General Review Article

神经节苷脂GM3及其在癌症中的作用

卷 26, 期 16, 2019

页: [2933 - 2947] 页: 15

弟呕挨: 10.2174/0929867325666180129100619

价格: $65

摘要

神经节苷脂GM3与人类肿瘤,如肺癌,脑癌和黑色素瘤密切相关,越来越多的证据表明GM3对癌症的发展和进展具有强大的作用。 GM3在几种类型的癌症中过度表达,并且可以作为肿瘤相关的碳水化合物抗原,用于癌症的免疫疗法。 GM3还可通过抗血管生成或运动等抑制肿瘤细胞的生长。 特别是,GM3对EGFR酪氨酸激酶信号传导,uPAR相关信号传导和富含糖脂的微区有影响,这些微区是癌症信号传导所必需的。 很明显,GM3将成为癌症治疗的有希望的目标。

关键词: GM3,抗肿瘤,免疫疗法,EGFR,uPAR相关信号传导,抗血管生成,细胞运动,富含GM3的微区。

[1]
Hakomori, S. Traveling for the glycosphingolipid path. Glycoconj. J., 2000, 17(7-9), 627-647. [http://dx.doi.org/10.1023/A:1011086929064]. [PMID: 11421354].
[2]
Birklé, S.; Zeng, G.; Gao, L.; Yu, R.K.; Aubry, J. Role of tumor-associated gangliosides in cancer progression. Biochimie, 2003, 85(3-4), 455-463. [http://dx.doi.org/10.1016/S0300-9084(03)00006-3]. [PMID: 12770784].
[3]
Kwak, D.H.; Ryu, J.S.; Kim, C.H.; Ko, K.; Ma, J.Y.; Hwang, K.A.; Choo, Y.K. Relationship between ganglioside expression and anti-cancer effects of the monoclonal antibody against epithelial cell adhesion molecule in colon cancer. Exp. Mol. Med., 2011, 43(12), 693-701. [http://dx.doi.org/10.3858/emm.2011.43.12.080]. [PMID: 22033101].
[4]
Toledo, M.S.; Suzuki, E.; Handa, K.; Hakomori, S. Cell growth regulation through GM3-enriched microdomain (glycosynapse) in human lung embryonal fibroblast WI38 and its oncogenic transformant VA13. J. Biol. Chem., 2004, 279(33), 34655-34664. [http://dx.doi.org/10.1074/jbc.M403857200]. [PMID: 15143068].
[5]
Chung, T.W.; Choi, H.J.; Kim, S.J.; Kwak, C.H.; Song, K.H.; Jin, U.H.; Chang, Y.C.; Chang, H.W.; Lee, Y.C.; Ha, K.T.; Kim, C.H. The ganglioside GM3 is associated with cisplatin-induced apoptosis in human colon cancer cells. PLoS One, 2014, 9(5)e92786 [http://dx.doi.org/10.1371/journal.pone.0092786]. [PMID: 24829158].
[6]
Ono, M.; Handa, K.; Sonnino, S.; Withers, D.A.; Nagai, H.; Hakomori, S. GM3 ganglioside inhibits CD9-facilitated haptotactic cell motility: Coexpression of GM3 and CD9 is essential in the downregulation of tumor cell motility and malignancy. Biochemistry, 2001, 40(21), 6414-6421. [http://dx.doi.org/10.1021/bi0101998]. [PMID: 11371204].
[7]
Qu, H.; Liu, J.M.; Wdzieczak-Bakala, J.; Lu, D.; He, X.; Sun, W.; Sollogoub, M.; Zhang, Y. Synthesis and cytotoxicity assay of four ganglioside GM3 analogues. Eur. J. Med. Chem., 2014, 75, 247-257. [http://dx.doi.org/10.1016/j.ejmech.2014.01.054]. [PMID: 24534540].
[8]
Bremer, E.G.; Schlessinger, J.; Hakomori, S. Ganglioside-mediated modulation of cell growth. Specific effects of GM3 on tyrosine phosphorylation of the epidermal growth factor receptor. J. Biol. Chem., 1986, 261(5), 2434-2440. [PMID: 2418024].
[9]
Noll, E.N.E.; Lin, J.; Nakatsuji, Y.; Miller, R.H.; Black, P.M. GM3 as a novel growth regulator for human gliomas. Exp. Neurol., 2001, 168(2), 300-309. [http://dx.doi.org/10.1006/exnr.2000.7603]. [PMID: 11259118].
[10]
Manfredi, M.G.; Lim, S.; Claffey, K.P.; Seyfried, T.N. Gangliosides influence angiogenesis in an experimental mouse brain tumor. Cancer Res., 1999, 59(20), 5392-5397. [PMID: 10537325].
[11]
Seyfried, T.N.; Mukherjee, P. Ganglioside GM3 is antiangiogenic in malignant brain cancer. J. Oncol., 2010.2010961243 [http://dx.doi.org/10.1155/2010/961243]. [PMID: 20634908].
[12]
Ryuji, W.; Chikara, O.; Hiroshi, A.; Toshiko, T.; Makoto, S.; Seiichi, S.; Senji, H. Atsushi, Ishii.; Masaki, S.; Yoichi, A. Ganglioside GM3 overexpression induces apoptosis and reduces malignant potential in murine bladder cancer. Cancer Res., 2002, 62, 3850-3854. [PMID: 12097299].
[13]
Meuillet, E.J.; Kroes, R.; Yamamoto, H.; Warner, T.G.; Ferrari, J.; Mania-Farnell, B.; George, D.; Rebbaa, A.; Moskal, J.R.; Bremer, E.G. Sialidase gene transfection enhances epidermal growth factor receptor activity in an epidermoid carcinoma cell line, A431. Cancer Res., 1999, 59(1), 234-240. [PMID: 9892212].
[14]
Kawamura, S.; Ohyama, C.; Watanabe, R.; Satoh, M.; Saito, S.; Hoshi, S.; Gasa, S.; Orikasa, S. Glycolipid composition in bladder tumor: A crucial role of GM3 ganglioside in tumor invasion. Int. J. Cancer, 2001, 94(3), 343-347. [http://dx.doi.org/10.1002/ijc.1482]. [PMID: 11745412].
[15]
Gu, Y.; Zhang, J.; Mi, W.; Yang, J.; Han, F.; Lu, X.; Yu, W. Silencing of GM3 synthase suppresses lung metastasis of murine breast cancer cells. Breast Cancer Res., 2008, 10(1), R1. [http://dx.doi.org/10.1186/bcr1841]. [PMID: 18171481].
[16]
Chefalo, P.; Pan, Y.; Nagy, N.; Guo, Z.; Harding, C.V. Efficient metabolic engineering of GM3 on tumor cells by N-phenylacetyl-D-mannosamine. Biochemistry, 2006, 45(11), 3733-3739. [http://dx.doi.org/10.1021/bi052161r]. [PMID: 16533056].
[17]
Hasegawa, T.; Yamaguchi, K.; Wada, T.; Takeda, A.; Itoyama, Y.; Miyagi, T. Molecular cloning of mouse ganglioside sialidase and its increased expression in Neuro2a cell differentiation. J. Biol. Chem., 2000, 275(11), 8007-8015. [http://dx.doi.org/10.1074/jbc.275.11.8007]. [PMID: 10713120].
[18]
Papini, N.; Anastasia, L.; Tringali, C.; Croci, G.; Bresciani, R.; Yamaguchi, K.; Miyagi, T.; Preti, A.; Prinetti, A.; Prioni, S.; Sonnino, S.; Tettamanti, G.; Venerando, B.; Monti, E. The plasma membrane-associated sialidase MmNEU3 modifies the ganglioside pattern of adjacent cells supporting its involvement in cell-to-cell interactions. J. Biol. Chem., 2004, 279(17), 16989-16995. [http://dx.doi.org/10.1074/jbc.M400881200]. [PMID: 14970224].
[19]
Hakomori, S.I.; Handa, K. GM3 and cancer. Glycoconj. J., 2015, 32(1-2), 1-8. [http://dx.doi.org/10.1007/s10719-014-9572-4]. [PMID: 25613425].
[20]
Tringali, C.; Lupo, B.; Silvestri, I.; Papini, N.; Anastasia, L.; Tettamanti, G.; Venerando, B. The plasma membrane sialidase NEU3 regulates the malignancy of renal carcinoma cells by controlling β1 integrin internalization and recycling. J. Biol. Chem., 2012, 287(51), 42835-42845. [http://dx.doi.org/10.1074/jbc.M112.407718]. [PMID: 23139422].
[21]
Ueno, S.; Saito, S.; Wada, T.; Yamaguchi, K.; Satoh, M.; Arai, Y.; Miyagi, T. Plasma membrane-associated sialidase is up-regulated in renal cell carcinoma and promotes interleukin-6-induced apoptosis suppression and cell motility. J. Biol. Chem., 2006, 281(12), 7756-7764. [http://dx.doi.org/10.1074/jbc.M509668200]. [PMID: 16428383].
[22]
Sawada, M.; Moriya, S.; Saito, S.; Shineha, R.; Satomi, S.; Yamori, T.; Tsuruo, T.; Kannagi, R.; Miyagi, T. Reduced sialidase expression in highly metastatic variants of mouse colon adenocarcinoma 26 and retardation of their metastatic ability by sialidase overexpression. Int. J. Cancer, 2002, 97(2), 180-185. [http://dx.doi.org/10.1002/ijc.1598]. [PMID: 11774262].
[23]
Hersey, P.; Jamal, O.; Henderson, C.; Zardawi, I.; D’Alessandro, G. Expression of the gangliosides GM3, GD3 and GD2 in tissue sections of normal skin, naevi, primary and metastatic melanoma. Int. J. Cancer, 1988, 41(3), 336-343. [http://dx.doi.org/10.1002/ijc.2910410303]. [PMID: 3346097].
[24]
Ichikawa, S.; Nakajo, N.; Sakiyama, H.; Hirabayashi, Y. A mouse B16 melanoma mutant deficient in glycolipids. Proc. Natl. Acad. Sci. USA, 1994, 91(7), 2703-2707. [http://dx.doi.org/10.1073/pnas.91.7.2703]. [PMID: 8146177].
[25]
Inokuchi, J.; Jimbo, M.; Kumamoto, Y.; Shimeno, H.; Nagamatsu, A. Expression of ganglioside GM3 and H-2 antigens in clones with different metastatic and growth potentials isolated from Lewis lung carcinoma (3LL) cell line. Clin. Exp. Metastasis, 1993, 11(1), 27-36. [http://dx.doi.org/10.1007/BF00880063]. [PMID: 8422703].
[26]
Tringali1, C.; Silvestri1, I.; Testa, F.; Baldassari, P.; Anastasia, L.; Mortarini, R.; Anichini, A.;López-Requena, A.; Tettamanti, G.; Venerando, B. Molecular subtyping of metastatic melanoma based on cell ganglioside metabolism profiles. BMC Cancer, 2014, 14, 560.
[27]
Bassi, R.; Viani, P.; Giussani, P.; Riboni, L.; Tettamanti, G. GM3 ganglioside inhibits endothelin-1-mediated signal transduction in C6 glioma cells. FEBS Lett., 2001, 507(1), 101-104. [http://dx.doi.org/10.1016/S0014-5793(01)02966-0]. [PMID: 11682066].
[28]
Samraj, A.N.; Läubli, H.; Varki, N.; Varki, A. Involvement of a non-human sialic acid in human cancer. Front. Oncol., 2014, 4, 33. [http://dx.doi.org/10.3389/fonc.2014.00033]. [PMID: 24600589].
[29]
van Cruijsen, H.; Ruiz, M.G.; van der Valk, P.; de Gruijl, T.D.; Giaccone, G. Tissue micro array analysis of ganglioside N-glycolyl GM3 expression and signal transducer and activator of transcription (STAT)-3 activation in relation to dendritic cell infiltration and microvessel density in non-small cell lung cancer. BMC Cancer, 2009, 9, 180. [http://dx.doi.org/10.1186/1471-2407-9-180]. [PMID: 19519895].
[30]
Blanco, R. N-Glycolyl GM3 ganglioside as a relevant tumor antigen in humans. J. Mol. Biomark. Diagn., 2016.e124 [http://dx.doi.org/10.4172/2155-9929.1000e124].
[31]
Casadesús, A.V.; Fernández-Marrero, Y.; Clavell, M.; Gómez, J.A.; Hernández, T.; Moreno, E.; López-Requena, A. A shift from N-glycolyl- to N-acetyl-sialic acid in the GM3 ganglioside impairs tumor development in mouse lymphocytic leukemia cells. Glycoconj. J., 2013, 30(7), 687-699. [http://dx.doi.org/10.1007/s10719-013-9473-y]. [PMID: 23547010].
[32]
Pochechueva, T.; Jacob, F.; Fedier, A.; Heinzelmann-Schwarz, V. Tumor-associated glycans and their role in gynecological cancers: accelerating translational research by novel high-throughput approaches. Metabolites, 2012, 2(4), 913-939. [http://dx.doi.org/10.3390/metabo2040913]. [PMID: 24957768].
[33]
Dorvignit, D.; García-Martínez, L.; Rossin, A.; Sosa, K.; Viera, J.; Hernández, T.; Mateo, C.; Hueber, A.O.; Mesa, C.; López-Requena, A. Antitumor and cytotoxic properties of a humanized antibody specific for the GM3(Neu5Gc) ganglioside. Immunobiology, 2015, 220(12), 1343-1350. [http://dx.doi.org/10.1016/j.imbio.2015.07.008]. [PMID: 26224247].
[34]
Krengel, U.; Bousquet, P.A. Molecular recognition of gangliosides and their potential for cancer immunotherapies. Front. Immunol., 2014, 5, 325. [http://dx.doi.org/10.3389/fimmu.2014.00325]. [PMID: 25101077].
[35]
Gridelli, C.; Rossi, A.; Maione, P.; Ferrara, M.L.; Castaldo, V.; Sacco, P.C. Vaccines for the treatment of non-small cell lung cancer: A renewed anticancer strategy. Oncologist, 2009, 14(9), 909-920. [http://dx.doi.org/10.1634/theoncologist.2009-0017]. [PMID: 19726457].
[36]
Osorio, M.; Gracia, E.; Rodríguez, E.; Saurez, G. Arango, Mdel.C.; Noris, E.; Torriella, A.; Joan, A.; Gómez, E.; Anasagasti, L.; González, J.L.; Melgares, Mde.L.; Torres, I.; González, J.; Alonso, D.; Rengifo, E.; Carr, A.; Pérez, R.; Fernández, L.E.; Enrique Fernández, L. Heterophilic NeuGcGM3 ganglioside cancer vaccine in advanced melanoma patients: results of a Phase Ib/IIa study. Cancer Biol. Ther., 2008, 7(4), 488-495. [http://dx.doi.org/10.4161/cbt.7.4.5476]. [PMID: 18285705].
[37]
Gabri, M.R.; Ripoll, G.V.; Alonso, D.F.; Gómez, D.E. Role of cell surface GM3 ganglioside and sialic acid in the antitumor activity of a GM3-based vaccine in the murine B16 melanoma model. J. Cancer Res. Clin. Oncol., 2002, 128(12), 669-677. [http://dx.doi.org/10.1007/s00432-002-0385-7]. [PMID: 12474053].
[38]
Mazorra, Z.; Mesa, C.; Fernández, L.E. GM3 ganglioside: a novel target for the therapyagainst melanoma. Biotecnol. Apl., 2009, 26, 256-259.
[39]
Zheng, X.J.; Yang, F.; Zheng, M.; Huo, C.X.; Zhang, Y.; Ye, X.S. Improvement of the immune efficacy of carbohydrate vaccines by chemical modification on the GM3 antigen. Org. Biomol. Chem., 2015, 13(22), 6399-6406. [http://dx.doi.org/10.1039/C5OB00405E]. [PMID: 25982227].
[40]
Wang, Q.; Zhang, J.; Guo, Z. Efficient glycoengineering of GM3 on melanoma cell and monoclonal antibody-mediated selective killing of the glycoengineered cancer cell. Bioorg. Med. Chem., 2007, 15(24), 7561-7567. [http://dx.doi.org/10.1016/j.bmc.2007.09.005]. [PMID: 17892942].
[41]
Miranda, A.; de León, J.; Roque-Navarro, L.; Fernández, L.E. Cytofluorimetric evaluation of N-glycolylated GM3 ganglioside expression on murine leukocytes. Immunol. Lett., 2011, 137(1-2), 38-45. [http://dx.doi.org/10.1016/j.imlet.2011.02.001]. [PMID: 21324343].
[42]
Oliva, J.P.; Valdés, Z.; Casacó, A.; Pimentel, G.; González, J.; Alvarez, I.; Osorio, M.; Velazco, M.; Figueroa, M.; Ortiz, R.; Escobar, X.; Orozco, M.; Cruz, J.; Franco, S.; Díaz, M.; Roque, L.; Carr, A.; Vázquez, A.M.; Mateos, C.; Rubio, M.C.; Pérez, R.; Fernández, L.E. Clinical evidences of GM3 (NeuGc) ganglioside expression in human breast cancer using the 14F7 monoclonal antibody labelled with (99m)Tc. Breast Cancer Res. Treat., 2006, 96(2), 115-121. [http://dx.doi.org/10.1007/s10549-005-9064-0]. [PMID: 16322892].
[43]
Fernandez, L.E.; Gabri, M.R.; Guthmann, M.D.; Gomez, R.E.; Gold, S.; Fainboim, L.; Gomez, D.E.; Alonso, D.F. NGcGM3 ganglioside: A privileged target for cancer vaccines. Clin. Dev. Immunol., 2010.2010814397 [http://dx.doi.org/10.1155/2010/814397]. [PMID: 21048926].
[44]
de la Torre, A.; Hernandez, J.; Ortiz, R.; Cepeda, M.; Perez, K.; Car, A.; Viada, C.; Toledo, D.; Guerra, P.P.; García, E.; Arboláez, M.; Fernandez, L.E. NGlycolylGM3/VSSP Vaccine in metastatic breast cancer patients: Results of phase I/IIa clinical trial. Breast Cancer (Auckl.), 2012, 6, 151-157. [http://dx.doi.org/10.4137/BCBCR.S8488]. [PMID: 23055739].
[45]
Segatori, V.I.; Otero, L.L.; Fernandez, L.E.; Gomez, D.E.; Alonso, D.F.; Gabri, M.R. Antitumor protection by NGcGM3/VSSP vaccine against transfected B16 mouse melanoma cells overexpressing N-glycolylated gangliosides. In Vivo, 2012, 26(4), 609-617. [PMID: 22773575].
[46]
Pérez, K.; Osorio, M.; Hernández, J.; Carr, A.; Fernández, L.E. NGcGM3/VSSP vaccine as treatment for melanoma patients. Hum. Vaccin. Immunother., 2013, 9(6), 1237-1240. [http://dx.doi.org/10.4161/hv.24115]. [PMID: 23442598].
[47]
de la Torre, A.; Pérez, K.; Vega, A.M.; Santiesteban, E.; Ruiz, R.; Hernández, L.; Durrutí, D.; Viada, C.E.; Sánchez, L.; Álvarez, M.; Durán, Y.; Moreno, Y.G.; Arencibia, M.; Cepeda, M.; Domecq, M.; Cabrera, L.; Sánchez, J.L.; Hernández, J.J.; Valls, A.R.; Fernández, L.E. Superior efficacy and safety of a nonemulsive variant of the NGcGM3/VSSP vaccine in advanced breast cancer patients. Breast Cancer (Auckl.), 2016, 10, 5-11. [http://dx.doi.org/10.4137/BCBCR.S32785]. [PMID: 26917965].
[48]
Voldborg, B.R.; Damstrup, L.; Spang-Thomsen, M.; Poulsen, H.S. Epidermal Growth Factor Receptor (EGFR) and EGFR mutations, function and possible role in clinical trials. Ann. Oncol., 1997, 8(12), 1197-1206. [http://dx.doi.org/10.1023/A:1008209720526]. [PMID: 9496384].
[49]
Bremer, E.G.; Hakomori, S.; Bowen-Pope, D.F.; Raines, E.; Ross, R. Ganglioside-mediated modulation of cell growth, growth factor binding, and receptor phosphorylation. J. Biol. Chem., 1984, 259(11), 6818-6825. [PMID: 6327695].
[50]
Rebbaa, A.; Hurh, J.; Yamamoto, H.; Kersey, D.S.; Bremer, E.G. Ganglioside GM3 inhibition of EGF receptor mediated signal transduction. Glycobiology, 1996, 6(4), 399-406. [http://dx.doi.org/10.1093/glycob/6.4.399]. [PMID: 8842703].
[51]
Yoon, S.J.; Nakayama, K.; Hikita, T.; Handa, K.; Hakomori, S.I. Epidermal growth factor receptor tyrosine kinase is modulated by GM3 interaction with N-linked GlcNAc termini of the receptor. Proc. Natl. Acad. Sci. USA, 2006, 103(50), 18987-18991. [http://dx.doi.org/10.1073/pnas.0609281103]. [PMID: 17142315].
[52]
Wang, X.; Sun, P.; O’Gorman, M.; Tai, T.; Paller, A.S. Epidermal growth factor receptor glycosylation is required for ganglioside GM3 binding and GM3-mediated suppresion of activation. Glycobiology, 2001, 11, 515-522. [http://dx.doi.org/10.1093/glycob/11.7.515]. [PMID: 11447130].
[53]
Wang, X.Q.; Sun, P.; Paller, A.S. Ganglioside GM3 blocks the activation of epidermal growth factor receptor induced by integrin at specific tyrosine sites. J. Biol. Chem., 2003, 278(49), 48770-48778. [http://dx.doi.org/10.1074/jbc.M308818200]. [PMID: 14512423].
[54]
Kovacs, E.; Das, R.; Wang, Q.; Collier, T.S.; Cantor, A.; Huang, Y.; Wong, K.; Mirza, A.; Barros, T.; Grob, P.; Jura, N.; Bose, R.; Kuriyan, J. Analysis of the role of the C-terminal tail in the regulation of the epidermal growth factor receptor. Mol. Cell. Biol., 2015, 35(17), 3083-3102. [http://dx.doi.org/10.1128/MCB.00248-15]. [PMID: 26124280].
[55]
Pourazar, J.; Blomberg, A.; Kelly, F.J.; Davies, D.E.; Wilson, S.J.; Holgate, S.T.; Sandström, T. Diesel exhaust increases EGFR and phosphorylated C-terminal Tyr 1173 in the bronchial epithelium. Part. Fibre Toxicol., 2008, 5, 8. [http://dx.doi.org/10.1186/1743-8977-5-8]. [PMID: 18460189].
[56]
Shiozaki, K.; Yamaguchi, K.; Sato, I.; Miyagi, T. Plasma membrane-associated sialidase (NEU3) promotes formation of colonic aberrant crypt foci in azoxymethane-treated transgenic mice. Cancer Sci., 2009, 100(4), 588-594. [http://dx.doi.org/10.1111/j.1349-7006.2008.01080.x]. [PMID: 19215228].
[57]
Miyata, M.; Kambe, M.; Tajima, O.; Moriya, S.; Sawaki, H.; Hotta, H.; Kondo, Y.; Narimatsu, H.; Miyagi, T.; Furukawa, K.; Furukawa, K. Membrane sialidase NEU3 is highly expressed in human melanoma cells promoting cell growth with minimal changes in the composition of gangliosides. Cancer Sci., 2011, 102(12), 2139-2149. [http://dx.doi.org/10.1111/j.1349-7006.2011.02086.x]. [PMID: 21895867].
[58]
Miljan, E.A.; Meuillet, E.J.; Mania-Farnell, B.; George, D.; Yamamoto, H.; Simon, H.G.; Bremer, E.G. Interaction of the extracellular domain of the epidermal growth factor receptor with gangliosides. J. Biol. Chem., 2002, 277(12), 10108-10113. [http://dx.doi.org/10.1074/jbc.M111669200]. [PMID: 11796728].
[59]
Zhou, Q.; Hakomori, S.; Kitamuras, K.; Igarashi, Y. GM3 Directly inhibits tyrosine phosphorylation and de-N-acety1-GM3 directly enhances serine phosphorylation of epidermal growth factor receptor, independently of receptor-receptor interaction. J. Biol. Chem., 1994, 269, 1950-1965.
[60]
Kawashima, N.; Qu, H.; Lobaton, M.; Zhu, Z.; Sollogoub, M.; Cavenee, W.K.; Handa, K.; Hakomori, S.I.; Zhang, Y. Efficient synthesis of chloro-derivatives of sialosyllactosylceramide, and their enhanced inhibitory effect on epidermal growth factor receptor activation. Oncol. Lett., 2014, 7(4), 933-940. [http://dx.doi.org/10.3892/ol.2014.1887]. [PMID: 24944646].
[61]
Haga, Y.; Hatanaka, K.; Hakomori, S.I. Effect of lipid mimetics of GM3 and lyso-GM3 dimer on EGF receptor tyrosine kinase and EGF-induced signal transduction. Biochim. Biophys. Acta, 2008, 1780(3), 393-404. [http://dx.doi.org/10.1016/j.bbagen.2007.10.018]. [PMID: 18036568].
[62]
Huang, X.; Li, Y.; Zhang, J.; Xu, Y.; Tian, Y.; Ma, K. Ganglioside GM3 inhibits hepatoma cell motility via down-regulating activity of EGFR and PI3K/AKT signaling pathway. J. Cell. Biochem., 2013, 114(7), 1616-1624. [http://dx.doi.org/10.1002/jcb.24503]. [PMID: 23355442].
[63]
Li, Y.; Huang, X.; Zhong, W.; Zhang, J.; Ma, K. Ganglioside GM3 promotes HGF-stimulated motility of murine hepatoma cell through enhanced phosphorylation of cMet at specific tyrosine sites and PI3K/Akt-mediated migration signaling. Mol. Cell. Biochem., 2013, 382(1-2), 83-92. [http://dx.doi.org/10.1007/s11010-013-1720-9]. [PMID: 23749170].
[64]
Li, Y.; Huang, X.; Wang, C.; Li, Y.; Luan, M.; Ma, K. Ganglioside GM3 exerts opposite effects on motility via epidermal growth factor receptor and hepatocyte growth factor receptor-mediated migration signaling. Mol. Med. Rep., 2015, 11(4), 2959-2966. [http://dx.doi.org/10.3892/mmr.2014.3087]. [PMID: 25503644].
[65]
Palomo, A.G.; Santana, R.B.; Pérez, X.E.; Santana, D.B.; Gabri, M.R.; Monzon, K.L.; Pérez, A.C. Frequent co-expression of EGFR and NeuGcGM3 ganglioside in cancer: it’s potential therapeutic implications. Clin. Exp. Metastasis, 2016, 33(7), 717-725. [http://dx.doi.org/10.1007/s10585-016-9811-0]. [PMID: 27449755].
[66]
Gómez-Móuton, C.; Abad, J.L.; Mira, E.; Lacalle, R.A.; Gallardo, E.; Jiménez-Baranda, S.; Illa, I.; Bernad, A.; Mañes, S.; Martínez-A, C. Segregation of leading-edge and uropod components into specific lipid rafts during T cell polarization. Proc. Natl. Acad. Sci. USA, 2001, 98(17), 9642-9647. [http://dx.doi.org/10.1073/pnas.171160298]. [PMID: 11493690].
[67]
Wang, X.Q.; Sun, P.; Go, L.; Koti, V.; Fliman, M.; Paller, A.S. Ganglioside GM3 promotes carcinoma cell proliferation via urokinase plasminogen activator-induced extracellular signal-regulated kinase-independent p70S6 kinase signaling. J. Invest. Dermatol., 2006, 126(12), 2687-2696. [http://dx.doi.org/10.1038/sj.jid.5700469]. [PMID: 16826166].
[68]
Wang, X.Q.; Sun, P.; Paller, A.S. Gangliosides inhibit urokinase-type plasminogen activator (uPA)-dependent squamous carcinoma cell migration by preventing uPA receptor/alphabeta integrin/epidermal growth factor receptor interactions. J. Invest. Dermatol., 2005, 124(4), 839-848. [http://dx.doi.org/10.1111/j.0022-202X.2005.23669.x]. [PMID: 15816844].
[69]
Dufner, A.; Thomas, G. Ribosomal S6 kinase signaling and the control of translation. Exp. Cell Res., 1999, 253(1), 100-109. [http://dx.doi.org/10.1006/excr.1999.4683]. [PMID: 10579915].
[70]
Abate, L.E.; Mukherjee, P.; Seyfried, T.N. Gene-linked shift in ganglioside distribution influences growth and vascularity in a mouse astrocytoma. J. Neurochem., 2006, 98(6), 1973-1984. [http://dx.doi.org/10.1111/j.1471-4159.2006.04097.x]. [PMID: 16911584].
[71]
Alessandri, G.; Filippeschi, S.; Sinibaldi, P.; Mornet, F.; Passera, P.; Spreafico, F.; Cappa, P.M.; Gullino, P.M. Influence of gangliosides on primary and metastatic neoplastic growth in human and murine cells. Cancer Res., 1987, 47(16), 4243-4247. [PMID: 2440560].
[72]
Ravindranath, M.H.; Tsuchida, T.; Morton, D.L.; Irie, R.F. Ganglioside GM3:GD3 ratio as an index for the management of melanoma. Cancer, 1991, 67(12), 3029-3035. [http://dx.doi.org/10.1002/1097-0142(19910615)67:12<3029:AID-CNCR2820671217>3.0.CO;2-8]. [PMID: 2044049].
[73]
Seyfried, T.N.; El-Abbadi, M.; Roy, M.L. Ganglioside distribution in murine neural tumors. Mol. Chem. Neuropathol., 1992, 17(2), 147-167. [http://dx.doi.org/10.1007/BF03159989]. [PMID: 1418222].
[74]
Ecsedy, J.A.; Holthaus, K.A.; Yohe, H.C.; Seyfried, T.N. Expression of mouse sialic acid on gangliosides of a human glioma grown as a xenograft in SCID mice. J. Neurochem., 1999, 73(1), 254-259. [http://dx.doi.org/10.1046/j.1471-4159.1999.0730254.x]. [PMID: 10386978].
[75]
Margheri, F.; Chillà, A.; Laurenzana, A.; Serratì, S.; Mazzanti, B.; Saccardi, R.; Santosuosso, M.; Danza, G.; Sturli, N.; Rosati, F.; Magnelli, L.; Papucci, L.; Calorini, L.; Bianchini, F.; Del Rosso, M.; Fibbi, G. Endothelial progenitor cell-dependent angiogenesis requires localization of the full-length form of uPAR in caveolae. Blood, 2011, 118(13), 3743-3755. [http://dx.doi.org/10.1182/blood-2011-02-338681]. [PMID: 21803847].
[76]
Chillà, A.; Magherini, F.; Margheri, F.; Laurenzana, A.; Gamberi, T.; Bini, L.; Bianchi, L.; Danza, G.; Mazzanti, B.; Serratì, S.; Modesti, A.; Del Rosso, M.; Fibbi, G. Proteomic identification of VEGF-dependent protein enrichment to membrane caveolar-raft microdomains in endothelial progenitor cells. Mol. Cell. Proteomics, 2013, 12(7), 1926-1938. [http://dx.doi.org/10.1074/mcp.M112.024638]. [PMID: 23572564].
[77]
Margheri, F.; Papucci, L.; Schiavone, N.; D’Agostino, R.; Trigari, S.; Serratì, S.; Laurenzana, A.; Biagioni, A.; Luciani, C.; Chillà, A.; Andreucci, E.; Del Rosso, T.; Margheri, G.; Del Rosso, M.; Fibbi, G. Differential uPAR recruitment in caveolar-lipid rafts by GM1 and GM3 gangliosides regulates endothelial progenitor cells angiogenesis. J. Cell. Mol. Med., 2015, 19(1), 113-123. [http://dx.doi.org/10.1111/jcmm.12410]. [PMID: 25313007].
[78]
Alessandri, G.; Cornaglia-Ferraris, P.; Gullino, P.M. Angiogenic and angiostatic microenvironment in tumors--role of gangliosides. Acta Oncol., 1997, 36(4), 383-387. [http://dx.doi.org/10.3109/02841869709001284]. [PMID: 9247098].
[79]
Gullino, P.M. Prostaglandins and gangliosides of tumor microenvironment: their role in angiogenesis. Acta Oncol., 1995, 34(3), 439-441. [http://dx.doi.org/10.3109/02841869509094005]. [PMID: 7540024].
[80]
Chung, T.W.; Kim, S.J.; Choi, H.J.; Kim, K.J.; Kim, M.J.; Kim, S.H.; Lee, H.J.; Ko, J.H.; Lee, Y.C.; Suzuki, A.; Kim, C.H. Ganglioside GM3 inhibits VEGF/VEGFR-2-mediated angiogenesis: direct interaction of GM3 with VEGFR-2. Glycobiology, 2009, 19(3), 229-239. [http://dx.doi.org/10.1093/glycob/cwn114]. [PMID: 18974200].
[81]
Mukherjee, P.; Faber, A.C.; Shelton, L.M.; Baek, R.C.; Chiles, T.C.; Seyfried, T.N. Thematic review series: sphingolipids. Ganglioside GM3 suppresses the proangiogenic effects of vascular endothelial growth factor and ganglioside GD1a. J. Lipid Res., 2008, 49(5), 929-938. [http://dx.doi.org/10.1194/jlr.R800006-JLR200]. [PMID: 18287616].
[82]
Bai, H.; Seyfried, T.N. Influence of ganglioside GM3 and high density lipoprotein on the cohesion of mouse brain tumor cells. J. Lipid Res., 1997, 38(1), 160-172. [PMID: 9034210].
[83]
Todeschini, A.R.; Dos Santos, J.N.; Handa, K.; Hakomori, S.I. Ganglioside GM2/GM3 complex affixed on silica nanospheres strongly inhibits cell motility through CD82/cMet-mediated pathway. Proc. Natl. Acad. Sci. USA, 2008, 105(6), 1925-1930. [http://dx.doi.org/10.1073/pnas.0709619104]. [PMID: 18272501].
[84]
Mitsuzuka, K.; Handa, K.; Satoh, M.; Arai, Y.; Hakomori, S. A specific microdomain (“glycosynapse 3”) controls phenotypic conversion and reversion of bladder cancer cells through GM3-mediated interaction of alpha3beta1 integrin with CD9. J. Biol. Chem., 2005, 280(42), 35545-35553. [http://dx.doi.org/10.1074/jbc.M505630200]. [PMID: 16103120].
[85]
Prinetti, A.; Cao, T.; Illuzzi, G.; Prioni, S.; Aureli, M.; Gagliano, N.; Tredici, G.; Rodriguez-Menendez, V.; Chigorno, V.; Sonnino, S. A glycosphingolipid/caveolin-1 signaling complex inhibits motility of human ovarian carcinoma cells. J. Biol. Chem., 2011, 286(47), 40900-40910. [http://dx.doi.org/10.1074/jbc.M111.286146]. [PMID: 21949119].
[86]
Prinetti, A.; Aureli, M.; Illuzzi, G.; Prioni, S.; Nocco, V.; Scandroglio, F.; Gagliano, N.; Tredici, G.; Rodriguez-Menendez, V.; Chigorno, V.; Sonnino, S. GM3 synthase overexpression results in reduced cell motility and in caveolin-1 upregulation in human ovarian carcinoma cells. Glycobiology, 2010, 20(1), 62-77. [http://dx.doi.org/10.1093/glycob/cwp143]. [PMID: 19759399].
[87]
Stefanová, I.; Horejsí, V.; Ansotegui, I.J.; Knapp, W.; Stockinger, H. GPI-anchored cell-surface molecules complexed to protein tyrosine kinases. Science, 1991, 254(5034), 1016-1019. [http://dx.doi.org/10.1126/science.1719635]. [PMID: 1719635].
[88]
Kniep, B.; Cinek, T.; Angelisová, P.; Horejsí, V. Association of the GPI-anchored leucocyte surface glycoproteins with ganglioside GM3. Biochem. Biophys. Res. Commun., 1994, 203(2), 1069-1075. [http://dx.doi.org/10.1006/bbrc.1994.2291]. [PMID: 7522441].
[89]
Handa, K.; Hakomori, S.I. Carbohydrate to carbohydrate interaction in development process and cancer progression. Glycoconj. J., 2012, 29(8-9), 627-637. [http://dx.doi.org/10.1007/s10719-012-9380-7]. [PMID: 22610315].
[90]
Kojima, N.; Hakomori, S. Specific interaction between gangliotriaosylceramide (Gg3) and sialosyllactosylceramide (GM3) as a basis for specific cellular recognition between lymphoma and melanoma cells. J. Biol. Chem., 1989, 264(34), 20159-20162. [PMID: 2584211].
[91]
Kojima, N.; Hakomori, S. Cell adhesion, spreading, and motility of GM3-expressing cells based on glycolipid-glycolipid interaction. J. Biol. Chem., 1991, 266(26), 17552-17558. [PMID: 1894638].
[92]
Yamamura, S.; Handa, K.; Hakomori, S. A close association of GM3 with c-Src and Rho in GM3-enriched microdomains at the B16 melanoma cell surface membrane: a preliminary note. Biochem. Biophys. Res. Commun., 1997, 236(1), 218-222. [http://dx.doi.org/10.1006/bbrc.1997.6933]. [PMID: 9223455].
[93]
Iwabuchi, K.; Handa, K.; Hakomori, S. Separation of “glycosphingolipid signaling domain” from caveolin-containing membrane fraction in mouse melanoma B16 cells and its role in cell adhesion coupled with signaling. J. Biol. Chem., 1998, 273(50), 33766-33773. [http://dx.doi.org/10.1074/jbc.273.50.33766]. [PMID: 9837965].
[94]
Prinetti, A.; Iwabuchi, K.; Hakomori, S. Glycosphingolipid-enriched signaling domain in mouse neuroblastoma Neuro2a cells. Mechanism of ganglioside-dependent neuritogenesis. J. Biol. Chem., 1999, 274(30), 20916-20924. [http://dx.doi.org/10.1074/jbc.274.30.20916]. [PMID: 10409636].
[95]
Iwabuchi, K.; Yamamura, S.; Prinetti, A.; Handa, K.; Hakomori, S. GM3-enriched microdomain involved in cell adhesion and signal transduction through carbohydrate-carbohydrate interaction in mouse melanoma B16 cells. J. Biol. Chem., 1998, 273(15), 9130-9138. [http://dx.doi.org/10.1074/jbc.273.15.9130]. [PMID: 9535903].
[96]
Iwabuchi, K.; Zhang, Y.; Handa, K.; Withers, D.A.; Sinaÿ, P.; Hakomori, S. Reconstitution of membranes simulating “glycosignaling domain” and their susceptibility to lyso-GM3. J. Biol. Chem., 2000, 275(20), 15174-15181. [http://dx.doi.org/10.1074/jbc.275.20.15174]. [PMID: 10809752].
[97]
Zhang, Y.; Iwabuchi, K.; Nunomura, S.; Hakomori, S. Effect of synthetic sialyl 2-->1 sphingosine and other glycosylsphingosines on the structure and function of the “Glycosphingolipid Signaling Domain (GSD)” in mouse melanoma B16 cells. Biochemistry, 2000, 39(10), 2459-2468. [http://dx.doi.org/10.1021/bi991882l]. [PMID: 10704195].
[98]
Kojima, N.; Shiota, M.; Sadahira, Y.; Handa, K.; Hakomori, S. Cell adhesion in a dynamic flow system as comparedto static system. J. Biol. Chem., 1992, 267, 17264-17270. [PMID: 1512264].
[99]
Bromley, S.K.; Burack, W.R.; Johnson, K.G.; Somersalo, K.; Sims, T.N.; Sumen, C.; Davis, M.M.; Shaw, A.S.; Allen, P.M.; Dustin, M.L. The immunological synapse. Annu. Rev. Immunol., 2001, 19, 375-396. [http://dx.doi.org/10.1146/annurev.immunol.19.1.375]. [PMID: 11244041].
[100]
Viola, A.; Schroeder, S.; Sakakibara, Y.; Lanzavecchia, A. T lymphocyte costimulation mediated by reorganization of membrane microdomains. Science, 1999, 283(5402), 680-682. [http://dx.doi.org/10.1126/science.283.5402.680]. [PMID: 9924026].
[101]
Hakomori, S. Glycosylation defining cancer malignancy: new wine in an old bottle. Proc. Natl. Acad. Sci. USA, 2002, 99(16), 10231-10233. [http://dx.doi.org/10.1073/pnas.172380699]. [PMID: 12149519].
[102]
Ono, M.; Handa, K.; Withers, D.A.; Hakomori, S. Motility inhibition and apoptosis are induced by metastasis-suppressing gene product CD82 and its analogue CD9, with concurrent glycosylation. Cancer Res., 1999, 59(10), 2335-2339. [PMID: 10344740].
[103]
Kawakami, Y.; Kawakami, K.; Steelant, W.F.; Ono, M.; Baek, R.C.; Handa, K.; Withers, D.A.; Hakomori, S. Tetraspanin CD9 is a “proteolipid,” and its interaction with alpha 3 integrin in microdomain is promoted by GM3 ganglioside, leading to inhibition of laminin-5-dependent cell motility. J. Biol. Chem., 2002, 277(37), 34349-34358. [http://dx.doi.org/10.1074/jbc.M200771200]. [PMID: 12068006].
[104]
Wang, H.; Isaji, T.; Satoh, M.; Li, D.; Arai, Y.; Gu, J. Antitumor effects of exogenous ganglioside GM3 on bladder cancer in an orthotopic cancer model. Urology, 2013, 81(1)(210). , e11-e15.
[http://dx.doi.org/10.1016/j.urology.2012.08.015]
[105]
Todeschini, A.R.; Dos Santos, J.N.; Handa, K.; Hakomori, S.I. Ganglioside GM2-tetraspanin CD82 complex inhibits met and its cross-talk with integrins, providing a basis for control of cell motility through glycosynapse. J. Biol. Chem., 2007, 282(11), 8123-8133. [http://dx.doi.org/10.1074/jbc.M611407200]. [PMID: 17215249].

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy