Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

General Review Article

Ganglioside GM3 and Its Role in Cancer

Author(s): Changping Zheng, Marco Terreni, Matthieu Sollogoub and Yongmin Zhang*

Volume 26, Issue 16, 2019

Page: [2933 - 2947] Pages: 15

DOI: 10.2174/0929867325666180129100619

Price: $65

Abstract

Ganglioside GM3 is strongly related with human tumors, such as lung, brain cancers and melanomas, and more and more evidences have revealed that GM3 possesses powerful effects on cancer development and progression. GM3 is over expressed on several types of cancers, and can be as a tumor-associated carbohydrate antigen, used for immunotherapy of cancers. GM3 can also inhibit tumor cells growth by anti-angiogenesis or motility and so on. Especially, GM3 has effects on the EGFR tyrosine kinase signaling, uPAR-related signaling and glycolipid-enriched microdomains, which are essential for cancer signaling conduction. It is obvious that GM3 will be a promising target for cancer treatment.

Keywords: GM3, antitumor, immunotherapy, EGFR, uPAR-related signaling, anti-angiogenesis, cell motility, GM3-enriched microdomains.

[1]
Hakomori, S. Traveling for the glycosphingolipid path. Glycoconj. J., 2000, 17(7-9), 627-647. [http://dx.doi.org/10.1023/A:1011086929064]. [PMID: 11421354].
[2]
Birklé, S.; Zeng, G.; Gao, L.; Yu, R.K.; Aubry, J. Role of tumor-associated gangliosides in cancer progression. Biochimie, 2003, 85(3-4), 455-463. [http://dx.doi.org/10.1016/S0300-9084(03)00006-3]. [PMID: 12770784].
[3]
Kwak, D.H.; Ryu, J.S.; Kim, C.H.; Ko, K.; Ma, J.Y.; Hwang, K.A.; Choo, Y.K. Relationship between ganglioside expression and anti-cancer effects of the monoclonal antibody against epithelial cell adhesion molecule in colon cancer. Exp. Mol. Med., 2011, 43(12), 693-701. [http://dx.doi.org/10.3858/emm.2011.43.12.080]. [PMID: 22033101].
[4]
Toledo, M.S.; Suzuki, E.; Handa, K.; Hakomori, S. Cell growth regulation through GM3-enriched microdomain (glycosynapse) in human lung embryonal fibroblast WI38 and its oncogenic transformant VA13. J. Biol. Chem., 2004, 279(33), 34655-34664. [http://dx.doi.org/10.1074/jbc.M403857200]. [PMID: 15143068].
[5]
Chung, T.W.; Choi, H.J.; Kim, S.J.; Kwak, C.H.; Song, K.H.; Jin, U.H.; Chang, Y.C.; Chang, H.W.; Lee, Y.C.; Ha, K.T.; Kim, C.H. The ganglioside GM3 is associated with cisplatin-induced apoptosis in human colon cancer cells. PLoS One, 2014, 9(5)e92786 [http://dx.doi.org/10.1371/journal.pone.0092786]. [PMID: 24829158].
[6]
Ono, M.; Handa, K.; Sonnino, S.; Withers, D.A.; Nagai, H.; Hakomori, S. GM3 ganglioside inhibits CD9-facilitated haptotactic cell motility: Coexpression of GM3 and CD9 is essential in the downregulation of tumor cell motility and malignancy. Biochemistry, 2001, 40(21), 6414-6421. [http://dx.doi.org/10.1021/bi0101998]. [PMID: 11371204].
[7]
Qu, H.; Liu, J.M.; Wdzieczak-Bakala, J.; Lu, D.; He, X.; Sun, W.; Sollogoub, M.; Zhang, Y. Synthesis and cytotoxicity assay of four ganglioside GM3 analogues. Eur. J. Med. Chem., 2014, 75, 247-257. [http://dx.doi.org/10.1016/j.ejmech.2014.01.054]. [PMID: 24534540].
[8]
Bremer, E.G.; Schlessinger, J.; Hakomori, S. Ganglioside-mediated modulation of cell growth. Specific effects of GM3 on tyrosine phosphorylation of the epidermal growth factor receptor. J. Biol. Chem., 1986, 261(5), 2434-2440. [PMID: 2418024].
[9]
Noll, E.N.E.; Lin, J.; Nakatsuji, Y.; Miller, R.H.; Black, P.M. GM3 as a novel growth regulator for human gliomas. Exp. Neurol., 2001, 168(2), 300-309. [http://dx.doi.org/10.1006/exnr.2000.7603]. [PMID: 11259118].
[10]
Manfredi, M.G.; Lim, S.; Claffey, K.P.; Seyfried, T.N. Gangliosides influence angiogenesis in an experimental mouse brain tumor. Cancer Res., 1999, 59(20), 5392-5397. [PMID: 10537325].
[11]
Seyfried, T.N.; Mukherjee, P. Ganglioside GM3 is antiangiogenic in malignant brain cancer. J. Oncol., 2010.2010961243 [http://dx.doi.org/10.1155/2010/961243]. [PMID: 20634908].
[12]
Ryuji, W.; Chikara, O.; Hiroshi, A.; Toshiko, T.; Makoto, S.; Seiichi, S.; Senji, H. Atsushi, Ishii.; Masaki, S.; Yoichi, A. Ganglioside GM3 overexpression induces apoptosis and reduces malignant potential in murine bladder cancer. Cancer Res., 2002, 62, 3850-3854. [PMID: 12097299].
[13]
Meuillet, E.J.; Kroes, R.; Yamamoto, H.; Warner, T.G.; Ferrari, J.; Mania-Farnell, B.; George, D.; Rebbaa, A.; Moskal, J.R.; Bremer, E.G. Sialidase gene transfection enhances epidermal growth factor receptor activity in an epidermoid carcinoma cell line, A431. Cancer Res., 1999, 59(1), 234-240. [PMID: 9892212].
[14]
Kawamura, S.; Ohyama, C.; Watanabe, R.; Satoh, M.; Saito, S.; Hoshi, S.; Gasa, S.; Orikasa, S. Glycolipid composition in bladder tumor: A crucial role of GM3 ganglioside in tumor invasion. Int. J. Cancer, 2001, 94(3), 343-347. [http://dx.doi.org/10.1002/ijc.1482]. [PMID: 11745412].
[15]
Gu, Y.; Zhang, J.; Mi, W.; Yang, J.; Han, F.; Lu, X.; Yu, W. Silencing of GM3 synthase suppresses lung metastasis of murine breast cancer cells. Breast Cancer Res., 2008, 10(1), R1. [http://dx.doi.org/10.1186/bcr1841]. [PMID: 18171481].
[16]
Chefalo, P.; Pan, Y.; Nagy, N.; Guo, Z.; Harding, C.V. Efficient metabolic engineering of GM3 on tumor cells by N-phenylacetyl-D-mannosamine. Biochemistry, 2006, 45(11), 3733-3739. [http://dx.doi.org/10.1021/bi052161r]. [PMID: 16533056].
[17]
Hasegawa, T.; Yamaguchi, K.; Wada, T.; Takeda, A.; Itoyama, Y.; Miyagi, T. Molecular cloning of mouse ganglioside sialidase and its increased expression in Neuro2a cell differentiation. J. Biol. Chem., 2000, 275(11), 8007-8015. [http://dx.doi.org/10.1074/jbc.275.11.8007]. [PMID: 10713120].
[18]
Papini, N.; Anastasia, L.; Tringali, C.; Croci, G.; Bresciani, R.; Yamaguchi, K.; Miyagi, T.; Preti, A.; Prinetti, A.; Prioni, S.; Sonnino, S.; Tettamanti, G.; Venerando, B.; Monti, E. The plasma membrane-associated sialidase MmNEU3 modifies the ganglioside pattern of adjacent cells supporting its involvement in cell-to-cell interactions. J. Biol. Chem., 2004, 279(17), 16989-16995. [http://dx.doi.org/10.1074/jbc.M400881200]. [PMID: 14970224].
[19]
Hakomori, S.I.; Handa, K. GM3 and cancer. Glycoconj. J., 2015, 32(1-2), 1-8. [http://dx.doi.org/10.1007/s10719-014-9572-4]. [PMID: 25613425].
[20]
Tringali, C.; Lupo, B.; Silvestri, I.; Papini, N.; Anastasia, L.; Tettamanti, G.; Venerando, B. The plasma membrane sialidase NEU3 regulates the malignancy of renal carcinoma cells by controlling β1 integrin internalization and recycling. J. Biol. Chem., 2012, 287(51), 42835-42845. [http://dx.doi.org/10.1074/jbc.M112.407718]. [PMID: 23139422].
[21]
Ueno, S.; Saito, S.; Wada, T.; Yamaguchi, K.; Satoh, M.; Arai, Y.; Miyagi, T. Plasma membrane-associated sialidase is up-regulated in renal cell carcinoma and promotes interleukin-6-induced apoptosis suppression and cell motility. J. Biol. Chem., 2006, 281(12), 7756-7764. [http://dx.doi.org/10.1074/jbc.M509668200]. [PMID: 16428383].
[22]
Sawada, M.; Moriya, S.; Saito, S.; Shineha, R.; Satomi, S.; Yamori, T.; Tsuruo, T.; Kannagi, R.; Miyagi, T. Reduced sialidase expression in highly metastatic variants of mouse colon adenocarcinoma 26 and retardation of their metastatic ability by sialidase overexpression. Int. J. Cancer, 2002, 97(2), 180-185. [http://dx.doi.org/10.1002/ijc.1598]. [PMID: 11774262].
[23]
Hersey, P.; Jamal, O.; Henderson, C.; Zardawi, I.; D’Alessandro, G. Expression of the gangliosides GM3, GD3 and GD2 in tissue sections of normal skin, naevi, primary and metastatic melanoma. Int. J. Cancer, 1988, 41(3), 336-343. [http://dx.doi.org/10.1002/ijc.2910410303]. [PMID: 3346097].
[24]
Ichikawa, S.; Nakajo, N.; Sakiyama, H.; Hirabayashi, Y. A mouse B16 melanoma mutant deficient in glycolipids. Proc. Natl. Acad. Sci. USA, 1994, 91(7), 2703-2707. [http://dx.doi.org/10.1073/pnas.91.7.2703]. [PMID: 8146177].
[25]
Inokuchi, J.; Jimbo, M.; Kumamoto, Y.; Shimeno, H.; Nagamatsu, A. Expression of ganglioside GM3 and H-2 antigens in clones with different metastatic and growth potentials isolated from Lewis lung carcinoma (3LL) cell line. Clin. Exp. Metastasis, 1993, 11(1), 27-36. [http://dx.doi.org/10.1007/BF00880063]. [PMID: 8422703].
[26]
Tringali1, C.; Silvestri1, I.; Testa, F.; Baldassari, P.; Anastasia, L.; Mortarini, R.; Anichini, A.;López-Requena, A.; Tettamanti, G.; Venerando, B. Molecular subtyping of metastatic melanoma based on cell ganglioside metabolism profiles. BMC Cancer, 2014, 14, 560.
[27]
Bassi, R.; Viani, P.; Giussani, P.; Riboni, L.; Tettamanti, G. GM3 ganglioside inhibits endothelin-1-mediated signal transduction in C6 glioma cells. FEBS Lett., 2001, 507(1), 101-104. [http://dx.doi.org/10.1016/S0014-5793(01)02966-0]. [PMID: 11682066].
[28]
Samraj, A.N.; Läubli, H.; Varki, N.; Varki, A. Involvement of a non-human sialic acid in human cancer. Front. Oncol., 2014, 4, 33. [http://dx.doi.org/10.3389/fonc.2014.00033]. [PMID: 24600589].
[29]
van Cruijsen, H.; Ruiz, M.G.; van der Valk, P.; de Gruijl, T.D.; Giaccone, G. Tissue micro array analysis of ganglioside N-glycolyl GM3 expression and signal transducer and activator of transcription (STAT)-3 activation in relation to dendritic cell infiltration and microvessel density in non-small cell lung cancer. BMC Cancer, 2009, 9, 180. [http://dx.doi.org/10.1186/1471-2407-9-180]. [PMID: 19519895].
[30]
Blanco, R. N-Glycolyl GM3 ganglioside as a relevant tumor antigen in humans. J. Mol. Biomark. Diagn., 2016.e124 [http://dx.doi.org/10.4172/2155-9929.1000e124].
[31]
Casadesús, A.V.; Fernández-Marrero, Y.; Clavell, M.; Gómez, J.A.; Hernández, T.; Moreno, E.; López-Requena, A. A shift from N-glycolyl- to N-acetyl-sialic acid in the GM3 ganglioside impairs tumor development in mouse lymphocytic leukemia cells. Glycoconj. J., 2013, 30(7), 687-699. [http://dx.doi.org/10.1007/s10719-013-9473-y]. [PMID: 23547010].
[32]
Pochechueva, T.; Jacob, F.; Fedier, A.; Heinzelmann-Schwarz, V. Tumor-associated glycans and their role in gynecological cancers: accelerating translational research by novel high-throughput approaches. Metabolites, 2012, 2(4), 913-939. [http://dx.doi.org/10.3390/metabo2040913]. [PMID: 24957768].
[33]
Dorvignit, D.; García-Martínez, L.; Rossin, A.; Sosa, K.; Viera, J.; Hernández, T.; Mateo, C.; Hueber, A.O.; Mesa, C.; López-Requena, A. Antitumor and cytotoxic properties of a humanized antibody specific for the GM3(Neu5Gc) ganglioside. Immunobiology, 2015, 220(12), 1343-1350. [http://dx.doi.org/10.1016/j.imbio.2015.07.008]. [PMID: 26224247].
[34]
Krengel, U.; Bousquet, P.A. Molecular recognition of gangliosides and their potential for cancer immunotherapies. Front. Immunol., 2014, 5, 325. [http://dx.doi.org/10.3389/fimmu.2014.00325]. [PMID: 25101077].
[35]
Gridelli, C.; Rossi, A.; Maione, P.; Ferrara, M.L.; Castaldo, V.; Sacco, P.C. Vaccines for the treatment of non-small cell lung cancer: A renewed anticancer strategy. Oncologist, 2009, 14(9), 909-920. [http://dx.doi.org/10.1634/theoncologist.2009-0017]. [PMID: 19726457].
[36]
Osorio, M.; Gracia, E.; Rodríguez, E.; Saurez, G. Arango, Mdel.C.; Noris, E.; Torriella, A.; Joan, A.; Gómez, E.; Anasagasti, L.; González, J.L.; Melgares, Mde.L.; Torres, I.; González, J.; Alonso, D.; Rengifo, E.; Carr, A.; Pérez, R.; Fernández, L.E.; Enrique Fernández, L. Heterophilic NeuGcGM3 ganglioside cancer vaccine in advanced melanoma patients: results of a Phase Ib/IIa study. Cancer Biol. Ther., 2008, 7(4), 488-495. [http://dx.doi.org/10.4161/cbt.7.4.5476]. [PMID: 18285705].
[37]
Gabri, M.R.; Ripoll, G.V.; Alonso, D.F.; Gómez, D.E. Role of cell surface GM3 ganglioside and sialic acid in the antitumor activity of a GM3-based vaccine in the murine B16 melanoma model. J. Cancer Res. Clin. Oncol., 2002, 128(12), 669-677. [http://dx.doi.org/10.1007/s00432-002-0385-7]. [PMID: 12474053].
[38]
Mazorra, Z.; Mesa, C.; Fernández, L.E. GM3 ganglioside: a novel target for the therapyagainst melanoma. Biotecnol. Apl., 2009, 26, 256-259.
[39]
Zheng, X.J.; Yang, F.; Zheng, M.; Huo, C.X.; Zhang, Y.; Ye, X.S. Improvement of the immune efficacy of carbohydrate vaccines by chemical modification on the GM3 antigen. Org. Biomol. Chem., 2015, 13(22), 6399-6406. [http://dx.doi.org/10.1039/C5OB00405E]. [PMID: 25982227].
[40]
Wang, Q.; Zhang, J.; Guo, Z. Efficient glycoengineering of GM3 on melanoma cell and monoclonal antibody-mediated selective killing of the glycoengineered cancer cell. Bioorg. Med. Chem., 2007, 15(24), 7561-7567. [http://dx.doi.org/10.1016/j.bmc.2007.09.005]. [PMID: 17892942].
[41]
Miranda, A.; de León, J.; Roque-Navarro, L.; Fernández, L.E. Cytofluorimetric evaluation of N-glycolylated GM3 ganglioside expression on murine leukocytes. Immunol. Lett., 2011, 137(1-2), 38-45. [http://dx.doi.org/10.1016/j.imlet.2011.02.001]. [PMID: 21324343].
[42]
Oliva, J.P.; Valdés, Z.; Casacó, A.; Pimentel, G.; González, J.; Alvarez, I.; Osorio, M.; Velazco, M.; Figueroa, M.; Ortiz, R.; Escobar, X.; Orozco, M.; Cruz, J.; Franco, S.; Díaz, M.; Roque, L.; Carr, A.; Vázquez, A.M.; Mateos, C.; Rubio, M.C.; Pérez, R.; Fernández, L.E. Clinical evidences of GM3 (NeuGc) ganglioside expression in human breast cancer using the 14F7 monoclonal antibody labelled with (99m)Tc. Breast Cancer Res. Treat., 2006, 96(2), 115-121. [http://dx.doi.org/10.1007/s10549-005-9064-0]. [PMID: 16322892].
[43]
Fernandez, L.E.; Gabri, M.R.; Guthmann, M.D.; Gomez, R.E.; Gold, S.; Fainboim, L.; Gomez, D.E.; Alonso, D.F. NGcGM3 ganglioside: A privileged target for cancer vaccines. Clin. Dev. Immunol., 2010.2010814397 [http://dx.doi.org/10.1155/2010/814397]. [PMID: 21048926].
[44]
de la Torre, A.; Hernandez, J.; Ortiz, R.; Cepeda, M.; Perez, K.; Car, A.; Viada, C.; Toledo, D.; Guerra, P.P.; García, E.; Arboláez, M.; Fernandez, L.E. NGlycolylGM3/VSSP Vaccine in metastatic breast cancer patients: Results of phase I/IIa clinical trial. Breast Cancer (Auckl.), 2012, 6, 151-157. [http://dx.doi.org/10.4137/BCBCR.S8488]. [PMID: 23055739].
[45]
Segatori, V.I.; Otero, L.L.; Fernandez, L.E.; Gomez, D.E.; Alonso, D.F.; Gabri, M.R. Antitumor protection by NGcGM3/VSSP vaccine against transfected B16 mouse melanoma cells overexpressing N-glycolylated gangliosides. In Vivo, 2012, 26(4), 609-617. [PMID: 22773575].
[46]
Pérez, K.; Osorio, M.; Hernández, J.; Carr, A.; Fernández, L.E. NGcGM3/VSSP vaccine as treatment for melanoma patients. Hum. Vaccin. Immunother., 2013, 9(6), 1237-1240. [http://dx.doi.org/10.4161/hv.24115]. [PMID: 23442598].
[47]
de la Torre, A.; Pérez, K.; Vega, A.M.; Santiesteban, E.; Ruiz, R.; Hernández, L.; Durrutí, D.; Viada, C.E.; Sánchez, L.; Álvarez, M.; Durán, Y.; Moreno, Y.G.; Arencibia, M.; Cepeda, M.; Domecq, M.; Cabrera, L.; Sánchez, J.L.; Hernández, J.J.; Valls, A.R.; Fernández, L.E. Superior efficacy and safety of a nonemulsive variant of the NGcGM3/VSSP vaccine in advanced breast cancer patients. Breast Cancer (Auckl.), 2016, 10, 5-11. [http://dx.doi.org/10.4137/BCBCR.S32785]. [PMID: 26917965].
[48]
Voldborg, B.R.; Damstrup, L.; Spang-Thomsen, M.; Poulsen, H.S. Epidermal Growth Factor Receptor (EGFR) and EGFR mutations, function and possible role in clinical trials. Ann. Oncol., 1997, 8(12), 1197-1206. [http://dx.doi.org/10.1023/A:1008209720526]. [PMID: 9496384].
[49]
Bremer, E.G.; Hakomori, S.; Bowen-Pope, D.F.; Raines, E.; Ross, R. Ganglioside-mediated modulation of cell growth, growth factor binding, and receptor phosphorylation. J. Biol. Chem., 1984, 259(11), 6818-6825. [PMID: 6327695].
[50]
Rebbaa, A.; Hurh, J.; Yamamoto, H.; Kersey, D.S.; Bremer, E.G. Ganglioside GM3 inhibition of EGF receptor mediated signal transduction. Glycobiology, 1996, 6(4), 399-406. [http://dx.doi.org/10.1093/glycob/6.4.399]. [PMID: 8842703].
[51]
Yoon, S.J.; Nakayama, K.; Hikita, T.; Handa, K.; Hakomori, S.I. Epidermal growth factor receptor tyrosine kinase is modulated by GM3 interaction with N-linked GlcNAc termini of the receptor. Proc. Natl. Acad. Sci. USA, 2006, 103(50), 18987-18991. [http://dx.doi.org/10.1073/pnas.0609281103]. [PMID: 17142315].
[52]
Wang, X.; Sun, P.; O’Gorman, M.; Tai, T.; Paller, A.S. Epidermal growth factor receptor glycosylation is required for ganglioside GM3 binding and GM3-mediated suppresion of activation. Glycobiology, 2001, 11, 515-522. [http://dx.doi.org/10.1093/glycob/11.7.515]. [PMID: 11447130].
[53]
Wang, X.Q.; Sun, P.; Paller, A.S. Ganglioside GM3 blocks the activation of epidermal growth factor receptor induced by integrin at specific tyrosine sites. J. Biol. Chem., 2003, 278(49), 48770-48778. [http://dx.doi.org/10.1074/jbc.M308818200]. [PMID: 14512423].
[54]
Kovacs, E.; Das, R.; Wang, Q.; Collier, T.S.; Cantor, A.; Huang, Y.; Wong, K.; Mirza, A.; Barros, T.; Grob, P.; Jura, N.; Bose, R.; Kuriyan, J. Analysis of the role of the C-terminal tail in the regulation of the epidermal growth factor receptor. Mol. Cell. Biol., 2015, 35(17), 3083-3102. [http://dx.doi.org/10.1128/MCB.00248-15]. [PMID: 26124280].
[55]
Pourazar, J.; Blomberg, A.; Kelly, F.J.; Davies, D.E.; Wilson, S.J.; Holgate, S.T.; Sandström, T. Diesel exhaust increases EGFR and phosphorylated C-terminal Tyr 1173 in the bronchial epithelium. Part. Fibre Toxicol., 2008, 5, 8. [http://dx.doi.org/10.1186/1743-8977-5-8]. [PMID: 18460189].
[56]
Shiozaki, K.; Yamaguchi, K.; Sato, I.; Miyagi, T. Plasma membrane-associated sialidase (NEU3) promotes formation of colonic aberrant crypt foci in azoxymethane-treated transgenic mice. Cancer Sci., 2009, 100(4), 588-594. [http://dx.doi.org/10.1111/j.1349-7006.2008.01080.x]. [PMID: 19215228].
[57]
Miyata, M.; Kambe, M.; Tajima, O.; Moriya, S.; Sawaki, H.; Hotta, H.; Kondo, Y.; Narimatsu, H.; Miyagi, T.; Furukawa, K.; Furukawa, K. Membrane sialidase NEU3 is highly expressed in human melanoma cells promoting cell growth with minimal changes in the composition of gangliosides. Cancer Sci., 2011, 102(12), 2139-2149. [http://dx.doi.org/10.1111/j.1349-7006.2011.02086.x]. [PMID: 21895867].
[58]
Miljan, E.A.; Meuillet, E.J.; Mania-Farnell, B.; George, D.; Yamamoto, H.; Simon, H.G.; Bremer, E.G. Interaction of the extracellular domain of the epidermal growth factor receptor with gangliosides. J. Biol. Chem., 2002, 277(12), 10108-10113. [http://dx.doi.org/10.1074/jbc.M111669200]. [PMID: 11796728].
[59]
Zhou, Q.; Hakomori, S.; Kitamuras, K.; Igarashi, Y. GM3 Directly inhibits tyrosine phosphorylation and de-N-acety1-GM3 directly enhances serine phosphorylation of epidermal growth factor receptor, independently of receptor-receptor interaction. J. Biol. Chem., 1994, 269, 1950-1965.
[60]
Kawashima, N.; Qu, H.; Lobaton, M.; Zhu, Z.; Sollogoub, M.; Cavenee, W.K.; Handa, K.; Hakomori, S.I.; Zhang, Y. Efficient synthesis of chloro-derivatives of sialosyllactosylceramide, and their enhanced inhibitory effect on epidermal growth factor receptor activation. Oncol. Lett., 2014, 7(4), 933-940. [http://dx.doi.org/10.3892/ol.2014.1887]. [PMID: 24944646].
[61]
Haga, Y.; Hatanaka, K.; Hakomori, S.I. Effect of lipid mimetics of GM3 and lyso-GM3 dimer on EGF receptor tyrosine kinase and EGF-induced signal transduction. Biochim. Biophys. Acta, 2008, 1780(3), 393-404. [http://dx.doi.org/10.1016/j.bbagen.2007.10.018]. [PMID: 18036568].
[62]
Huang, X.; Li, Y.; Zhang, J.; Xu, Y.; Tian, Y.; Ma, K. Ganglioside GM3 inhibits hepatoma cell motility via down-regulating activity of EGFR and PI3K/AKT signaling pathway. J. Cell. Biochem., 2013, 114(7), 1616-1624. [http://dx.doi.org/10.1002/jcb.24503]. [PMID: 23355442].
[63]
Li, Y.; Huang, X.; Zhong, W.; Zhang, J.; Ma, K. Ganglioside GM3 promotes HGF-stimulated motility of murine hepatoma cell through enhanced phosphorylation of cMet at specific tyrosine sites and PI3K/Akt-mediated migration signaling. Mol. Cell. Biochem., 2013, 382(1-2), 83-92. [http://dx.doi.org/10.1007/s11010-013-1720-9]. [PMID: 23749170].
[64]
Li, Y.; Huang, X.; Wang, C.; Li, Y.; Luan, M.; Ma, K. Ganglioside GM3 exerts opposite effects on motility via epidermal growth factor receptor and hepatocyte growth factor receptor-mediated migration signaling. Mol. Med. Rep., 2015, 11(4), 2959-2966. [http://dx.doi.org/10.3892/mmr.2014.3087]. [PMID: 25503644].
[65]
Palomo, A.G.; Santana, R.B.; Pérez, X.E.; Santana, D.B.; Gabri, M.R.; Monzon, K.L.; Pérez, A.C. Frequent co-expression of EGFR and NeuGcGM3 ganglioside in cancer: it’s potential therapeutic implications. Clin. Exp. Metastasis, 2016, 33(7), 717-725. [http://dx.doi.org/10.1007/s10585-016-9811-0]. [PMID: 27449755].
[66]
Gómez-Móuton, C.; Abad, J.L.; Mira, E.; Lacalle, R.A.; Gallardo, E.; Jiménez-Baranda, S.; Illa, I.; Bernad, A.; Mañes, S.; Martínez-A, C. Segregation of leading-edge and uropod components into specific lipid rafts during T cell polarization. Proc. Natl. Acad. Sci. USA, 2001, 98(17), 9642-9647. [http://dx.doi.org/10.1073/pnas.171160298]. [PMID: 11493690].
[67]
Wang, X.Q.; Sun, P.; Go, L.; Koti, V.; Fliman, M.; Paller, A.S. Ganglioside GM3 promotes carcinoma cell proliferation via urokinase plasminogen activator-induced extracellular signal-regulated kinase-independent p70S6 kinase signaling. J. Invest. Dermatol., 2006, 126(12), 2687-2696. [http://dx.doi.org/10.1038/sj.jid.5700469]. [PMID: 16826166].
[68]
Wang, X.Q.; Sun, P.; Paller, A.S. Gangliosides inhibit urokinase-type plasminogen activator (uPA)-dependent squamous carcinoma cell migration by preventing uPA receptor/alphabeta integrin/epidermal growth factor receptor interactions. J. Invest. Dermatol., 2005, 124(4), 839-848. [http://dx.doi.org/10.1111/j.0022-202X.2005.23669.x]. [PMID: 15816844].
[69]
Dufner, A.; Thomas, G. Ribosomal S6 kinase signaling and the control of translation. Exp. Cell Res., 1999, 253(1), 100-109. [http://dx.doi.org/10.1006/excr.1999.4683]. [PMID: 10579915].
[70]
Abate, L.E.; Mukherjee, P.; Seyfried, T.N. Gene-linked shift in ganglioside distribution influences growth and vascularity in a mouse astrocytoma. J. Neurochem., 2006, 98(6), 1973-1984. [http://dx.doi.org/10.1111/j.1471-4159.2006.04097.x]. [PMID: 16911584].
[71]
Alessandri, G.; Filippeschi, S.; Sinibaldi, P.; Mornet, F.; Passera, P.; Spreafico, F.; Cappa, P.M.; Gullino, P.M. Influence of gangliosides on primary and metastatic neoplastic growth in human and murine cells. Cancer Res., 1987, 47(16), 4243-4247. [PMID: 2440560].
[72]
Ravindranath, M.H.; Tsuchida, T.; Morton, D.L.; Irie, R.F. Ganglioside GM3:GD3 ratio as an index for the management of melanoma. Cancer, 1991, 67(12), 3029-3035. [http://dx.doi.org/10.1002/1097-0142(19910615)67:12<3029:AID-CNCR2820671217>3.0.CO;2-8]. [PMID: 2044049].
[73]
Seyfried, T.N.; El-Abbadi, M.; Roy, M.L. Ganglioside distribution in murine neural tumors. Mol. Chem. Neuropathol., 1992, 17(2), 147-167. [http://dx.doi.org/10.1007/BF03159989]. [PMID: 1418222].
[74]
Ecsedy, J.A.; Holthaus, K.A.; Yohe, H.C.; Seyfried, T.N. Expression of mouse sialic acid on gangliosides of a human glioma grown as a xenograft in SCID mice. J. Neurochem., 1999, 73(1), 254-259. [http://dx.doi.org/10.1046/j.1471-4159.1999.0730254.x]. [PMID: 10386978].
[75]
Margheri, F.; Chillà, A.; Laurenzana, A.; Serratì, S.; Mazzanti, B.; Saccardi, R.; Santosuosso, M.; Danza, G.; Sturli, N.; Rosati, F.; Magnelli, L.; Papucci, L.; Calorini, L.; Bianchini, F.; Del Rosso, M.; Fibbi, G. Endothelial progenitor cell-dependent angiogenesis requires localization of the full-length form of uPAR in caveolae. Blood, 2011, 118(13), 3743-3755. [http://dx.doi.org/10.1182/blood-2011-02-338681]. [PMID: 21803847].
[76]
Chillà, A.; Magherini, F.; Margheri, F.; Laurenzana, A.; Gamberi, T.; Bini, L.; Bianchi, L.; Danza, G.; Mazzanti, B.; Serratì, S.; Modesti, A.; Del Rosso, M.; Fibbi, G. Proteomic identification of VEGF-dependent protein enrichment to membrane caveolar-raft microdomains in endothelial progenitor cells. Mol. Cell. Proteomics, 2013, 12(7), 1926-1938. [http://dx.doi.org/10.1074/mcp.M112.024638]. [PMID: 23572564].
[77]
Margheri, F.; Papucci, L.; Schiavone, N.; D’Agostino, R.; Trigari, S.; Serratì, S.; Laurenzana, A.; Biagioni, A.; Luciani, C.; Chillà, A.; Andreucci, E.; Del Rosso, T.; Margheri, G.; Del Rosso, M.; Fibbi, G. Differential uPAR recruitment in caveolar-lipid rafts by GM1 and GM3 gangliosides regulates endothelial progenitor cells angiogenesis. J. Cell. Mol. Med., 2015, 19(1), 113-123. [http://dx.doi.org/10.1111/jcmm.12410]. [PMID: 25313007].
[78]
Alessandri, G.; Cornaglia-Ferraris, P.; Gullino, P.M. Angiogenic and angiostatic microenvironment in tumors--role of gangliosides. Acta Oncol., 1997, 36(4), 383-387. [http://dx.doi.org/10.3109/02841869709001284]. [PMID: 9247098].
[79]
Gullino, P.M. Prostaglandins and gangliosides of tumor microenvironment: their role in angiogenesis. Acta Oncol., 1995, 34(3), 439-441. [http://dx.doi.org/10.3109/02841869509094005]. [PMID: 7540024].
[80]
Chung, T.W.; Kim, S.J.; Choi, H.J.; Kim, K.J.; Kim, M.J.; Kim, S.H.; Lee, H.J.; Ko, J.H.; Lee, Y.C.; Suzuki, A.; Kim, C.H. Ganglioside GM3 inhibits VEGF/VEGFR-2-mediated angiogenesis: direct interaction of GM3 with VEGFR-2. Glycobiology, 2009, 19(3), 229-239. [http://dx.doi.org/10.1093/glycob/cwn114]. [PMID: 18974200].
[81]
Mukherjee, P.; Faber, A.C.; Shelton, L.M.; Baek, R.C.; Chiles, T.C.; Seyfried, T.N. Thematic review series: sphingolipids. Ganglioside GM3 suppresses the proangiogenic effects of vascular endothelial growth factor and ganglioside GD1a. J. Lipid Res., 2008, 49(5), 929-938. [http://dx.doi.org/10.1194/jlr.R800006-JLR200]. [PMID: 18287616].
[82]
Bai, H.; Seyfried, T.N. Influence of ganglioside GM3 and high density lipoprotein on the cohesion of mouse brain tumor cells. J. Lipid Res., 1997, 38(1), 160-172. [PMID: 9034210].
[83]
Todeschini, A.R.; Dos Santos, J.N.; Handa, K.; Hakomori, S.I. Ganglioside GM2/GM3 complex affixed on silica nanospheres strongly inhibits cell motility through CD82/cMet-mediated pathway. Proc. Natl. Acad. Sci. USA, 2008, 105(6), 1925-1930. [http://dx.doi.org/10.1073/pnas.0709619104]. [PMID: 18272501].
[84]
Mitsuzuka, K.; Handa, K.; Satoh, M.; Arai, Y.; Hakomori, S. A specific microdomain (“glycosynapse 3”) controls phenotypic conversion and reversion of bladder cancer cells through GM3-mediated interaction of alpha3beta1 integrin with CD9. J. Biol. Chem., 2005, 280(42), 35545-35553. [http://dx.doi.org/10.1074/jbc.M505630200]. [PMID: 16103120].
[85]
Prinetti, A.; Cao, T.; Illuzzi, G.; Prioni, S.; Aureli, M.; Gagliano, N.; Tredici, G.; Rodriguez-Menendez, V.; Chigorno, V.; Sonnino, S. A glycosphingolipid/caveolin-1 signaling complex inhibits motility of human ovarian carcinoma cells. J. Biol. Chem., 2011, 286(47), 40900-40910. [http://dx.doi.org/10.1074/jbc.M111.286146]. [PMID: 21949119].
[86]
Prinetti, A.; Aureli, M.; Illuzzi, G.; Prioni, S.; Nocco, V.; Scandroglio, F.; Gagliano, N.; Tredici, G.; Rodriguez-Menendez, V.; Chigorno, V.; Sonnino, S. GM3 synthase overexpression results in reduced cell motility and in caveolin-1 upregulation in human ovarian carcinoma cells. Glycobiology, 2010, 20(1), 62-77. [http://dx.doi.org/10.1093/glycob/cwp143]. [PMID: 19759399].
[87]
Stefanová, I.; Horejsí, V.; Ansotegui, I.J.; Knapp, W.; Stockinger, H. GPI-anchored cell-surface molecules complexed to protein tyrosine kinases. Science, 1991, 254(5034), 1016-1019. [http://dx.doi.org/10.1126/science.1719635]. [PMID: 1719635].
[88]
Kniep, B.; Cinek, T.; Angelisová, P.; Horejsí, V. Association of the GPI-anchored leucocyte surface glycoproteins with ganglioside GM3. Biochem. Biophys. Res. Commun., 1994, 203(2), 1069-1075. [http://dx.doi.org/10.1006/bbrc.1994.2291]. [PMID: 7522441].
[89]
Handa, K.; Hakomori, S.I. Carbohydrate to carbohydrate interaction in development process and cancer progression. Glycoconj. J., 2012, 29(8-9), 627-637. [http://dx.doi.org/10.1007/s10719-012-9380-7]. [PMID: 22610315].
[90]
Kojima, N.; Hakomori, S. Specific interaction between gangliotriaosylceramide (Gg3) and sialosyllactosylceramide (GM3) as a basis for specific cellular recognition between lymphoma and melanoma cells. J. Biol. Chem., 1989, 264(34), 20159-20162. [PMID: 2584211].
[91]
Kojima, N.; Hakomori, S. Cell adhesion, spreading, and motility of GM3-expressing cells based on glycolipid-glycolipid interaction. J. Biol. Chem., 1991, 266(26), 17552-17558. [PMID: 1894638].
[92]
Yamamura, S.; Handa, K.; Hakomori, S. A close association of GM3 with c-Src and Rho in GM3-enriched microdomains at the B16 melanoma cell surface membrane: a preliminary note. Biochem. Biophys. Res. Commun., 1997, 236(1), 218-222. [http://dx.doi.org/10.1006/bbrc.1997.6933]. [PMID: 9223455].
[93]
Iwabuchi, K.; Handa, K.; Hakomori, S. Separation of “glycosphingolipid signaling domain” from caveolin-containing membrane fraction in mouse melanoma B16 cells and its role in cell adhesion coupled with signaling. J. Biol. Chem., 1998, 273(50), 33766-33773. [http://dx.doi.org/10.1074/jbc.273.50.33766]. [PMID: 9837965].
[94]
Prinetti, A.; Iwabuchi, K.; Hakomori, S. Glycosphingolipid-enriched signaling domain in mouse neuroblastoma Neuro2a cells. Mechanism of ganglioside-dependent neuritogenesis. J. Biol. Chem., 1999, 274(30), 20916-20924. [http://dx.doi.org/10.1074/jbc.274.30.20916]. [PMID: 10409636].
[95]
Iwabuchi, K.; Yamamura, S.; Prinetti, A.; Handa, K.; Hakomori, S. GM3-enriched microdomain involved in cell adhesion and signal transduction through carbohydrate-carbohydrate interaction in mouse melanoma B16 cells. J. Biol. Chem., 1998, 273(15), 9130-9138. [http://dx.doi.org/10.1074/jbc.273.15.9130]. [PMID: 9535903].
[96]
Iwabuchi, K.; Zhang, Y.; Handa, K.; Withers, D.A.; Sinaÿ, P.; Hakomori, S. Reconstitution of membranes simulating “glycosignaling domain” and their susceptibility to lyso-GM3. J. Biol. Chem., 2000, 275(20), 15174-15181. [http://dx.doi.org/10.1074/jbc.275.20.15174]. [PMID: 10809752].
[97]
Zhang, Y.; Iwabuchi, K.; Nunomura, S.; Hakomori, S. Effect of synthetic sialyl 2-->1 sphingosine and other glycosylsphingosines on the structure and function of the “Glycosphingolipid Signaling Domain (GSD)” in mouse melanoma B16 cells. Biochemistry, 2000, 39(10), 2459-2468. [http://dx.doi.org/10.1021/bi991882l]. [PMID: 10704195].
[98]
Kojima, N.; Shiota, M.; Sadahira, Y.; Handa, K.; Hakomori, S. Cell adhesion in a dynamic flow system as comparedto static system. J. Biol. Chem., 1992, 267, 17264-17270. [PMID: 1512264].
[99]
Bromley, S.K.; Burack, W.R.; Johnson, K.G.; Somersalo, K.; Sims, T.N.; Sumen, C.; Davis, M.M.; Shaw, A.S.; Allen, P.M.; Dustin, M.L. The immunological synapse. Annu. Rev. Immunol., 2001, 19, 375-396. [http://dx.doi.org/10.1146/annurev.immunol.19.1.375]. [PMID: 11244041].
[100]
Viola, A.; Schroeder, S.; Sakakibara, Y.; Lanzavecchia, A. T lymphocyte costimulation mediated by reorganization of membrane microdomains. Science, 1999, 283(5402), 680-682. [http://dx.doi.org/10.1126/science.283.5402.680]. [PMID: 9924026].
[101]
Hakomori, S. Glycosylation defining cancer malignancy: new wine in an old bottle. Proc. Natl. Acad. Sci. USA, 2002, 99(16), 10231-10233. [http://dx.doi.org/10.1073/pnas.172380699]. [PMID: 12149519].
[102]
Ono, M.; Handa, K.; Withers, D.A.; Hakomori, S. Motility inhibition and apoptosis are induced by metastasis-suppressing gene product CD82 and its analogue CD9, with concurrent glycosylation. Cancer Res., 1999, 59(10), 2335-2339. [PMID: 10344740].
[103]
Kawakami, Y.; Kawakami, K.; Steelant, W.F.; Ono, M.; Baek, R.C.; Handa, K.; Withers, D.A.; Hakomori, S. Tetraspanin CD9 is a “proteolipid,” and its interaction with alpha 3 integrin in microdomain is promoted by GM3 ganglioside, leading to inhibition of laminin-5-dependent cell motility. J. Biol. Chem., 2002, 277(37), 34349-34358. [http://dx.doi.org/10.1074/jbc.M200771200]. [PMID: 12068006].
[104]
Wang, H.; Isaji, T.; Satoh, M.; Li, D.; Arai, Y.; Gu, J. Antitumor effects of exogenous ganglioside GM3 on bladder cancer in an orthotopic cancer model. Urology, 2013, 81(1)(210). , e11-e15.
[http://dx.doi.org/10.1016/j.urology.2012.08.015]
[105]
Todeschini, A.R.; Dos Santos, J.N.; Handa, K.; Hakomori, S.I. Ganglioside GM2-tetraspanin CD82 complex inhibits met and its cross-talk with integrins, providing a basis for control of cell motility through glycosynapse. J. Biol. Chem., 2007, 282(11), 8123-8133. [http://dx.doi.org/10.1074/jbc.M611407200]. [PMID: 17215249].

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy