[1]
Global H. IV/AIDS response: Epidemic update and health sector progress towards universal access.Progress Report 2014. Geneva, Switzerland: World Health Organization 2015.
[2]
Shapiro RL, Hughes MD, Ogwu A, et al. Antiretroviral regimens in pregnancy and breast-feeding in Botswana. N Engl J Med 2010; 362(24): 2282-94.
[3]
Watts DH, Williams PL, Kacanek D, et al. Combination antiretroviral use and preterm birth. J Infect Dis 2013; 207(4): 612-21.
[4]
Bae WH, Wester C, Smeaton LM, et al. Hematologic and hepatic toxicities associated with antenatal and postnatal exposure to maternal highly active antiretroviral therapy among infants. AIDS 2008; 22(13): 1633-40.
[5]
Lambert JS, Watts DH, Mofenson L, et al. Risk factors for preterm birth, low birth weight, and intrauterine growth retardation in infants born to HIV-infected pregnant women receiving zidovudine. Pediatric AIDS Clinical Trials Group 185 Team. AIDS 2000; 14(10): 1389-99.
[6]
Sagar M. Origin of the transmitted virus in HIV infection: infected cells versus cell-free virus. J Infect Dis 2014; 210(Suppl. 3): S667-73.
[7]
Dabis F, Msellati P, Newell ML, et al. Methodology of intervention trials to reduce mother to child transmission of HIV with special reference to developing countries 1995.
[8]
Munoz FMEJ. A step ahead. Infant protection through maternal immunzation. Pediatr Clin North Am 2000; 47: 449-63.
[9]
Gardner MB. SIV infected rhesus macaques: an AIDS model for immunoprevention and immunotherapy. Adv Exp Med Biol 1989; 251: 279-93.
[10]
Sui Y, Gordon S, Franchini G, Berzofsky JA. 2013.
[11]
Wood LF, Chahroudi A, Chen HL, Jaspan HB, Sodora DL. The oral mucosa immune environment and oral transmission of HIV/SIV. Immunol Rev 2013; 254(1): 34-53.
[12]
Schmitz JE, Korioth-Schmitz B. Immunopathogenesis of simian immunodeficiency virus infection in nonhuman primates. Curr Opin HIV AIDS 2013; 8(4): 273-9.
[13]
Van Rompay KK, McChesney MB, Aguirre NL, et al. Two low doses of tenofovir protect newborn macaques against oral simian immunodeficiency virus infection. J Infect Dis 2001; 184(4): 429-38.
[15]
Maidji E, McDonagh S, Genbacev O, Tabata T, Pereira L. Maternal antibodies enhance or prevent cytomegalovirus infection in the placenta by neonatal Fc receptor-mediated transcytosis. Am J Pathol 2006; 168(4): 1210-26.
[16]
Lee TH, Chafets DM, Biggar RJ, McCune JM, Busch MP. The role of transplacental microtransfusions of maternal lymphocytes in in utero HIV transmission. J Acquir Immune Defic Syndr 2010; 55(2): 143-7.
[17]
Jourdain G, Mary JY, Coeur SL, et al. Risk factors for in utero or intrapartum mother-to-child transmission of human immunodeficiency virus type 1 in Thailand. J Infect Dis 2007; 196(11): 1629-36.
[18]
Fawzi W, Msamanga G, Renjifo B, et al. Predictors of intrauterine and intrapartum transmission of HIV-1 among Tanzanian women. AIDS 2001; 15(9): 1157-65.
[19]
Kumar SB, Rice CE, Milner DA Jr, et al. Elevated cytokine and chemokine levels in the placenta are associated with in-utero HIV-1 mother-to-child transmission. AIDS 2012; 26(6): 685-94.
[20]
St Louis ME, Kamenga M, Brown C, et al. Risk for perinatal HIV-1 transmission according to maternal immunologic, virologic, and placental factors. JAMA 1993; 269(22): 2853-9.
[21]
Rossi P, Moschese V, Broliden PA, et al. Presence of maternal antibodies to human immunodeficiency virus 1 envelope glycoprotein gp120 epitopes correlates with the uninfected status of children born to seropositive mothers. Proc Natl Acad Sci USA 1989; 86(20): 8055-8.
[22]
Pancino G, Leste-Lasserre T, Burgard M, et al. Apparent enhancement of perinatal transmission of human immunodeficiency virus type 1 by high maternal anti-gp160 antibody titer. J Infect Dis 1998; 177(6): 1737-41.
[23]
Markham RB, Coberly J, Ruff AJ, et al. Maternal IgG1 and IgA antibody to V3 loop consensus sequence and maternal-infant HIV-1 transmission. Lancet 1994; 343(8894): 390-1.
[24]
Rich KC, Fowler MG, Mofenson LM, et al. Maternal and infant factors predicting disease progression in human immunodeficiency virus type 1-infected infants. Women and Infants Transmission Study Group. Pediatrics 2000; 105(1): e8.
[25]
Permar SR, Fong Y, Vandergrift N, et al. Maternal HIV-1 envelope-specific antibody responses and reduced risk of perinatal transmission. J Clin Invest 2015; 125(7): 2702-6.
[26]
Scarlatti G, Albert J, Rossi P, et al. Mother-to-child transmission of human immunodeficiency virus type 1: Correlation with neutralizing antibodies against primary isolates. J Infect Dis 1993; 168(1): 207-10.
[27]
Dickover R, Garratty E, Yusim K, et al. Role of maternal autologous neutralizing antibody in selective perinatal transmission of human immunodeficiency virus type 1 escape variants. J Virol 2006; 80(13): 6525-33.
[28]
Wu X, Parast AB, Richardson BA, et al. Neutralization escape variants of human immunodeficiency virus type 1 are transmitted from mother to infant. J Virol 2006; 80(2): 835-44.
[29]
Chaillon A, Wack T, Braibant M, et al. The breadth and titer of maternal HIV-1-specific heterologous neutralizing antibodies are not associated with a lower rate of mother-to-child transmission of HIV-1. J Virol 2012; 86(19): 10540-6.
[30]
Lynch JB, Nduati R, Blish CA, et al. The breadth and potency of passively acquired human immunodeficiency virus type 1-specific neutralizing antibodies do not correlate with the risk of infant infection. J Virol 2011; 85(11): 5252-61.
[31]
Omenda MM, Milligan C, Odem-Davis K, et al. Evidence for efficient vertical transfer of maternal HIV-1 envelope-specific neutralizing antibodies but no association of such antibodies with reduced infant infection. J Acquir Immune Defic Syndr 2013; 64(2): 163-6.
[32]
Zack JA, Arrigo SJ, Weitsman SR, et al. HIV-1 entry into quiescent primary lymphocytes: Molecular analysis reveals a labile, latent viral structure. Cell 1990; 61(2): 213-22.
[33]
Reinhardt PP, Reinhardt B, Lathey JL, Spector SA. Human cord blood mononuclear cells are preferentially infected by non-syncytium-inducing, macrophage-tropic human immunodeficiency virus type 1 isolates. J Clin Microbiol 1995; 33(2): 292-7.
[34]
Sundaravaradan V, Saxena SK, Ramakrishnan R, et al. Differential HIV-1 replication in neonatal and adult blood mononuclear cells is influenced at the level of HIV-1 gene expression. Proc Natl Acad Sci USA 2006; 103(31): 11701-6.
[35]
Mold JE, Michaelsson J, Burt TD, et al. Maternal alloantigens promote the development of tolerogenic fetal regulatory T cells in utero. Science 2008; 322(5907): 1562-5.
[36]
Flanagan KL, Halliday A, Burl S, et al. The effect of placental malaria infection on cord blood and maternal immunoregulatory responses at birth. Eur J Immunol 2010; 40(4): 1062-72.
[37]
Aguilar-Jimenez W, Zapata W, Rugeles MT. Differential expression of human beta defensins in placenta and detection of allelic variants in the DEFB1 gene from HIV-1 positive mothers. Biomedica 2011; 31(1): 44-54.
[38]
Johnson EL, Chakraborty R. Placental Hofbauer cells limit HIV-1 replication and potentially offset Mother to Child Transmission (MTCT) by induction of immunoregulatory cytokines. Retrovirology 2012; 9: 101.
[39]
Marlin R, Nugeyre MT, Duriez M, et al. Decidual soluble factors participate in the control of HIV-1 infection at the maternofetal interface. Retrovirology 2011; 8: 58.
[40]
Mandelbrot L, Burgard M, Teglas JP, et al. Frequent detection of HIV-1 in the gastric aspirates of neonates born to HIV-infected mothers. AIDS 1999; 13(15): 2143-9.
[41]
Elective caesarean-section versus vaginal delivery in prevention of vertical HIV-1 transmission: A randomised clinical trial. Lancet 1999; 353(9158): 1035-9.
[42]
Tobin NH, Aldrovandi GM. Immunology of pediatric HIV infection. Immunol Rev 2013; 254(1): 143-69.
[43]
Bryson YJ, Luzuriaga K, Sullivan JL, Wara DW. Proposed definitions for in utero versus intrapartum transmission of HIV-1. N Engl J Med 1992; 327(17): 1246-7.
[44]
Lallemant M, Jourdain G, Le Coeur S, et al. Single-dose perinatal nevirapine plus standard zidovudine to prevent mother-to-child transmission of HIV-1 in Thailand. N Engl J Med 2004; 351(3): 217-28.
[45]
Russell ES, Kwiek JJ, Keys J, et al. The genetic bottleneck in vertical transmission of subtype C HIV-1 is not driven by selection of especially neutralization-resistant virus from the maternal viral population. J Virol 2011; 85(16): 8253-62.
[46]
Barouch DH, Whitney JB, Moldt B, et al. Therapeutic efficacy of potent neutralizing HIV-1-specific monoclonal antibodies in SHIV-infected rhesus monkeys. Nature 2013; 503(7475): 224-8.
[47]
Shingai M, Nishimura Y, Klein F, et al. Antibody-mediated immunotherapy of macaques chronically infected with SHIV suppresses viraemia. Nature 2013; 503(7475): 277-80.
[48]
Ng CT, Jaworski JP, Jayaraman P, et al. Passive neutralizing antibody controls SHIV viremia and enhances B cell responses in infant macaques. Nat Med 2010; 16(10): 1117-9.
[49]
Baba TW, Liska V, Hofmann-Lehmann R, et al. Human neutralizing monoclonal antibodies of the IgG1 subtype protect against mucosal simian-human immunodeficiency virus infection. Nat Med 2000; 6(2): 200-6.
[50]
Hessell AJ, Jaworski JP, Epson E, et al. Early short-term treatment with neutralizing human monoclonal antibodies halts SHIV infection in infant macaques. Nat Med 2016; 22(4): 362-8.
[51]
Van de Perre P, Simonon A, Msellati P, et al. Postnatal transmission of human immunodeficiency virus type 1 from mother to infant. A prospective cohort study in Kigali, Rwanda. N Engl J Med 1991; 325(9): 593-8.
[52]
Neveu D, Viljoen J, Bland RM, et al. Cumulative exposure to cell-free HIV in breast milk, rather than feeding pattern per se, identifies postnatally infected infants. Clin Infect Dis 2011; 52(6): 819-25.
[53]
Semba RD, Neville MC. Breast-feeding, mastitis, and HIV transmission: Nutritional implications. Nutr Rev 1999; 57(5 Pt 1): 146-53.
[54]
Breastfeeding and the use of human milk. American Academy of Pediatrics. Work Group on Breastfeeding. Pediatrics 1997; 100(6): 1035-9.
[55]
Coutsoudis A, Pillay K, Spooner E, Kuhn L, Coovadia HM. Influence of infant-feeding patterns on early mother-to-child transmission of HIV-1 in Durban, South Africa: a prospective cohort study. South African Vitamin A Study Group. Lancet 1999; 354(9177): 471-6.
[56]
Lewis P, Nduati R, Kreiss JK, et al. Cell-free human immunodeficiency virus type 1 in breast milk. J Infect Dis 1998; 177(1): 34-9.
[57]
Sabbaj S, Ibegbu CC, Kourtis AP. Cellular immunity in breast milk: Implications for postnatal transmission of HIV-1 to the infant. Adv Exp Med Biol 2012; 743: 161-9.
[58]
Farquhar C, VanCott TC, Mbori-Ngacha DA, et al. Salivary secretory leukocyte protease inhibitor is associated with reduced transmission of human immunodeficiency virus type 1 through breast milk. J Infect Dis 2002; 186(8): 1173-6.
[59]
Shugars DC. Endogenous mucosal antiviral factors of the oral cavity. J Infect Dis 1999; 179(Suppl. 3): S431-5.
[60]
Madsen J, Mollenhauer J, Holmskov U. Review: Gp-340/DMBT1 in mucosal innate immunity. Innate Immun 2010; 16(3): 160-7.
[61]
Fouda GG, Jaeger FH, Amos JD, et al. Tenascin-C is an innate broad-spectrum, HIV-1-neutralizing protein in breast milk. Proc Natl Acad Sci USA 2013; 110(45): 18220-5.
[62]
Mthembu Y, Lotz Z, Tyler M, et al. Purified human breast milk MUC1 and MUC4 inhibit human immunodeficiency virus. Neonatology 2014; 105(3): 211-7.
[63]
Fouda GG, Yates NL, Pollara J, et al. HIV-specific functional antibody responses in breast milk mirror those in plasma and are primarily mediated by IgG antibodies. J Virol 2011; 85(18): 9555-67.
[64]
Permar SR, Wilks AB, Ehlinger EP, et al. Limited contribution of mucosal IgA to Simian Immunodeficiency Virus (SIV)-specific neutralizing antibody response and virus envelope evolution in breast milk of SIV-infected, lactating rhesus monkeys. J Virol 2010; 84(16): 8209-18.
[65]
Sacha CR, Vandergrift N, Jeffries TL Jr, et al. Restricted isotype, distinct variable gene usage, and high rate of gp120 specificity of HIV-1 envelope-specific B cells in colostrum compared with those in blood of HIV-1-infected, lactating African women. Mucosal Immunol 2015; 8(2): 316-26.
[66]
Tuaillon E, Valea D, Becquart P, et al. Human milk-derived B cells: A highly activated switched memory cell population primed to secrete antibodies. J Immunol 2009; 182(11): 7155-62.
[67]
Rainwater SM, Wu X, Nduati R, et al. Cloning and characterization of functional subtype A HIV-1 envelope variants transmitted through breastfeeding. Curr HIV Res 2007; 5(2): 189-97.
[68]
Milligan C, Omenda MM, Chohan V, et al. Maternal neutralization-resistant virus variants do not predict infant HIV infection risk. MBio 2016; 7(1): e02221-15.
[69]
Mabuka J, Nduati R, Odem-Davis K, Peterson D, Overbaugh J. HIV-specific antibodies capable of ADCC are common in breastmilk and are associated with reduced risk of transmission in women with high viral loads. PLoS Pathog 2012; 8(6): e1002739.
[70]
Pollara J, McGuire E, Fouda GG, et al. Association of HIV-1 envelope-specific breast milk IgA responses with reduced risk of postnatal mother-to-child transmission of HIV-1. J Virol 2015; 89(19): 9952-61.
[71]
Bomsel M, Tudor D, Drillet AS, et al. Immunization with HIV-1 gp41 subunit virosomes induces mucosal antibodies protecting nonhuman primates against vaginal SHIV challenges. Immunity 2011; 34(2): 269-80.
[72]
Watkins JD, Sholukh AM, Mukhtar MM, et al. Anti-HIV IgA isotypes: differential virion capture and inhibition of transcytosis are linked to prevention of mucosal R5 SHIV transmission. AIDS 2013; 27(9): F13-20.
[73]
Sholukh AM, Watkins JD, Vyas HK, et al. Defense-in-depth by mucosally administered anti-HIV dimeric IgA2 and systemic IgG1 mAbs: complete protection of rhesus monkeys from mucosal SHIV challenge. Vaccine 2015; 33(17): 2086-95.
[74]
Gaillard P, Fowler MG, Dabis F, et al. Use of antiretroviral drugs to prevent HIV-1 transmission through breast-feeding: From animal studies to randomized clinical trials. J Acquir Immune Defic Syndr 2004; 35(2): 178-87.
[75]
Haynes BF, Gilbert PB, McElrath MJ, et al. Immune-correlates analysis of an HIV-1 vaccine efficacy trial. N Engl J Med 2012; 366(14): 1275-86.
[76]
Tomaras GD, Ferrari G, Shen X, et al. Vaccine-induced plasma IgA specific for the C1 region of the HIV-1 envelope blocks binding and effector function of IgG. Proc Natl Acad Sci USA 2013; 110(22): 9019-24.
[77]
Mestecky J, Jackson S, Moldoveanu Z, et al. Paucity of antigen-specific IgA responses in sera and external secretions of HIV-type 1-infected individuals. AIDS Res Hum Retroviruses 2004; 20(9): 972-88.
[78]
Nelson CS, Pollara J, Kunz EL, et al. Combined HIV-1 envelope systemic and mucosal immunization of lactating rhesus monkeys induces a robust immunoglobulin a isotype B cell response in breast milk. J Virol 2016; 90(10): 4951-65.
[79]
Fouda GG, Eudailey J, Kunz EL, et al. Systemic administration of an HIV-1 broadly neutralizing dimeric IgA yields mucosal secretory IgA and virus neutralization. Mucosal Immunol 2017; 10(1): 228-37.
[80]
Kourtis AP, Butera S, Ibegbu C, Belec L, Duerr A. Breast milk and HIV-1: Vector of transmission or vehicle of protection? Lancet Infect Dis 2003; 3(12): 786-93.
[81]
Wirt DP, Adkins LT, Palkowetz KH, Schmalstieg FC, Goldman AS. Activated and memory T lymphocytes in human milk. Cytometry 1992; 13(3): 282-90.
[82]
Kourtis AP, Ibegbu CC, Theiler R, et al. Breast milk CD4+ T cells express high levels of C chemokine receptor 5 and CXC chemokine receptor 4 and are preserved in HIV-infected mothers receiving highly active antiretroviral therapy. J Infect Dis 2007; 195(7): 965-72.
[83]
Sabbaj S, Ghosh MK, Edwards BH, et al. Breast milk-derived antigen-specific CD8+ T cells: An extralymphoid effector memory cell population in humans. J Immunol 2005; 174(5): 2951-6.
[84]
Weiler IJ, Hickler W, Sprenger R. Demonstration that milk cells invade the suckling neonatal mouse. Am J Reprod Immunol 1983; 4(2): 95-8.
[85]
Head JR, Beer AE, Billingham RE. Significance of the cellular component of the maternal immunologic endowment in milk. Transplant Proc 1977; 9(2): 1465-71.
[86]
Lohman-Payne B, Slyker JA, Moore S, et al. Breast milk cellular HIV-specific interferon gamma responses are associated with protection from peripartum HIV transmission. AIDS 2012; 26(16): 2007-16.
[87]
Koulinska IN, Villamor E, Chaplin B, et al. Transmission of cell-free and cell-associated HIV-1 through breast-feeding. J Acquir Immune Defic Syndr 2006; 41(1): 93-9.
[88]
Rousseau CM, Nduati RW, Richardson BA, et al. Longitudinal analysis of human immunodeficiency virus type 1 RNA in breast milk and of its relationship to infant infection and maternal disease. J Infect Dis 2003; 187(5): 741-7.
[89]
Ndirangu J, Viljoen J, Bland RM, et al. Cell-free (RNA) and cell-associated (DNA) HIV-1 and postnatal transmission through breastfeeding. PLoS One 2012; 7(12): e51493.
[90]
Becquart P, Petitjean G, Tabaa YA, et al. Detection of a large T-cell reservoir able to replicate HIV-1 actively in breast milk. AIDS 2006; 20(10): 1453-5.
[91]
Mansour RG, Stamper L, Jaeger F, et al. The presence and anti-hiv-1 function of tenascin c in breast milk and genital fluids. PLoS One 2016; 11(5): e0155261.
[92]
Moriuchi M, Moriuchi H. A milk protein lactoferrin enhances human T cell leukemia virus type I and suppresses HIV-1 infection. J Immunol 2001; 166(6): 4231-6.
[93]
Bode L, Kuhn L, Kim HY, et al. Human milk oligosaccharide concentration and risk of postnatal transmission of HIV through breastfeeding. Am J Clin Nutr 2012; 96(4): 831-9.
[94]
Chahroudi A, Cartwright E, Lee ST, et al. Target cell availability, rather than breast milk factors, dictates mother-to-infant transmission of SIV in sooty mangabeys and rhesus macaques. PLoS Pathog 2014; 10(3): e1003958.
[95]
Lifson JD, Hwang KM, Nara PL, et al. Synthetic CD4 peptide derivatives that inhibit HIV infection and cytopathicity. Science 1988; 241(4866): 712-6.
[96]
Dunn D, Group HIVPPMCS. Short-term risk of disease progression in HIV-1-infected children receiving no antiretroviral therapy or zidovudine monotherapy: A meta-analysis. Lancet 2003; 362(9396): 1605-11.
[97]
McIntosh K, FitzGerald G, Pitt J, et al. A comparison of peripheral blood coculture versus 18- or 24-month serology in the diagnosis of human immunodeficiency virus infection in the offspring of infected mothers. Women and Infants Transmission Study. J Infect Dis 1998; 178(2): 560-3.
[98]
Hu Z, Luo Z, Wan Z, et al. HIV-associated memory B cell perturbations. Vaccine 2015; 33(22): 2524-9.
[99]
Obaro SK, Pugatch D, Luzuriaga K. Immunogenicity and efficacy of childhood vaccines in HIV-1-infected children. Lancet Infect Dis 2004; 4(8): 510-8.
[100]
Iwajomo OH, Finn A, Moons P, et al. Deteriorating pneumococcal-specific B-cell memory in minimally symptomatic African children with HIV infection. J Infect Dis 2011; 204(4): 534-43.
[101]
Bamford A, Hart M, Lyall H, et al. The influence of paediatric HIV infection on circulating B cell subsets and CXCR5(+) T helper cells. Clin Exp Immunol 2015; 181(1): 110-7.
[102]
Ghosh S, Feyen O, Jebran AF, et al. Memory B cell function in HIV-infected children-decreased memory B cells despite ART. Pediatr Res 2009; 66(2): 185-90.
[103]
Cubas RA, Mudd JC, Savoye AL, et al. Inadequate T follicular cell help impairs B cell immunity during HIV infection. Nat Med 2013; 19(4): 494-9.
[104]
Moir S, Ogwaro KM, Malaspina A, et al. Perturbations in B cell responsiveness to CD4+ T cell help in HIV-infected individuals. Proc Natl Acad Sci USA 2003; 100(10): 6057-62.
[105]
Titanji K, Chiodi F, Bellocco R, et al. Primary HIV-1 infection sets the stage for important B lymphocyte dysfunctions. AIDS 2005; 19(17): 1947-55.
[106]
Lane HC, Masur H, Edgar LC, et al. Abnormalities of B-cell activation and immunoregulation in patients with the acquired immunodeficiency syndrome. N Engl J Med 1983; 309(8): 453-8.
[107]
Jiang W, Lederman MM, Mohner RJ, et al. Impaired naive and memory B-cell responsiveness to TLR9 stimulation in human immunodeficiency virus infection. J Virol 2008; 82(16): 7837-45.
[108]
Rethi B, Sammicheli S, Amu S, et al. Concerted effect of lymphopenia, viraemia and T-cell activation on Fas expression of peripheral B cells in HIV-1-infected patients. AIDS 2013; 27(2): 155-62.
[109]
Moir S, Ho J, Malaspina A, et al. Evidence for HIV-associated B cell exhaustion in a dysfunctional memory B cell compartment in HIV-infected viremic individuals. J Exp Med 2008; 205(8): 1797-805.
[110]
Doi H, Tanoue S, Kaplan DE. Peripheral CD27-CD21- B-cells represent an exhausted lymphocyte population in hepatitis C cirrhosis. Clin Immunol 2014; 150(2): 184-91.
[111]
Illingworth J, Butler NS, Roetynck S, et al. Chronic exposure to Plasmodium falciparum is associated with phenotypic evidence of B and T cell exhaustion. J Immunol 2013; 190(3): 1038-47.
[112]
Jacobi AM, Reiter K, Mackay M, et al. Activated memory B cell subsets correlate with disease activity in systemic lupus erythematosus: Delineation by expression of CD27, IgD, and CD95. Arthritis Rheum 2008; 58(6): 1762-73.
[113]
Shaw GM. Novel SHIV Design to Recapitulate HIV-1 Transmission, Persistence and Pathogenesis as a Guide for Vaccine and Cure Research. Keystone HIV Vaccines Symposium. Olympic Valley, CA. 2016.