[1]
Hashimoto, Y. Structural development of biological response modifiers based on thalidomide. Bioorgan. Med. Chem., 2002, 10, 461-479.
[2]
Meltchert, M.; List, A. The thalidomide saga. Int. J. Biochem. Cell B., 2007, 39, 1489-1499.
[3]
Franks, M.E.; Macpherson, G.R.; Figg, W.D. Thalidomide. Lancet, 2004, 363, 1802-1811.
[4]
Casal, J.J.; Bollini, M.; Lombardo, M.L.; Bruno, A.M. Thalidomide analogues: Tumor necrosis factor-alpha inhibitors and their evaluation as anti-inflammatory agents. Eur. J. Pharm. Sci., 2016, 83, 114-119.
[5]
Palencia, G.; Núñez-Medrano, J.; Ortiz-Plata, A.; Jiménez-Farfán, D.; Sotelos, J.; Sánchez, A.; Trejo-Solís, C. Anti-apoptotic, anti-oxidant, and anti-inflammatory effects of thalidomide on cerebral ischemia/reperfusion injury in rats. J. Neurol. Sci., 2015, 351, 78-87.
[6]
Palencia, G.; Calderon, A.; Sotelo, J. Thalidomide inhibits pentylenetetrazole-induced seizures. J. Neurol. Sci., 2007, 258, 128-131.
[7]
Payandemehr, B.; Rahimian, R.; Gooshe, M.; Bahremand, A.; Gholizadeh, R.; Berijani, S.; Ahmadi-Dastegerdi, M.; Aminizade, M.; Sarreshte-Dari, A.; Dianati, V.; Amanlou, M.; Dehpour, A.R. Nitric oxide mediates the anticonvulsant effects of thalidomide on pentylenetetrazole-induced tonic seizures in mice. Epilepsy Behav., 2014, 34, 99-104.
[8]
Marjanovic, B.D.; Stojanov, L.M.; Zdravkovic, D.S.; Kravljanac, R.M.; Djordjevic, M.S. Rasmussen syndrome and long term response to thalidomide. Pediatr. Neurol., 2003, 29, 151-156.
[9]
Palencia, G.; Martinez-Juarez, I.E.; Calderon, A.; Artigas, C.; Sotelo, J. Thalidomide for treatment of refractory epilepsy. Epilepsy Res., 2010, 92, 253-257.
[10]
Boireau, A.; Bordier, F.; Dubédat, P.; Pény, C.; Impérato, A. Thalidomide reduces MPTP induced decrease in striatal dopamine levels in mice. Neurosci. Lett., 1997, 234, 123-126.
[11]
Hyakkoku, K.; Nakajima, Y.; Izuta, H.; Shimazawa, M. Thalidomide protects against ischemic neuronal damage induced by focal cerebral ischemia in mice. Neuroscience, 2009, 159, 760-769.
[12]
Palencia, G.; García, E.; Osorio-Rico, L.; Trejo-Solís, C.; Escamilla-Ramírez, A.; Sotelo, J. Neuroprotective effect of thalidomide on MPTP-induced toxicity. Neurotoxicology, 2015, 47, 82-87.
[13]
Ribeiro, R.A.; Vale, M.L.; Ferreira, S.H.; Cunha, F.Q. Analgesic effect of thalidomide on inflammatory pain. Eur. J. Pharmacol., 2000, 391, 97-103.
[14]
Matthews, S.J.; McCoy, C. Thalidomide: a review of approved and investigational uses. Clin. Ther., 2003, 23(2), 342-395.
[15]
Leite, A.C.L.; Barbosa, F.F.; Cardoso, M.V.O.; Moreira, D.R.M.; Coêhlo, L.C.D.; da Silva, E.B.; Filho, G.B.O.; de Souza, V.M.O.; Pereira, V.R.A.; Reis, L. de C.; Ferreira, P.M.P.; Pessoa, C.; Wanderley, A.G.; Mota, F.V.B.; Da Silva, T.G. Phthaloyl amino acids as anti-inflammatory and immunomodulatory prototypes. Med. Chem. Res., 2014, 23, 1701-1708.
[16]
Godin, A.M.; Araújo, D.P.; Menezes, R.R.; Brito, A.M.S.; Melo, I.S.F.; Coura, G.M.E.; Soares, D.G.; Bastos, L.F.S.; Amaral, F.A.; Ribeiro, L.S.; Boff, D.; Santos, J.R.A.; Santos, D.A.; Teixeira, M.M.; de Fátima, A.; Machado, R.R.; Coelho, M.M. Activities of 2 phthalimidethanol and 2 phthalimidethyl nitrate, phthalimide analogs devoid of the glutarimide moiety, in experimental models of inflammatory pain and edema. Pharmacol. Biochem. Behav., 2014, 122, 291-298.
[17]
Zeng, Q.; Liu, Z.; Li, B.; Wang, F. Mild and effective N-phthaloylation of amino acids. Amino Acids, 2014, 27, 183-186.
[18]
Homsi, A.; Kasideh, A. synthesis of some N-phthalimide amino acids derivatives and evaluation their biological activity. Int. J. Chemtech Res., 2015, 8(4), 1817-1825.
[19]
Singh, G.; Saroa, A.; Girdhar, S.; Rani, S.; Sahoo, S.; Choquesillo-Lazarte, D. Synthesis, characterization, electronic absorption and antimicrobial studies of N (silatranylpropyl)phthalimide derived from phthalic anhydride. Inorg. Chim. A. Lett., 2015, 427, 232-239.
[20]
Ahmed, H.E.A.; Abdel-Salam, H.A.; Shaker, M.A. Synthesis, characterization, molecular modeling, and potential antimicrobial and anticancer activities of novel 2-aminoisoindoline-1,3-dione derivatives. Bioorg. Chem., 2016, 66, 1-11.
[21]
Kushwaha, N.; Kaushik, D. Recent advances and future prospects of phthalimide derivatives. JAPS, 2016, 6(03), 159-171.
[22]
Alibadi, A.; Gholamine, B.; Karimi, T. Synthesis and antiseizure evaluation of isoindoline-1,3-dione derivatives in mice. Med. Chem. Res., 2014, 23, 2736-2743.
[23]
Antunes, R.; Batista, H.; Srivastava, R.M.; Thomas, G.; Araujo, C.C. New phthalimide derivatives with potent analgesic activity: II. Bioorg. Med. Chem. Lett., 1998, 8, 3071-3076.
[24]
Kumar, C.S.C.; Loh, W-S.; Chandraju, S.; Win, Y-F.; Tan, W.K.; Quah, C.K.; Fun, H-K. Synthesis, structural and antioxidant studies of some novel N-ethyl phthalimide esters. PLoS One, 2015, 10(3), e0119440.
[25]
Vamecq, J.; Bac, P.; Herrenknecht, C.; Maurois, P.; Delcourt, P.; Stables, J.P. Synthesis and anticonvulsant and neurotoxic properties of substituted N-phenyl derivatives of the phthalimide pharmacophore. J. Med. Chem., 2000, 43(7), 1311-1319.
[26]
Faghihi, K.; Absalar, M.; Hajibeygi, M. Synthesis and characterization of new optically active polyamides containing 2-(4-nitro-1,3-dioxoisoindolin-2-yl)succinic acid and aromatic diamines via direct polycondensation. Turk. J. Chem., 2010, 34(1), 81-90.
[27]
Flores-Soto, M.E.; Chaparro-Huerta, V.; Escoto-Delgadillo, M.; Vazquez-Valls, E.; Gonzalez-Castañeda, R.E.; Beas-Zarate, C. Estructura y función de las subunidades del receptor a glutamato tipo NMDA. Neurologia, 2012, 27, 301-310.
[28]
Apweiler, R.; Bairoch, A.; Wu, C.H.; Barker, W.C.; Boeckmann, B.; Ferro, S.; Gasteiger, E.; Huang, H.; Lopez, R.; Magrane, M.; Martin, M.J.; Natale, D.A.; O’Donovan, C.; Redaschi, N.; Yeh, L.S. UniProt: The Universal Protein knowledgebase. Nucleic Acids Res., 2014, 32, D115-D119.
[29]
Karakas, E.; Furukawa, H. Crystal structure of a heterotetrameric NMDA receptor ion channel. Science, 2014, 344(6187), 992-997.
[30]
Eswar, N.; Webb, B. Marti-Renom, Ma, A.; Madhusudhan, M.S.; Eramian, D.; Shen, M.Y.; Pieper, U.; Sali, A. Comparative Protein Structure Modeling Using Modeller In: Current Protocols in Bioinformatics; Bateman, A.; Draghici, S.; Khuran, E.; Orchard, S.; Pearson, W.R., Eds.; John Wiley & Sons, Inc., New Jersey, 2006. 5.6.1-5.6.30.
[31]
Lovell, S.C.; Davis, I.W.; Arendall, W.B.; De Bakker, P.I.W.; Word, J.M.; Prisant, M.G.; Richardson, J.S.; Richardson, D.C. Structure validation by Cα geometry: φ,ψ and Cβ deviation. Proteins, 2015, 50(3), 437-450.
[32]
Tautermann, C.S. GPCR Homology Model Generation for Lead Optimization. Methods Mol. Biol., 2018, 1705, 115-131.
[33]
Wu, H.; Wang, C.; Gregory, K.J.; Han, G.W.; Cho, H.P.; Xia, Y.; Niswender, C.M.; Katritch, V.; Meiler, J.; Cherezov, V.; Conn, P.J.; Stevens, R.C. Structure of a Class C GPCR Metabotropic Glutamate Receptor 1 Bound to an Allosteric Modulator. Science, 2014, 344(6179), 58-64.
[34]
Dassault Systèmes, B.I.O.V.I.A. Discovery Studio Modeling Environment, Release 2017; San Diego: Dassault Systèmes, 2016.
[35]
Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A.; Bloino, J.; Janesk, R.; Gomperts, B.; Mennucci, B.; Hratchian, H.P.; Ortiz, J.V.; Izmaylov, A.F.; Sonnenberg, J.L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V.G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Vreven, T.; Throssell, K.; Montgomery, Jr , J.A.; Peralta, J.E.; Olgliaro, F.; Bearpark, M.; Heyd, J.J.; Brothers, E.; Kudin, K.N.; Staroverov, V.N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghvachari, K.; Rendell, A.; Burant, J.C.; Iyengar, S.S.; Romasi, J.; Cossi, M.; Millam, J.M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, W.; Martin, R.L.; Morokuma, K.; Farkas, O.; Foresman, J.B.; Fox, D.J. Gaussian 09, Revision A.02; Gaussian, Inc.: Wallingford, CT, 2016.
[36]
Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem., 2009, 30(16), 2785-2791.
[37]
Forli, S.; Huey, R.; Pique, M.E.; Sanner, M.F.; Goodsell, D.S.; Olson, A.J. Computational protein ligand docking and virtual drug screening with the AutoDock suite. Nat. Protoc., 2016, 11, 905-919.
[38]
Morris, G.M.; Goodsell, D.S.; Halliday, R.S.; Huey, R.; Hart, W.E.; Belew, R.K.; Olson, A.J. Automated docking using a Lamarckian Genetic Algorithm and an Empirical Binding Free Energy Function. J. Comput. Chem., 1998, 19(14), 1639-1662.
[39]
Ryu, J.K.; McLarnon, J.G. Thalidomide inhibition of perturbed vasculature and glial-derived tumor necrosis factor- α in an animal model of inflamed Alzheimer’ s disease brain. Neurobiol. Dis., 2008, 29, 254-266.
[40]
Prut, L.; Belzung, C. The open field as a paradigm to measure the effects of drugs on anxiety-like behaviors: a review. Eur. J. Pharmacol., 2003, 463, 3-33.
[41]
Lopez-Martinez, M.; Salgado-Zamora, H.; Ramirez-San Juan, E.; Zamudio, S.; Picazo, O.; Campos, M.E.; Naranjo-Rodriguez, E.B. Anti-anxiety and sedative profile evaluation of imidazo[1,2-a]pyridine derivatives. Drug Develop. Res., 2010, 71(6), 371-381.
[43]
Walf, A.A.; Frye, C.A. The use of the elevated plus maze as an assay of anxiety-related behavior in rodents. Nat. Protoc., 2007, 2(2), 322-328.
[44]
Sorregotti, T.; Mendes-Gomes, J.; Rico, J.L.; Rodgers, R.J.; Nunes-de-Souza, R.L. Ethopharmacological analysis of the open elevated plus-maze in mice. Behav. Brain Res., 2013, 246, 76-85.
[45]
Vinitha, E.; Singh, H.J.C.; Kakalij, R.M.; Kshirsagar, R.P.; Kumar, B.H.; Diwan, P.V. Neuroprotective effect of Prunus avium on streptozotocin induced neurotoxicity in mice. Biomed. Prev. Nutr., 2014, 4(4), 519-525.
[46]
Thakur, A.; Sahai, A.; Thakur, J. Experimental re-evaluation of flunarizine as add-on antiepileptic therapy. J. Pharm. Bioallied Sci., 2011, 3(2), 253-258.
[47]
Yamaguchi, S.; Rogawski, M.A. Effects of anticonvulsant drugs on 4-aminopyridine induced seizures in mice. Epilepsy Res., 1992, 11, 9-16.
[48]
Sancheti, J.; Shaikh, M.F.; Chaudhari, R.; Somani, G.; Patil, S.; Jain, P.; Sathaye, S. Characterization of anticonvulsant and antiepileptogenic potential of thymol in various experimental models. N-S Arch. Pharmacol., 2014, 387, 59-66.
[50]
Du, X.; Li, Y.; Xia, Y.L.; Ai, S.M.; Liang, J.; Sang, P.; Ji, X.L.; Liu, S.Q. Insights into protein-ligand interactions: mechanisms, models, and methods. Int. J. Mol. Sci., 2016, 17(144), 1-34.
[51]
Lorke, D. A new approach to practical acute toxicity testing. Arch. Toxicol., 1983, 54(4), 275-287.
[52]
Danysz, W.; Essmann, U.; Bresink, I.; Wilke, R. Glutamate antagonists have different effects on spontaneous locomotor activity in rats. Pharmacol. Biochem. Behav., 1994, 48(1), 111-118.
[53]
Kim, J-H.; Vezina, P. Blockade of glutamate reuptake in the rat nucleus accumbens increases locomotor activity. Brain Res., 1999, 819, 165-169.
[54]
Langen, M.; Kas, M.J.H.; Staal, W.C.; van Engeland, H.; Durston, S. The neurobiology of repetitive behavior: Of mice…. Neurosci. Behav. R., 2011, 35, 345-355.
[55]
Castañé, A.; Santana, N.; Artigas, F. PCP-based mice models of schizophrenia: differential behavioral, neurochemical and cellular effects of acute and subchronic treatments. Psychopharmacol., 2015, 232, 4085-4097.
[56]
Niswender, C.M.; Conn, P.J. Metabotropic glutamate receptors: physiology, pharmacology and disease. Annu. Rev. Pharmacol. Toxicol., 2010, 50, 295-322.
[57]
Fragoso-Veloz, J.; Tapia, R. NMDA receptor antagonists protect against seizures and wet-dog shakes induced by 4-aminopyridine. Eur. J. Pharmacol., 1992, 221, 275-280.
[58]
Vamecq, J. Van derpiorten, K.; Poupaert, J.H.; Balzarin, J.; De Clercq, E.; Stables, J.P. Anticonvulsant phenytoinergic pharmacophores and anti-HIV activity-preliminary- evidence for the dual requirement of the 4-aminophthalimide plataform and the N-(1-adamantyl) substitution for antiviral properties. Life Sci., 1998, 63(19), 267-274.
[59]
Morales-Villagrán, A.; Ureña-Guerero, M.E.; Tapia, R. Protection by NMDA receptor antagonists against seizures induced by intracerebral administration of 4-aminopyridine. Eur. J. Pharmacol., 1996, 305, 87-93.