al. HIV recovery from saliva before and after dental treatment: Inhibitors may have critical role in viral inactivation. J Am Dent Assoc 1993; 124(10): 67-74.
[23]
Shugars DC. Endogenous mucosal antiviral factors of the oral cavity. J Infect Dis 1999; 179(Suppl. 3): S431-5.
[24]
Melvin AJ, Tamura GS, House JK, et al. Lack of detection of human immunodeficiency virus type 1 in the saliva of infected children and adolescents. Arch Pediatr Adolesc Med 1997; 151(3): 228-32.
[25]
Zuckerman RA, Whittington WL, Celum CL, et al. Factors associated with oropharyngeal human immunodeficiency virus shedding. J Infect Dis 2003; 188(1): 142-5.
[26]
Archibald DW, Cole GA. In vitro inhibition of HIV-1 infectivity by human salivas. AIDS Res Hum Retroviruses 1990; 6(12): 1425-32.
[27]
Bergey EJ, Cho MI, Blumberg BM, et al. Interaction of HIV-1 and human salivary mucins. J Acquir Immune Defic Syndr 1994; 7(10): 995-1002.
[28]
Campo J, Perea MA, del Romero J, Cano J, Hernando V, Bascones A. Oral transmission of HIV, reality or fiction? An update. Oral Dis 2006; 12(3): 219-28.
[29]
Crombie R, Silverstein RL, MacLow C, Pearce SF, Nachman RL, Laurence J. Identification of a CD36-related thrombospondin 1-binding domain in HIV-1 envelope glycoprotein gp120: relationship to HIV-1-specific inhibitory factors in human saliva. J Exp Med 1998; 187(1): 25-35.
[30]
Fox PC, Wolff A, Yeh CK, Atkinson JC, Baum BJ. Saliva inhibits HIV-1 infectivity. J Am Dent Assoc 1988; 116(6): 635-7.
[31]
Fox PC, Wolff A, Yeh CK, Atkinson JC, Baum BJ. Salivary inhibition of HIV-1 infectivity: Functional properties and distribution in men, women, and children. J Am Dent Assoc 1989; 118(6): 709-11.
[32]
Fultz PN. Components of saliva inactivate human immunodeficiency virus. Lancet 1986; 2(8517): 1215.
[33]
McNeely TB, Dealy M, Dripps DJ, Orenstein JM, Eisenberg SP, Wahl SM. Secretory leukocyte protease inhibitor: A human saliva protein exhibiting anti-human immunodeficiency virus 1 activity in vitro. J Clin Invest 1995; 96(1): 456-64.
[34]
Wahl SM, Orenstein JM. Immune stimulation and HIV-1 viral replication. J Leukoc Biol 1997; 62(1): 67-71.
[35]
Yeh CK, Handelman B, Fox PC, Baum BJ. Further studies of salivary inhibition of HIV-1 infectivity. J Acquir Immune Defic Syndr 1992; 5(9): 898-903.
[36]
Mestecky J, Jackson S, Moldoveanu Z, et al. Paucity of antigen-specific IgA responses in sera and external secretions of HIV-type 1-infected individuals. AIDS Res Hum Retroviruses 2004; 20(9): 972-88.
[37]
Cartry O, Moja P, Quesnel A, Pozzetto B, Lucht FR, Genin C. Quantification of IgA and IgG and specificities of antibodies to viral proteins in parotid saliva at different stages of HIV-1 infection. Clin Exp Immunol 1997; 109(1): 47-53.
[38]
Kozlowski PA, Jackson S. Serum IgA subclasses and molecular forms in HIV infection: Selective increases in monomer and apparent restriction of the antibody response to IgA1 antibodies mainly directed at env glycoproteins. AIDS Res Hum Retroviruses 1992; 8(10): 1773-80.
[39]
Baron S, Poast J, Cloyd MW. Why is HIV rarely transmitted by oral secretions? Saliva can disrupt orally shed, infected leukocytes. Arch Intern Med 1999; 159(3): 303-10.
[40]
Transmission of HIV by human bite. Lancet 1987; 2(8557): 522.
[41]
Bratt GA, Berglund T, Glantzberg BL, Albert J, Sandstrom E. Two cases of oral-to-genital HIV-1 transmission. Int J STD AIDS 1997; 8(8): 522-5.
[42]
Rozenbaum W, Gharakhanian S, Cardon B, Duval E, Coulaud JP. HIV transmission by oral sex. Lancet 1988; 1(8599): 1395.
[43]
Spitzer PG, Weiner NJ. Transmission of HIV infection from a woman to a man by oral sex. N Engl J Med 1989; 320(4): 251.
[44]
Vittinghoff E, Douglas J, Judson F, McKirnan D, MacQueen K, Buchbinder SP. Per-contact risk of human immunodeficiency virus transmission between male sexual partners. Am J Epidemiol 1999; 150(3): 306-11.
[45]
Brachtel EF, Mascola JR, Wear DJ, et al. Demonstration of de novo HIV type 1 production by detection of multiply spliced and unspliced HIV type 1 RNA in paraffin-embedded tonsils. AIDS Res Hum Retroviruses 2002; 18(11): 785-90.
[46]
Shaw GM, Hunter E. HIV transmission. Cold Spring Harb Perspect Med 2012; 2(11): a006965.
[47]
Houzet L, Matusali G, Dejucq-Rainsford N. Origins of HIV-infected leukocytes and virions in semen. J Infect Dis 2014; 210(Suppl. 3): S622-30.
[48]
Royce RA, Sena A, Cates W Jr, Cohen MS. Sexual transmission of HIV. N Engl J Med 1997; 336(15): 1072-8.
[49]
Boily MC, Baggaley RF, Wang L, et al. Heterosexual risk of HIV-1 infection per sexual act: Systematic review and meta-analysis of observational studies. Lancet Infect Dis 2009; 9(2): 118-29.
[50]
Patel P, Borkowf CB, Brooks JT, Lasry A, Lansky A, Mermin J. Estimating per-act HIV transmission risk: A systematic review. AIDS 2014; 28(10): 1509-19.
[51]
Munch J, Rucker E, Standker L, et al. Semen-derived amyloid fibrils drastically enhance HIV infection. Cell 2007; 131(6): 1059-71.
[52]
Roan NR, Liu H, Usmani SM, et al. Liquefaction of semen generates and later degrades a conserved semenogelin peptide that enhances HIV infection. J Virol 2014; 88(13): 7221-34.
[53]
Chen J, Ren R, Tan S, et al. A peptide derived from the HIV-1 gp120 coreceptor-binding region promotes formation of PAP248-286 amyloid fibrils to enhance HIV-1 infection. PLoS One 2015; 10(12): e0144522.
[54]
Sabatte J, Ceballos A, Raiden S, et al. Human seminal plasma abrogates the capture and transmission of human immunodeficiency virus type 1 to CD4+ T cells mediated by DC-SIGN. J Virol 2007; 81(24): 13723-34.
[55]
Martellini JA, Cole AL, Svoboda P, et al. HIV-1 enhancing effect of prostatic acid phosphatase peptides is reduced in human seminal plasma. PLoS One 2011; 6(1): e16285.
[56]
Stax MJ, van Montfort T, Sprenger RR, et al. Mucin 6 in seminal plasma binds DC-SIGN and potently blocks dendritic cell mediated transfer of HIV-1 to CD4(+) T-lymphocytes. Virology 2009; 391(2): 203-11.
[57]
Martellini JA, Cole AL, Venkataraman N, et al. Cationic polypeptides contribute to the anti-HIV-1 activity of human seminal plasma. FASEB J 2009; 23(10): 3609-18.
[58]
Munch J, Sauermann U, Yolamanova M, Raue K, Stahl-Hennig C, Kirchhoff F. Effect of semen and seminal amyloid on vaginal transmission of simian immunodeficiency virus. Retrovirology 2013; 10: 148.
[59]
Allen SA, Carias AM, Anderson MR, et al. Characterization of the influence of semen-derived enhancer of virus infection on the interaction of HIV-1 with female reproductive tract tissues. J Virol 2015; 89(10): 5569-80.
[60]
Roan NR, Muller JA, Liu H, et al. Peptides released by physiological cleavage of semen coagulum proteins form amyloids that enhance HIV infection. Cell Host Microbe 2011; 10(6): 541-50.
[61]
Usmani SM, Zirafi O, Muller JA, et al. Direct visualization of HIV-enhancing endogenous amyloid fibrils in human semen. Nat Commun 2014; 5: 3508.
[62]
Arnold F, Schnell J, Zirafi O, et al. Naturally occurring fragments from two distinct regions of the prostatic acid phosphatase form amyloidogenic enhancers of HIV infection. J Virol 2012; 86(2): 1244-9.
[63]
Zirafi O, Kim KA, Roan NR, et al. Semen enhances HIV infectivity and impairs the antiviral efficacy of microbicides. Sci Transl Med 2014; 6(262): 262ra157.
[64]
Scott YM, Park SY, Dezzutti CS. Broadly neutralizing anti-HIV antibodies prevent HIV infection of mucosal tissue ex vivo. Antimicrob Agents Chemother 2016; 60(2): 904-12.
[65]
Wolff H, Anderson DJ. Immunohistologic characterization and quantitation of leukocyte subpopulations in human semen. Fertil Steril 1988; 49(3): 497-504.
[66]
Coombs RW, Speck CE, Hughes JP, et al. Association between culturable human Immunodeficiency Virus type 1 (HIV-1) in semen and HIV-1 RNA levels in semen and blood: Evidence for compartmentalization of HIV-1 between semen and blood. J Infect Dis 1998; 177(2): 320-30.
[67]
Quayle AJ, Xu C, Mayer KH, Anderson DJ. T lymphocytes and macrophages, but not motile spermatozoa, are a significant source of human immunodeficiency virus in semen. J Infect Dis 1997; 176(4): 960-8.
[68]
Ilaria G, Jacobs JL, Polsky B, et al. Detection of HIV-1 DNA sequences in pre-ejaculatory fluid. Lancet 1992; 340(8833): 1469.
[69]
Pudney J, Oneta M, Mayer K, Seage G III, Anderson D. Pre-ejaculatory fluid as potential vector for sexual transmission of HIV-1. Lancet 1992; 340(8833): 1470.
[70]
Vernazza PL, Troiani L, Flepp MJ, et al. Potent antiretroviral treatment of HIV-infection results in suppression of the seminal shedding of HIV. The Swiss HIV Cohort Study. AIDS 2000; 14(2): 117-21.
[71]
Le Tortorec A, Le Grand R, Denis H, et al. Infection of semen-producing organs by SIV during the acute and chronic stages of the disease. PLoS One 2008; 3(3): e1792.
[72]
Fieni F, Stone M, Ma ZM, Dutra J, Fritts L, Miller CJ. Viral RNA levels and env variants in semen and tissues of mature male rhesus macaques infected with SIV by penile inoculation. PLoS One 2013; 8(10): e76367.
[73]
Politch JA, Mayer KH, Welles SL, et al. Highly active antiretroviral therapy does not completely suppress HIV in semen of sexually active HIV-infected men who have sex with men. AIDS 2012; 26(12): 1535-43.
[74]
Anderson JA, Ping LH, Dibben O, et al. HIV-1 Populations in Semen Arise through Multiple Mechanisms. PLoS Pathog 2010; 6(8): e1001053.
[75]
Pillai SK, Good B, Pond SK, et al. Semen-specific genetic characteristics of human immunodeficiency virus type 1 env. J Virol 2005; 79(3): 1734-42.
[76]
Ghosn J, Viard JP, Katlama C, et al. Evidence of genotypic resistance diversity of archived and circulating viral strains in blood and semen of pre-treated HIV-infected men. AIDS 2004; 18(3): 447-57.
[77]
Paranjpe S, Craigo J, Patterson B, et al. Subcompartmentalization of HIV-1 quasispecies between seminal cells and seminal plasma indicates their origin in distinct genital tissues. AIDS Res Hum Retroviruses 2002; 18(17): 1271-80.
[78]
Muciaccia B, Filippini A, Ziparo E, Colelli F, Baroni CD, Stefanini M. Testicular germ cells of HIV-seropositive asymptomatic men are infected by the virus. J Reprod Immunol 1998; 41(1-2): 81-93.
[79]
Muciaccia B, Corallini S, Vicini E, et al. HIV-1 viral DNA is present in ejaculated abnormal spermatozoa of seropositive subjects. Hum Reprod 2007; 22(11): 2868-78.
[80]
Persico T, Savasi V, Ferrazzi E, Oneta M, Semprini AE, Simoni G. Detection of human immunodeficiency virus-1 RNA and DNA by extractive and in situ PCR in unprocessed semen and seminal fractions isolated by semen-washing procedure. Hum Reprod 2006; 21(6): 1525-30.
[81]
Pudney J, Nguyen H, Xu C, Anderson DJ. Microscopic evidence against HIV-1 infection of germ cells or attachment to sperm. J Reprod Immunol 1999; 44(1-2): 57-77.
[82]
Semprini AE, Levi-Setti P, Bozzo M, et al. Insemination of HIV-negative women with processed semen of HIV-positive partners. Lancet 1992; 340(8831): 1317-9.
[83]
Ohl J, Partisani M, Wittemer C, et al. Assisted reproduction techniques for HIV serodiscordant couples: 18 months of experience. Hum Reprod 2003; 18(6): 1244-9.
[84]
Savasi V, Ferrazzi E, Lanzani C, Oneta M, Parrilla B, Persico T. Safety of sperm washing and ART outcome in 741 HIV-1-serodiscordant couples. Hum Reprod 2007; 22(3): 772-7.
[85]
Anderson DJ, Le Grand R. Cell-associated HIV mucosal transmission: The neglected pathway. J Infect Dis 2014; 210(Suppl. 3): S606-8.
[86]
Dorak MT, Tang J, Penman-Aguilar A, et al. Transmission of HIV-1 and HLA-B allele-sharing within serodiscordant heterosexual Zambian couples. Lancet 2004; 363(9427): 2137-9.
[87]
Mackelprang RD, John-Stewart G, Carrington M, et al. Maternal HLA homozygosity and mother-child HLA concordance increase the risk of vertical transmission of HIV-1. J Infect Dis 2008; 197(8): 1156-61.
[88]
Sturmer M, Doerr HW, Berger A, Gute P. Is transmission of HIV-1 in non-viraemic serodiscordant couples possible? Antivir Ther 2008; 13(5): 729-32.
[89]
Zhu T, Wang N, Carr A, et al. Genetic characterization of human immunodeficiency virus type 1 in blood and genital secretions: Evidence for viral compartmentalization and selection during sexual transmission. J Virol 1996; 70(5): 3098-107.
[90]
Gianella S, Mehta SR, Young JA, et al. Sexual transmission of predicted CXCR4-tropic HIV-1 likely originating from the source partner’s seminal cells. Virology 2012; 434(1): 2-4.
[91]
Sagar M, Akiyama H, Etemad B, Ramirez N, Freitas I, Gummuluru S. Transmembrane domain membrane proximal external region but not surface unit-directed broadly neutralizing HIV-1 antibodies can restrict dendritic cell-mediated HIV-1 trans-infection. J Infect Dis 2012; 205(8): 1248-57.
[92]
Malbec M, Porrot F, Rua R, et al. Broadly neutralizing antibodies that inhibit HIV-1 cell to cell transmission. J Exp Med 2013; 210(13): 2813-21.
[93]
Abela IA, Berlinger L, Schanz M, et al. Cell-cell transmission enables HIV-1 to evade inhibition by potent CD4bs directed antibodies. PLoS Pathog 2012; 8(4): e1002634.
[94]
Vanpouille C, Introini A, Morris SR, et al. Distinct cytokine/chemokine network in semen and blood characterize different stages of HIV infection. AIDS 2016; 30(2): 193-201.
[95]
Lisco A, Introini A, Munawwar A, et al. HIV-1 imposes rigidity on blood and semen cytokine networks. Am J Reprod Immunol 2012; 68(6): 515-21.
[96]
Olivier AJ, Masson L, Ronacher K, et al. Distinct cytokine patterns in semen influence local HIV shedding and HIV target cell activation. J Infect Dis 2014; 209(8): 1174-84.
[97]
Politch JA, Mayer KH, Anderson DJ. Depletion of CD4+ T cells in semen during HIV infection and their restoration following antiretroviral therapy. J Acquir Immune Defic Syndr 2009; 50(3): 283-9.
[98]
Denny TN, Skurnick JH, Garcia A, et al. Lymphocyte immunoregulatory cells present in semen from human immunodeficiency virus (HIV)-infected individuals: a report from the HIV Heterosexual Transmission Study. Cytometry 1996; 26(1): 47-51.
[99]
Gaynor R. Cellular transcription factors involved in the regulation of HIV-1 gene expression. AIDS 1992; 6(4): 347-63.
[100]
Galvin SR, Cohen MS. The role of sexually transmitted diseases in HIV transmission. Nat Rev Microbiol 2004; 2(1): 33-42.
[101]
Johnson LF, Lewis DA. The effect of genital tract infections on HIV-1 shedding in the genital tract: A systematic review and meta-analysis. Sex Transm Dis 2008; 35(11): 946-59.
[102]
Cohen MS, Hoffman IF, Royce RA, et al. Reduction of concentration of HIV-1 in semen after treatment of urethritis: Implications for prevention of sexual transmission of HIV-1. AIDSCAP Malawi Research Group. Lancet 1997; 349(9069): 1868-73.
[103]
Eron JJ Jr, Gilliam B, Fiscus S, Dyer J, Cohen MS. HIV-1 shedding and chlamydial urethritis. JAMA 1996; 275(1): 36.
[104]
Atkins MC, Carlin EM, Emery VC, Griffiths PD, Boag F. Fluctuations of HIV load in semen of HIV positive patients with newly acquired sexually transmitted diseases. BMJ 1996; 313(7053): 341-2.
[105]
Gianella S, Smith DM, Vargas MV, et al. Shedding of HIV and human herpesviruses in the semen of effectively treated HIV-1-infected men who have sex with men. Clin Infect Dis 2013; 57(3): 441-7.
[106]
Henning T, Fakile Y, Phillips C, et al. Development of a pigtail macaque model of sexually transmitted infection/HIV coinfection using Chlamydia trachomatis, Trichomonas vaginalis, and SHIV(SF162P3). J Med Primatol 2011; 40(4): 214-23.
[107]
Leruez-Ville M, Dulioust E, Costabliola D, et al. Decrease in HIV-1 seminal shedding in men receiving highly active antiretroviral therapy: An 18 month longitudinal study (ANRS EP012). AIDS 2002; 16(3): 486-8.
[108]
Zhang H, Dornadula G, Beumont M, et al. Human immunodeficiency virus type 1 in the semen of men receiving highly active antiretroviral therapy. N Engl J Med 1998; 339(25): 1803-9.
[109]
Dulioust E, Tachet A, De Almeida M, et al. Detection of HIV-1 in seminal plasma and seminal cells of HIV-1 seropositive men. J Reprod Immunol 1998; 41(1-2): 27-40.
[110]
Tachet A, Dulioust E, Salmon D, et al. Detection and quantification of HIV-1 in semen: identification of a subpopulation of men at high potential risk of viral sexual transmission. AIDS 1999; 13(7): 823-31.
[111]
Sheth PM, Kovacs C, Kemal KS, et al. Persistent HIV RNA shedding in semen despite effective antiretroviral therapy. AIDS 2009; 23(15): 2050-4.
[112]
Marcelin AG, Tubiana R, Lambert-Niclot S, et al. Detection of HIV-1 RNA in seminal plasma samples from treated patients with undetectable HIV-1 RNA in blood plasma. AIDS 2008; 22(13): 1677-9.
[113]
Lambert-Niclot S, Tubiana R, Beaudoux C, et al. Detection of HIV-1 RNA in seminal plasma samples from treated patients with undetectable HIV-1 RNA in blood plasma on a 2002-2011 survey. AIDS 2012; 26(8): 971-5.
[114]
Ferraretto X, Estellat C, Damond F, et al. Timing of intermittent seminal HIV-1 RNA shedding in patients with undetectable plasma viral load under combination antiretroviral therapy. PLoS One 2014; 9(3): e88922.
[115]
Mayer KH, Boswell S, Goldstein R, et al. Persistence of human immunodeficiency virus in semen after adding indinavir to combination antiretroviral therapy. Clin Infect Dis 1999; 28(6): 1252-9.
[116]
Esra RT, Olivier AJ, Passmore JA, Jaspan HB, Harryparsad R, Gray CM. Does HIV exploit the inflammatory milieu of the male genital tract for successful infection? Front Immunol 2016; 7: 245.
[117]
Wiysonge CS, Kongnyuy EJ, Shey M, et al. Male circumcision for prevention of homosexual acquisition of HIV in men. Cochrane Database Syst Rev 2011; (6): Cd007496.
[118]
Auvert B, Taljaard D, Lagarde E, Sobngwi-Tambekou J, Sitta R, Puren A. Randomized, controlled intervention trial of male circumcision for reduction of HIV infection risk: The ANRS 1265 Trial. PLoS Med 2005; 2(11): e298.
[119]
Gray RH, Kigozi G, Serwadda D, et al. Male circumcision for HIV prevention in men in Rakai, Uganda: A randomised trial. Lancet 2007; 369(9562): 657-66.
[120]
Coombs RW, Reichelderfer PS, Landay AL. Recent observations on HIV type-1 infection in the genital tract of men and women. AIDS 2003; 17(4): 455-80.
[121]
Cohen MS, Gay C, Kashuba AD, Blower S, Paxton L. Narrative review: Antiretroviral therapy to prevent the sexual transmission of HIV-1. Ann Intern Med 2007; 146(8): 591-601.
[122]
Kiviat NB, Critchlow CW, Hawes SE, et al. Determinants of human immunodeficiency virus DNA and RNA shedding in the anal-rectal canal of homosexual men. J Infect Dis 1998; 177(3): 571-8.
[123]
Lampinen TM, Critchlow CW, Kuypers JM, et al. Association of antiretroviral therapy with detection of HIV-1 RNA and DNA in the anorectal mucosa of homosexual men. AIDS 2000; 14(5): F69-75.
[124]
Kelley CF, Haaland RE, Patel P, et al. HIV-1 RNA rectal shedding is reduced in men with low plasma HIV-1 RNA viral loads and is not enhanced by sexually transmitted bacterial infections of the rectum. J Infect Dis 2011; 204(5): 761-7.
[125]
Zuckerman RA, Whittington WL, Celum CL, et al. Higher concentration of HIV RNA in rectal mucosa secretions than in blood and seminal plasma, among men who have sex with men, independent of antiretroviral therapy. J Infect Dis 2004; 190(1): 156-61.
[126]
Zuckerman RA, Lucchetti A, Whittington WL, et al. Herpes Simplex Virus (HSV) suppression with valacyclovir reduces rectal and blood plasma HIV-1 levels in HIV-1/HSV-2-seropositive men: A randomized, double-blind, placebo-controlled crossover trial. J Infect Dis 2007; 196(10): 1500-8.
[127]
Benki S, Mostad SB, Richardson BA, Mandaliya K, Kreiss JK, Overbaugh J. Cyclic shedding of HIV-1 RNA in cervical secretions during the menstrual cycle. J Infect Dis 2004; 189(12): 2192-201.
[128]
Fiscus SA, Cu-Uvin S, Eshete AT, et al. Changes in HIV-1 subtypes B and C genital tract RNA in women and men after initiation of antiretroviral therapy. Clin Infect Dis 2013; 57(2): 290-7.
[129]
Gaillard P, Verhofstede C, Mwanyumba F, et al. Exposure to HIV-1 during delivery and mother-to-child transmission. AIDS 2000; 14(15): 2341-8.
[130]
Baeten JM, Strick LB, Lucchetti A, et al. Herpes Simplex Virus (HSV)-suppressive therapy decreases plasma and genital HIV-1 levels in HSV-2/HIV-1 coinfected women: A randomized, placebo-controlled, cross-over trial. J Infect Dis 2008; 198(12): 1804-8.
[131]
McClelland RS, Wang CC, Mandaliya K, et al. Treatment of cervicitis is associated with decreased cervical shedding of HIV-1. AIDS 2001; 15(1): 105-10.
[132]
Nagot N, Ouedraogo A, Foulongne V, et al. Reduction of HIV-1 RNA levels with therapy to suppress herpes simplex virus. N Engl J Med 2007; 356(8): 790-9.
[133]
Kwara A, Delong A, Rezk N, et al. Antiretroviral drug concentrations and HIV RNA in the genital tract of HIV-infected women receiving long-term highly active antiretroviral therapy. Clin Infect Dis 2008; 46(5): 719-25.
[134]
Nagot N, Ouedraogo A, Weiss HA, et al. Longitudinal effect following initiation of highly active antiretroviral therapy on plasma and cervico-vaginal HIV-1 RNA among women in Burkina Faso Sex Transm Infect 2008.
[135]
Venkatesh KK, DeLong AK, Kantor R, et al. Persistent genital tract HIV-1 RNA shedding after change in treatment regimens in antiretroviral-experienced women with detectable plasma viral load. J Womens Health (Larchmt) 2013; 22(4): 330-8.
[136]
Cu-Uvin S, DeLong AK, Venkatesh KK, et al. Genital tract HIV-1 RNA shedding among women with below detectable plasma viral load. AIDS 2010; 24(16): 2489-97.
[137]
Gardella B, Roccio M, Maccabruni A, et al. HIV shedding in cervico-vaginal secretions in pregnant women. Curr HIV Res 2011; 9(5): 313-20.
[138]
Curlin ME, Leelawiwat W, Dunne EF, et al. Cyclic changes in HIV shedding from the female genital tract during the menstrual cycle. J Infect Dis 2013; 207(10): 1616-20.
[139]
Money DM, Arikan YY, Remple V, et al. Genital tract and plasma human immunodeficiency virus viral load throughout the menstrual cycle in women who are infected with ovulatory human immunodeficiency virus. Am J Obstet Gynecol 2003; 188(1): 122-8.
[140]
Reichelderfer PS, Coombs RW, Wright DJ, et al. Effect of menstrual cycle on HIV-1 levels in the peripheral blood and genital tract. WHS 001 Study Team. AIDS 2000; 14(14): 2101-7.
[141]
Goulston C, Stevens E, Gallo D, Mullins JI, Hanson CV, Katzenstein D. Human immunodeficiency virus in plasma and genital secretions during the menstrual cycle. J Infect Dis 1996; 174(4): 858-61.
[142]
Villanueva JM, Ellerbrock TV, Lennox JL, et al. The menstrual cycle does not affect human immunodeficiency virus type 1 levels in vaginal secretions. J Infect Dis 2002; 185(2): 170-7.
[143]
Vogt MW, Witt DJ, Craven DE, et al. Isolation patterns of the human immunodeficiency virus from cervical secretions during the menstrual cycle of women at risk for the acquired immunodeficiency syndrome. Ann Intern Med 1987; 106(3): 380-2.
[144]
Kutteh WH, Prince SJ, Hammond KR, Kutteh CC, Mestecky J. Variations in immunoglobulins and IgA subclasses of human uterine cervical secretions around the time of ovulation. Clin Exp Immunol 1996; 104(3): 538-42.
[145]
Ralph LJ, Gollub EL, Jones HE. Hormonal contraceptive use and women’s risk of HIV acquisition: Priorities emerging from recent data. Curr Opin Obstet Gynecol 2015; 27(6): 487-95.
[146]
Baeten JM, Kahle E, Lingappa JR, et al. Genital HIV-1 RNA predicts risk of heterosexual HIV-1 transmission. Sci Transl Med 2011; 3(77): 77ra29.
[147]
Celum C, Wald A, Lingappa JR, et al. Acyclovir and transmission of HIV-1 from persons infected with HIV-1 and HSV-2. N Engl J Med 2010; 362(5): 427-39.
[148]
Chuachoowong R, Shaffer N, Siriwasin W, et al. Short-course antenatal zidovudine reduces both cervicovaginal human immunodeficiency virus type 1 RNA levels and risk of perinatal transmission. Bangkok Collaborative Perinatal HIV Transmission Study Group. J Infect Dis 2000; 181(1): 99-106.
[149]
Wah RM, Anderson DJ, Hill JA. Asymptomatic cervicovaginal leukocytosis in infertile women. Fertil Steril 1990; 54(3): 445-50.
[150]
Hill JA, Anderson DJ. Human vaginal leukocytes and the effects of vaginal fluid on lymphocyte and macrophage defense functions. Am J Obstet Gynecol 1992; 166(2): 720-6.
[151]
Bardeguez AD, Skurnick JH, Perez G, Colon JM, Kloser P, Denny TN. Lymphocyte shedding from genital tract of human immunodeficiency virus-infected women: Immunophenotypic and clinical correlates. Am J Obstet Gynecol 1997; 176(1 Pt 1): 158-65.
[152]
Anderson DJ, Politch JA, Tucker LD, et al. Quantitation of mediators of inflammation and immunity in genital tract secretions and their relevance to HIV type 1 transmission. AIDS Res Hum Retroviruses 1998; 14(Suppl. 1): S43-9.
[153]
Cowan FF, Pascoe SJ, Barlow KL, et al. Association of genital shedding of herpes simplex virus type 2 and HIV-1 among sex workers in rural Zimbabwe. AIDS 2006; 20(2): 261-7.
[154]
John GC, Nduati RW, Mbori-Ngacha D, et al. Genital shedding of human immunodeficiency virus type 1 DNA during pregnancy: Association with immunosuppression, abnormal cervical or vaginal discharge, and severe vitamin A deficiency. J Infect Dis 1997; 175(1): 57-62.
[155]
Kreiss J, Willerford DM, Hensel M, et al. Association between cervical inflammation and cervical shedding of human immunodeficiency virus DNA. J Infect Dis 1994; 170(6): 1597-601.
[156]
McClelland RS, Wang CC, Overbaugh J, et al. Association between cervical shedding of herpes simplex virus and HIV-1. AIDS 2002; 16(18): 2425-30.
[157]
Graham SM, Holte SE, Peshu NM, et al. Initiation of antiretroviral therapy leads to a rapid decline in cervical and vaginal HIV-1 shedding. AIDS 2007; 21(4): 501-7.
[158]
Mostad SB, Overbaugh J, DeVange DM, et al. Hormonal contraception, vitamin A deficiency, and other risk factors for shedding of HIV-1 infected cells from the cervix and vagina. Lancet 1997; 350(9082): 922-7.
[159]
Spinillo A, Debiaggi M, Zara F, Maserati R, Polatti F, De Santolo A. Factors associated with nucleic acids related to human immunodeficiency virus type 1 in cervico-vaginal secretions. BJOG 2001; 108(6): 634-41.
[160]
Iversen AK, Larsen AR, Jensen T, et al. Distinct determinants of human immunodeficiency virus type 1 RNA and DNA loads in vaginal and cervical secretions. J Infect Dis 1998; 177(5): 1214-20.
[161]
Andreoletti L, Chomont N, Gresenguet G, et al. Independent levels of cell-free and cell-associated human immunodeficiency virus-1 in genital-tract secretions of clinically asymptomatic, treatment-naive African women. J Infect Dis 2003; 188(4): 549-54.
[162]
Zara F, Nappi RE, Brerra R, Migliavacca R, Maserati R, Spinillo A. Markers of local immunity in cervico-vaginal secretions of HIV infected women: Implications for HIV shedding. Sex Transm Infect 2004; 80(2): 108-12.
[163]
Benki S, McClelland RS, Emery S, et al. Quantification of genital human Immunodeficiency Virus type 1 (HIV-1) DNA in specimens from women with low plasma HIV-1 RNA levels typical of HIV-1 nontransmitters. J Clin Microbiol 2006; 44(12): 4357-62.
[164]
Debiaggi M, Zara F, Spinillo A, et al. Viral excretion in cervicovaginal secretions of HIV-1-infected women receiving antiretroviral therapy. Eur J Clin Microbiol Infect Dis 2001; 20(2): 91-6.
[165]
Panther LA, Tucker L, Xu C, Tuomala RE, Mullins JI, Anderson DJ. Genital tract human immunodeficiency virus type 1 (HIV-1) shedding and inflammation and HIV-1 env diversity in perinatal HIV-1 transmission. J Infect Dis 2000; 181(2): 555-63.
[166]
Tuomala RE, O’Driscoll PT, Bremer JW, et al. Cell-associated genital tract virus and vertical transmission of human immunodeficiency virus type 1 in antiretroviral-experienced women. J Infect Dis 2003; 187(3): 375-84.
[167]
Mostad SB, Jackson S, Overbaugh J, et al. Cervical and vaginal shedding of human immunodeficiency virus type 1-infected cells throughout the menstrual cycle. J Infect Dis 1998; 178(4): 983-91.
[168]
Clemetson DB, Moss GB, Willerford DM, et al. Detection of HIV DNA in cervical and vaginal secretions. Prevalence and correlates among women in Nairobi, Kenya. JAMA 1993; 269(22): 2860-4.
[169]
Wang CC, McClelland RS, Overbaugh J, et al. The effect of hormonal contraception on genital tract shedding of HIV-1. AIDS 2004; 18(2): 205-9.
[170]
Wang CC, McClelland RS, Reilly M, et al. The effect of treatment of vaginal infections on shedding of human immunodeficiency virus type 1. J Infect Dis 2001; 183(7): 1017-22.
[171]
Manhart LE, Mostad SB, Baeten JM, Astete SG, Mandaliya K, Totten PA. High mycoplasma genitalium organism burden is associated with shedding of HIV-1 DNA from the cervix. J Infect Dis 2008; 197(5): 733-6.
[172]
Spinillo A, Zara F, Gardella B, Preti E, Mainini R, Maserati R. The effect of vaginal candidiasis on the shedding of human immunodeficiency virus in cervicovaginal secretions. Am J Obstet Gynecol 2005; 192(3): 774-9.
[173]
Mostad SB, Kreiss JK, Ryncarz AJ, et al. Cervical shedding of herpes simplex virus in human immunodeficiency virus-infected women: effects of hormonal contraception, pregnancy, and vitamin A deficiency. J Infect Dis 2000; 181(1): 58-63.
[174]
Rates of mother-to-child transmission of HIV-1 in Africa, America, and Europe: results from 13 perinatal studies. The Working Group on Mother-To-Child Transmission of HIV. J Acquir Immune Defic Syndr Hum Retrovirol 1995; 8(5): 506-10.
[175]
Tobin NH, Aldrovandi GM. Immunology of pediatric HIV infection. Immunol Rev 2013; 254(1): 143-69.
[176]
Ait-Khaled M, Lyall EG, Stainsby C, et al. Intrapartum mucosal exposure to human Immunodeficiency Virus type 1 (HIV-1) of infants born to HIV-1-infected mothers correlates with maternal plasma virus burden. J Infect Dis 1998; 177(4): 1097-100.
[177]
Mandelbrot L, Burgard M, Teglas JP, et al. Frequent detection of HIV-1 in the gastric aspirates of neonates born to HIV-infected mothers. AIDS 1999; 13(15): 2143-9.
[178]
Ziegler JB, Cooper DA, Johnson RO, Gold J. Postnatal transmission of AIDS-associated retrovirus from mother to infant. Lancet 1985; 1(8434): 896-8.
[179]
Thiry L, Sprecher-Goldberger S, Jonckheer T, et al. Isolation of AIDS virus from cell-free breast milk of three healthy virus carriers. Lancet 1985; 2(8460): 891-2.
[180]
Kuhn L, Aldrovandi GM, Sinkala M, et al. Effects of early, abrupt weaning on HIV-free survival of children in Zambia. N Engl J Med 2008; 359(2): 130-41.
[181]
Kuhn L, Aldrovandi GM, Sinkala M, et al. Differential effects of early weaning for HIV-free survival of children born to HIV-infected mothers by severity of maternal disease. PLoS One 2009; 4(6): e6059.
[182]
Kuhn L, Aldrovandi G. Pendulum swings in HIV-1 and infant feeding policies: Now halfway back. Adv Exp Med Biol 2012; 743: 273-87.
[183]
Kuhn L, Aldrovandi G. Survival and health benefits of breastfeeding versus artificial feeding in infants of HIV-infected women: developing versus developed world. Clin Perinatol 2010; 37(4): 843-62. [x.].
[184]
2016.
[185]
Mugo NR, Heffron R, Donnell D, et al. Increased risk of HIV-1 transmission in pregnancy: A prospective study among African HIV-1-serodiscordant couples. AIDS 2011; 25(15): 1887-95.
[186]
Gray RH, Li X, Kigozi G, et al. Increased risk of incident HIV during pregnancy in Rakai, Uganda: A prospective study. Lancet 2005; 366(9492): 1182-8.
[187]
Drake AL, Wagner A, Richardson B, John-Stewart G. Incident HIV during pregnancy and postpartum and risk of mother-to-child HIV transmission: A systematic review and meta-analysis. PLoS Med 2014; 11(2): e1001608.
[188]
Petitjean G, Becquart P, Tuaillon E, et al. Isolation and characterization of HIV-1-infected resting CD4+ T lymphocytes in breast milk. J Clin Virol 2007; 39(1): 1-8.
[189]
Ndirangu J, Viljoen J, Bland RM, et al. Cell-free (RNA) and cell-associated (DNA) HIV-1 and postnatal transmission through breastfeeding. PLoS One 2012; 7(12): e51493.
[190]
Buranasin P, Kunakorn M, Petchclai B, et al. Detection of Human Immunodeficiency Virus type 1 (HIV-1) proviral DNA in breast milk and colostrum of seropositive mothers. J Med Assoc Thai 1993; 76(1): 41-5.
[191]
Gantt S, Shetty AK, Seidel KD, et al. Laboratory indicators of mastitis are not associated with elevated HIV-1 DNA loads or predictive of HIV-1 RNA loads in breast milk. J Infect Dis 2007; 196(4): 570-6.
[192]
Guay LA, Hom DL, Mmiro F, et al. Detection of Human Immunodeficiency Virus type 1 (HIV-1) DNA and p24 antigen in breast milk of HIV-1-infected Ugandan women and vertical transmission. Pediatrics 1996; 98(3 Pt 1): 438-44.
[193]
John GC, Richardson BA, Nduati RW, Mbori-Ngacha D, Kreiss JK. Timing of breast milk HIV-1 transmission: A meta-analysis. East Afr Med J 2001; 78(2): 75-9.
[194]
Kantarci S, Koulinska IN, Aboud S, Fawzi WW, Villamor E. Subclinical mastitis, cell-associated HIV-1 shedding in breast milk, and breast-feeding transmission of HIV-1. J Acquir Immune Defic Syndr 2007; 46(5): 651-4.
[195]
Koulinska IN, Villamor E, Msamanga G, et al. Risk of HIV-1 transmission by breastfeeding among mothers infected with recombinant and non-recombinant HIV-1 genotypes. Virus Res 2006; 120(1-2): 191-8.
[196]
Nduati RW, John GC, Richardson BA, et al. Human immunodeficiency virus type 1-infected cells in breast milk: Association with immunosuppression and vitamin A deficiency. J Infect Dis 1995; 172(6): 1461-8.
[197]
Rousseau CM, Nduati RW, Richardson BA, et al. Association of levels of HIV-1-infected breast milk cells and risk of mother-to-child transmission. J Infect Dis 2004; 190(10): 1880-8.
[198]
Ruff AJ. Breastmilk, breastfeeding, and transmission of viruses to the neonate. Semin Perinatol 1994; 18(6): 510-6.
[199]
Van de Perre P, Simonon A, Hitimana DG, et al. Infective and anti-infective properties of breastmilk from HIV-1-infected women. Lancet 1993; 341(8850): 914-8.
[200]
Villamor E, Koulinska IN, Aboud S, et al. Effect of vitamin supplements on HIV shedding in breast milk. Am J Clin Nutr 2010; 92(4): 881-6.
[201]
Vonesch N, Sturchio E, Humani AC, et al. Detection of HIV-1 genome in leukocytes of human colostrum from anti-HIV-1 seropositive mothers. AIDS Res Hum Retroviruses 1992; 8(7): 1283-7.
[202]
Semrau K, Ghosh M, Kankasa C, et al. Temporal and lateral dynamics of HIV shedding and elevated sodium in breast milk among HIV-positive mothers during the first 4 months of breast-feeding. J Acquir Immune Defic Syndr 2008; 47(3): 320-8.
[203]
Kuhn L, Kim HY, Walter J, et al. HIV-1 concentrations in human breast milk before and after weaning. Sci Transl Med 2013; 5(181): 181ra51.
[204]
Neveu D, Viljoen J, Bland RM, et al. Cumulative exposure to cell-free HIV in breast milk, rather than feeding pattern per se, identifies postnatally infected infants. Clin Infect Dis 2011; 52(6): 819-25.
[205]
Whitney JB, Luedemann C, Bao S, et al. Monitoring HIV vaccine trial participants for primary infection: Studies in the SIV/macaque model. AIDS 2009; 23(12): 1453-60.
[206]
Thomas JS, Lacour N, Kozlowski PA, Nelson S, Bagby GJ, Amedee AM. Characterization of SIV in the oral cavity and in vitro inhibition of SIV by rhesus macaque saliva. AIDS Res Hum Retroviruses 2010; 26(8): 901-11.
[207]
Whitney JB, Hraber PT, Luedemann C, et al. Genital tract sequestration of SIV following acute infection. PLoS Pathog 2011; 7(2): e1001293.
[208]
Bernard-Stoecklin S, Gommet C, Corneau AB, et al. Semen CD4+ T cells and macrophages are productively infected at all stages of SIV infection in macaques. PLoS Pathog 2013; 9(12): e1003810.
[209]
Matusali G, Dereuddre-Bosquet N, Le Tortorec A, et al. Detection of simian immunodeficiency virus in semen, urethra, and male reproductive organs during efficient highly active antiretroviral therapy. J Virol 2015; 89(11): 5772-87.
[210]
Girard M, Mahoney J, Wei Q, et al. Genital infection of female chimpanzees with human immunodeficiency virus type 1. AIDS Res Hum Retroviruses 1998; 14(15): 1357-67.
[211]
Sodora DL, Gettie A, Miller CJ, Marx PA. Vaginal transmission of SIV: assessing infectivity and hormonal influences in macaques inoculated with cell-free and cell-associated viral stocks. AIDS Res Hum Retroviruses 1998; 14(Suppl. 1): S119-23.
[212]
Weiler AM, Li Q, Duan L, et al. Genital ulcers facilitate rapid viral entry and dissemination following intravaginal inoculation with cell-associated simian immunodeficiency virus SIVmac239. J Virol 2008; 82(8): 4154-8.
[213]
Kaizu M, Weiler AM, Weisgrau KL, et al. Repeated intravaginal inoculation with cell-associated simian immunodeficiency virus results in persistent infection of nonhuman primates. J Infect Dis 2006; 194(7): 912-6.
[214]
Miller CJ, Li Q, Abel K, et al. Propagation and dissemination of infection after vaginal transmission of simian immunodeficiency virus. J Virol 2005; 79(14): 9217-27.
[215]
Salle B, Brochard P, Bourry O, et al. Infection of macaques after vaginal exposure to cell-associated simian immunodeficiency virus. J Infect Dis 2010; 202(3): 337-44.
[216]
Baba TW, Trichel AM, An L, et al. Infection and AIDS in adult macaques after nontraumatic oral exposure to cell-free SIV. Science 1996; 272(5267): 1486-9.
[217]
Bomsel M, Tudor D, Drillet AS, et al. Immunization with HIV-1 gp41 subunit virosomes induces mucosal antibodies protecting nonhuman primates against vaginal SHIV challenges. Immunity 2011; 34(2): 269-80.
[218]
Wright A, Lamm ME, Huang YT. Excretion of human immunodeficiency virus type 1 through polarized epithelium by immunoglobulin A. J Virol 2008; 82(23): 11526-35.
[219]
Burnett PR, VanCott TC, Polonis VR, Redfield RR, Birx DL. Serum IgA-mediated neutralization of HIV type 1. J Immunol 1994; 152(9): 4642-8.
[220]
Benjelloun F, Dawood R, Urcuqui-Inchima S, et al. Secretory IgA specific for MPER can protect from HIV-1 infection in vitro. AIDS 2013; 27(12): 1992-5.
[221]
Planque S, Salas M, Mitsuda Y, et al. Neutralization of genetically diverse HIV-1 strains by IgA antibodies to the gp120-CD4-binding site from long-term survivors of HIV infection. AIDS 2010; 24(6): 875-84.
[222]
Watkins JD, Sholukh AM, Mukhtar MM, et al. Anti-HIV IgA isotypes: differential virion capture and inhibition of transcytosis are linked to prevention of mucosal R5 SHIV transmission. AIDS 2013; 27(9): F13-20.
[223]
Devito C, Broliden K, Kaul R, et al. Mucosal and plasma IgA from HIV-1-exposed uninfected individuals inhibit HIV-1 transcytosis across human epithelial cells. J Immunol 2000; 165(9): 5170-6.
[224]
McHardy IH, Li X, Tong M, et al. HIV Infection is associated with compositional and functional shifts in the rectal mucosal microbiota. Microbiome 2013; 1(1): 26.
[225]
Romas LM, Hasselrot K, Aboud LG, et al. A comparative proteomic analysis of the soluble immune factor environment of rectal and oral mucosa. PLoS One 2014; 9(6): e100820.
[226]
Van de Perre P, Rubbo PA, Viljoen J, et al. HIV-1 reservoirs in breast milk and challenges to elimination of breast-feeding transmission of HIV-1. Sci Transl Med 2012; 4(143): 143sr3.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy