Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Research Progresses of Targeted Therapy and Immunotherapy for Hepatocellular Carcinoma

Author(s): Tao Wang, Qiting Zhang, Ning Wang*, Ziqi Liu, Bin Zhang* and Yufen Zhao

Volume 28, Issue 16, 2021

Published on: 13 October, 2020

Page: [3107 - 3146] Pages: 40

DOI: 10.2174/0929867327666201013162144

Price: $65

Abstract

Hepatocellular carcinoma (HCC) is one of the most common malignant tumors worldwide, with nearly one million new cases and deaths every year. Owing to the complex pathogenesis, hidden early symptoms, rapidly developing processes, and poor prognosis, the morbidity and mortality of HCC are increasing yearly. With the progress being made in modern medicine, the treatment of HCC is no longer limited to traditional methods. Targeted therapy and immunotherapy have emerged to treat advanced and metastatic HCC in recent years. Since Sorafenib is the first molecular targeting drug against angiogenesis, targeted drugs for HCC are continually emerging. Moreover, immunotherapy plays a vital role in clinical trials. In particular, the application of immune checkpoint inhibitors, which have received increasing attention in the field of cancer treatment, is a possible research path. Interestingly, these two therapies generally complement each other at some stages of HCC, bringing new hope for patients with advanced HCC. In this paper, we discuss the research progress of targeted therapy and immunotherapy for HCC in recent years, which will provide a reference for the further development of drugs for HCC.

Keywords: Hepatocellular carcinoma, protein kinases, drug design, molecular targeted, immune checkpoint inhibitors, combined therapy.

[1]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[2]
Chen, W.; Zheng, R.; Baade, P.D.; Zhang, S.; Zeng, H.; Bray, F.; Jemal, A.; Yu, X.Q.; He, J. Cancer statistics in China, 2015. CA Cancer J. Clin., 2016, 66(2), 115-132.
[http://dx.doi.org/10.3322/caac.21338] [PMID: 26808342]
[3]
Zhang, Y.; Ren, J-S.; Shi, J-F.; Li, N.; Wang, Y-T.; Qu, C.; Zhang, Y.; Dai, M. International trends in primary liver cancer incidence from 1973 to 2007. BMC Cancer, 2015, 15(1), 94.
[http://dx.doi.org/10.1186/s12885-015-1113-4] [PMID: 25879744]
[4]
Bruix, J.; Sherman, M. American Association for the study of liver diseases. Management of hepatocellular carcinoma: an update. Hepatology, 2011, 53(3), 1020-1022.
[http://dx.doi.org/10.1002/hep.24199] [PMID: 21374666]
[5]
Fu, J.; Wang, H. Precision diagnosis and treatment of liver cancer in China. Cancer Lett., 2018, 412, 283-288.
[http://dx.doi.org/10.1016/j.canlet.2017.10.008] [PMID: 29050983]
[6]
Are, C.; Meyer, B.; Stack, A.; Ahmad, H.; Smith, L.; Qian, B.; Song, T.; Chowdhury, S. Global trends in the burden of liver cancer. J. Surg. Oncol., 2017, 115(5), 591-602.
[http://dx.doi.org/10.1002/jso.24518] [PMID: 28345140]
[7]
Liu, Z.; Lin, Y.; Zhang, J.; Zhang, Y.; Li, Y.; Liu, Z.; Li, Q.; Luo, M.; Liang, R.; Ye, J. Molecular targeted and immune checkpoint therapy for advanced hepatocellular carcinoma. J. Exp. Clin. Cancer Res., 2019, 38(1), 447-460.
[http://dx.doi.org/10.1186/s13046-019-1412-8] [PMID: 31684985]
[8]
Hato, T.; Goyal, L.; Greten, T.F.; Duda, D.G.; Zhu, A.X. Immune checkpoint blockade in hepatocellular carcinoma: current progress and future directions. Hepatology, 2014, 60(5), 1776-1782.
[http://dx.doi.org/10.1002/hep.27246] [PMID: 24912948]
[9]
Kudo, M. Immune checkpoint inhibition in hepatocellular carcinoma: basics and ongoing clinical trials. Oncology, 2017, 92(1), 50-62.
[http://dx.doi.org/10.1159/000451016] [PMID: 28147363]
[10]
Iñarrairaegui, M.; Melero, I.; Sangro, B. Immunotherapy of hepatocellular carcinoma: facts and hopes. Clin. Cancer Res., 2018, 24(7), 1518-1524.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-0289] [PMID: 29138342]
[11]
Kudo, M. Combination cancer immunotherapy in hepatocellular carcinoma. Liver Cancer, 2018, 7(1), 20-27.
[http://dx.doi.org/10.1159/000486487] [PMID: 29662830]
[12]
Rimassa, L.; Assenat, E.; Peck-Radosavljevic, M.; Pracht, M.; Zagonel, V.; Mathurin, P.; Rota Caremoli, E.; Porta, C.; Daniele, B.; Bolondi, L.; Mazzaferro, V.; Harris, W.; Damjanov, N.; Pastorelli, D.; Reig, M.; Knox, J.; Negri, F.; Trojan, J.; López López, C.; Personeni, N.; Decaens, T.; Dupuy, M.; Sieghart, W.; Abbadessa, G.; Schwartz, B.; Lamar, M.; Goldberg, T.; Shuster, D.; Santoro, A.; Bruix, J. Tivantinib for second-line treatment of MET-high, advanced hepatocellular carcinoma (METIV-HCC): a final analysis of a phase 3, randomised, placebo-controlled study. Lancet Oncol., 2018, 19(5), 682-693.
[http://dx.doi.org/10.1016/S1470-2045(18)30146-3] [PMID: 29625879]
[13]
Kobayashi, S.; Ueshima, K.; Moriguchi, M.; Takayama, T.; Izumi, N.; Yoshiji, H.; Hino, K.; Oikawa, T.; Chiba, T.; Motomura, K.; Kato, J.; Yasuchika, K.; Ido, A.; Kinoshita, J.; Sato, T.; Ikeda, M.; Okusaka, T.; Kudo, M.; Tamura, K.; Furuse, J. JET-HCC: a phase 3 randomized, double-blind, placebo-controlled study of tivantinib as a second-line therapy in patients with c-Met high hepatocellular carcinoma. Ann. Oncol., 2017, 28(Suppl. 5), v210.
[http://dx.doi.org/10.1093/annonc/mdx369.003]
[14]
Abou-Alfa, G.K.; Meyer, T.; Cheng, A-L.; El-Khoueiry, A.B.; Rimassa, L.; Ryoo, B-Y.; Cicin, I.; Merle, P.; Chen, Y.; Park, J-W.; Blanc, J.F.; Bolondi, L.; Klümpen, H.J.; Chan, S.L.; Zagonel, V.; Pressiani, T.; Ryu, M.H.; Venook, A.P.; Hessel, C.; Borgman-Hagey, A.E.; Schwab, G.; Kelley, R.K. Cabozantinib in patients with advanced and progressing hepatocellular carcinoma. N. Engl. J. Med., 2018, 379(1), 54-63.
[http://dx.doi.org/10.1056/NEJMoa1717002] [PMID: 29972759]
[15]
Kelley, R.K.; Verslype, C.; Cohn, A.L.; Yang, T-S.; Su, W-C.; Burris, H.; Braiteh, F.; Vogelzang, N.; Spira, A.; Foster, P.; Lee, Y.; Van Cutsem, E. Cabozantinib in hepatocellular carcinoma: results of a phase 2 placebo-controlled randomized discontinuation study. Ann. Oncol., 2017, 28(3), 528-534.
[http://dx.doi.org/10.1093/annonc/mdw651] [PMID: 28426123]
[16]
Yau, T.C.; Sukeepaisarnjaroen, W.; Chao, Y.; Yen, C.-J.; Lausoontornsiri, W.; Chen, P.-J.; Sanpajit, T.; Lencioni, R.; Camp, A.C.; Cox, D.S.; Kallender, H.; Ottesen, L.H.; Poon, R.T.-P. phase I/II study of foretinib, an oral multikinaseinhibitor targeting MET, RON, AXL, TIE-2 and VEGFR inadvanced hepatocellular carcinoma (HCC). J. Clin. Oncol, 2012, 30(15_suppl.), 4108.
[http://dx.doi.org/10.1200/jco.2012.30.15_suppl.4108]
[17]
Bang, Y-J.; Su, W-C.; Nam, D-H.; Lim, W-T.; Bauer, T.M.; Brana, I.; Poon, R.T-P.; Hong, D.S.; Lin, C-C.; Peng, B.; Zhang, Y.; Zhao, S.; Kumar, A.; Akimov, M.; Ma, B. Phase I study of the safety and efficacy of INC280 in patients with advanced MET-dependent solid tumors. J. Clin. Oncol., 2014, 32(15), 2520.
[http://dx.doi.org/10.1200/jco.2014.32.15_suppl.2520]
[18]
Qin, S.; Chan, S.L.; Sukeepaisarnjaroen, W.; Han, G.; Choo, S.P.; Sriuranpong, V.; Pan, H.; Yau, T.; Guo, Y.; Chen, M.; Ren, Z.; Xu, J.; Yen, C.J.; Lin, Z.Z.; Manenti, L.; Gu, Y.; Sun, Y.; Tiedt, R.; Hao, L.; Song, W.; Tanwandee, T. A phase II study of the efficacy and safety of the MET inhibitor capmatinib (INC280) in patients with advanced hepatocellular carcinoma. Ther. Adv. Med. Oncol., 2019, 11, 1758835919889001.
[http://dx.doi.org/10.1177/1758835919889001] [PMID: 31853265]
[19]
O’Neil, B.H.; Bendell, J.C.; Modiano, M.R.; Machiels, J-P.H.; Versola, M.J.; Hodge, J.P.; Sawarna, K.; Tse, N. Phase I/II study of E7050 (golvantinib) in combination with sorafenib in patients (pts) with advanced hepatocellular carcinoma (HCC): phase I results. J. Clin. Oncol., 2013, 31, 294.
[http://dx.doi.org/10.1200/jco.2013.31.4_suppl.294]
[20]
Decaens, T.; Barone, C.; Assenat, E.; Wermke, M.; Fasolo, A.; Merle, P.; Blanc, J.F.; Grando, V.; Bruns, R.; Straub, J.; Zhao, C.; Faivre, S. Phase II efficacy and safety data for the MET inhibitor tepotinib in patients (pts) with sorafenibtreated advanced hepatocellular carcinoma (HCC). Ann. Oncol, 2018, 29(8), viii235.
[http://dx.doi.org/10.1093/annonc/mdy282.081]
[21]
Ryoo, B.-Y.; Ren, Z.; Kim, T.-Y.; Pan, H.; Rau, K.-M.; Choi, H.J.; Park, J.-W.; Kim, J.H.; Yen, C.-J.; Kim, B.-H.; Zhou, D.; Straub, J.; Zhao, C.; Qin, S. Phase II trial of tepotinib vs. sorafenib in Asian patients (pts) with advanced hepatocellular carcinoma (HCC). Ann. Oncol, 2018, 29(8), viii207.
[http://dx.doi.org/10.1093/annonc/mdy282.005]
[22]
Harding, J.J.; Bendell, J.C.; Fuchs, C.S.; Wang, X.; Wacheck, V.; Zhu, A.X. Emibetuzumab plus ramucirumab: simultaneous targeting of MET and VEGFR-2 in patients with advanced hepatocellular cancer in a phase 1b/2 study. J. Clin. Oncol., 2016, 34(4), 300.
[http://dx.doi.org/10.1200/jco.2016.34.4_suppl.300]
[23]
Cid, R.A.P.; Esquerdo, G.; Puertolas, T.; Calderero, V.; Gil, I.; Lao, J.; Millastre, E.; Alvarez-Alejandro, M.; Madani, J.; Anton, A. Bevacizumab (BVZ) as second-line treatment after sorafenib (SFB) progression in patients (pts) with advanced hepatocellular carcinoma (HCC). J. Clin. Oncol., 2010, 28(15), e14619.
[http://dx.doi.org/10.1200/jco.2010.28.15_suppl.e14619]
[24]
Chuah, B.; Lim, R.; Boyer, M.; Ong, A-B.; Wong, S-W.; Kong, H-L.; Millward, M.; Clarke, S.; Goh, B-C. Multi-centre phase II trial of thalidomide in the treatment of unresectable hepatocellular carcinoma. Acta Oncol., 2007, 46(2), 234-238.
[http://dx.doi.org/10.1080/02841860600702076] [PMID: 17453375]
[25]
Chen, Y-Y.; Yen, H-H.; Chou, K-C.; Wu, S-S. Thalidomide-based multidisciplinary treatment for patients with advanced hepatocellular carcinoma: a retrospective analysis. World J. Gastroenterol., 2012, 18(5), 466-471.
[http://dx.doi.org/10.3748/wjg.v18.i5.466] [PMID: 22346253]
[26]
Bruix, J.; Qin, S.; Merle, P.; Granito, A.; Huang, Y-H.; Bodoky, G.; Pracht, M.; Yokosuka, O.; Rosmorduc, O.; Breder, V.; Gerolami, R.; Masi, G.; Ross, P.J.; Song, T.; Bronowicki, J.P.; Ollivier-Hourmand, I.; Kudo, M.; Cheng, A.L.; Llovet, J.M.; Finn, R.S.; LeBerre, M.A.; Baumhauer, A.; Meinhardt, G.; Han, G. RESORCE InvestigatorsRegorafenib for patients with hepatocellular carcinoma who progressed on sorafenib treatment (RESORCE): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet, 2017, 389(10064), 56-66.
[http://dx.doi.org/10.1016/S0140-6736(16)32453-9] [PMID: 27932229]
[27]
Finn, R.S.; Merle, P.; Granito, A.; Huang, Y-H.; Bodoky, G.; Pracht, M.; Yokosuka, O.; Rosmorduc, O.; Gerolami, R.; Caparello, C.; Cabrera, R.; Chang, C.; Sun, W.; LeBerre, M.A.; Baumhauer, A.; Meinhardt, G.; Bruix, J. Outcomes of sequential treatment with sorafenib followed by regorafenib for HCC: additional analyses from the phase III RESORCE trial. J. Hepatol., 2018, 69(2), 353-358.
[http://dx.doi.org/10.1016/j.jhep.2018.04.010] [PMID: 29704513]
[28]
Kudo, M.; Finn, R.S.; Qin, S.; Han, K-H.; Ikeda, K.; Piscaglia, F.; Baron, A.; Park, J-W.; Han, G.; Jassem, J.; Blanc, J.F.; Vogel, A.; Komov, D.; Evans, T.R.J.; Lopez, C.; Dutcus, C.; Guo, M.; Saito, K.; Kraljevic, S.; Tamai, T.; Ren, M.; Cheng, A.L. Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: a randomised phase 3 non-inferiority trial. Lancet, 2018, 391(10126), 1163-1173.
[http://dx.doi.org/10.1016/S0140-6736(18)30207-1] [PMID: 29433850]
[29]
Cainap, C.; Qin, S.; Huang, W-T.; Chung, I.J.; Pan, H.; Cheng, Y.; Kudo, M.; Kang, Y-K.; Chen, P-J.; Toh, H-C.; Gorbunova, V.; Eskens, F.A.; Qian, J.; McKee, M.D.; Ricker, J.L.; Carlson, D.M.; El-Nowiem, S. Linifanib versus sorafenib in patients with advanced hepatocellular carcinoma: results of a randomized phase III trial. J. Clin. Oncol., 2015, 33(2), 172-179.
[http://dx.doi.org/10.1200/JCO.2013.54.3298] [PMID: 25488963]
[30]
Zhu, A.X.; Ryoo, B-Y.; Yen, C-J.; Kudo, M.; Poon, R.T-P.; Pastorelli, D.; Blanc, J-F.; Chung, H.C.; Baron, A.D.; Pfiffer, T.E.F.; Okusaka, T.; Kubackova, K.; Trojan, J.; Sastre, J.; Chau, I.; Chang, S-C.; Abada, P.; Yang, L.; Hsu, Y.; Park, J.O. Ramucirumab (RAM) as second-line treatment in patients (pts) with advanced hepatocellular carcinoma (HCC): analysis of patients with elevated α-fetoprotein (AFP) from the randomized phase III REACH study. J. Clin. Oncol., 2015, 33(3), 232.
[http://dx.doi.org/10.1200/jco.2015.33.3_suppl.232]
[31]
Zhu, A.X.; Kang, Y-K.; Yen, C-J.; Finn, R.S.; Galle, P.R.; Llovet, J.M.; Assenat, E.; Brandi, G.; Lim, H.Y.; Pracht, M.; Rau, K-M.; Merle, P.; Motomura, K.; Ohno, I.; Daniele, B.; Shin, D.; Gerken, G.; Abada, P.; Hsu, Y.; Kudo, M. REACH-2: a randomized, double-blind, placebo-controlled phase 3 study of ramucirumab versus placebo as second-line treatment in patients with advanced hepatocellular carcinoma (HCC) and elevated baseline alpha-fetoprotein (AFP) following first-line sorafenib. J. Clin. Oncol., 2018, 36(15), 4003.
[http://dx.doi.org/10.1200/JCO.2018.36.15_suppl.4003]
[32]
Yau, T.; Chen, P-J.; Chan, P.; Curtis, C.M.; Murphy, P.S.; Suttle, A.B.; Gauvin, J.; Hodge, J.P.; Dar, M.M.; Poon, R.T. Phase I dose-finding study of pazopanib in hepatocellular carcinoma: evaluation of early efficacy, pharmacokinetics and pharmacodynamics. Clin. Cancer Res., 2011, 17(21), 6914-6923.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-0793] [PMID: 21831954]
[33]
Qin, S. Apatinib in Chinese patients with advanced hepatocellular carcinoma: a phase II randomized, open-label trial. J. Clin. Oncol., 2014, 32(15), 4019.
[http://dx.doi.org/10.1200/jco.2014.32.15_suppl.4019]
[34]
McNamara, M.G.; Le, L.W.; Horgan, A.M.; Aspinall, A.; Burak, K.W.; Dhani, N.; Chen, E.; Sinaei, M.; Lo, G.; Kim, T.K.; Rogalla, P.; Bathe, O.F.; Knox, J.J. A phase II trial of second-line axitinib following prior antiangiogenic therapy in advanced hepatocellular carcinoma. Cancer, 2015, 121(10), 1620-1627.
[http://dx.doi.org/10.1002/cncr.29227] [PMID: 25565269]
[35]
Kang, Y-K.; Yau, T.; Park, J-W.; Lim, H.Y.; Lee, T-Y.; Obi, S.; Chan, S.L.; Qin, S.; Kim, R.D.; Casey, M.; Chen, C.; Bhattacharyya, H.; Williams, J.A.; Valota, O.; Chakrabarti, D.; Kudo, M. Randomized phase II study of axitinib versus placebo plus best supportive care in second-line treatment of advanced hepatocellular carcinoma. Ann. Oncol., 2015, 26(12), 2457-2463.
[http://dx.doi.org/10.1093/annonc/mdv388] [PMID: 26386123]
[36]
Zhu, A.X.; Stuart, K.; Blaszkowsky, L.S.; Muzikansky, A.; Reitberg, D.P.; Clark, J.W.; Enzinger, P.C.; Bhargava, P.; Meyerhardt, J.A.; Horgan, K.; Fuchs, C.S.; Ryan, D.P. Phase 2 study of cetuximab in patients with advanced hepatocellular carcinoma. Cancer, 2007, 110(3), 581-589.
[http://dx.doi.org/10.1002/cncr.22829] [PMID: 17583545]
[37]
O’Dwyer, P.J.; Giantonio, B.J.; Levy, D.E.; Kauh, J.S.; Fitzgerald, D.B.; Benson, A.B. III. Gefitinib in advanced unresectable hepatocellular carcinoma: results from the eastern cooperative oncology group’s study E1203. J. Clin. Oncol., 2006, 24(18), 4143.
[http://dx.doi.org/10.1200/jco.2006.24.18_suppl.4143]
[38]
Zhang, J.; Zong, Y.; Xu, G.Z.; Xing, K. Erlotinib for advanced hepatocellular carcinoma. A systematic review of phase II/III clinical trials. Saudi Med. J., 2016, 37(11), 1184-1190.
[http://dx.doi.org/10.15537/smj.2016.11.16267] [PMID: 27761555]
[39]
Bekaii-Saab, T.; Markowitz, J.; Prescott, N.; Sadee, W.; Heerema, N.; Wei, L.; Dai, Z.; Papp, A.; Campbell, A.; Culler, K.; Balint, C.; O’Neil, B.; Lee, R.M.; Zalupski, M.; Dancey, J.; Chen, H.; Grever, M.; Eng, C.; Villalona-Calero, M. A multi-institutional phase II study of the efficacy and tolerability of lapatinib in patients with advanced hepatocellular carcinomas. Clin. Cancer Res., 2009, 15(18), 5895-5901.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-0465] [PMID: 19737952]
[40]
Geissler, E.K.; Schnitzbauer, A.A.; Zülke, C.; Lamby, P.E.; Proneth, A.; Duvoux, C.; Burra, P.; Jauch, K-W.; Rentsch, M.; Ganten, T.M.; Schmidt, J.; Settmacher, U.; Heise, M.; Rossi, G.; Cillo, U.; Kneteman, N.; Adam, R.; van Hoek, B.; Bachellier, P.; Wolf, P.; Rostaing, L.; Bechstein, W.O.; Rizell, M.; Powell, J.; Hidalgo, E.; Gugenheim, J.; Wolters, H.; Brockmann, J.; Roy, A.; Mutzbauer, I.; Schlitt, A.; Beckebaum, S.; Graeb, C.; Nadalin, S.; Valente, U.; Turrión, V.S.; Jamieson, N.; Scholz, T.; Colledan, M.; Fändrich, F.; Becker, T.; Söderdahl, G.; Chazouillères, O.; Mäkisalo, H.; Pageaux, G.P.; Steininger, R.; Soliman, T.; de Jong, K.P.; Pirenne, J.; Margreiter, R.; Pratschke, J.; Pinna, A.D.; Hauss, J.; Schreiber, S.; Strasser, S.; Klempnauer, J.; Troisi, R.I.; Bhoori, S.; Lerut, J.; Bilbao, I.; Klein, C.G.; Königsrainer, A.; Mirza, D.F.; Otto, G.; Mazzaferro, V.; Neuhaus, P.; Schlitt, H.J. Sirolimus use in liver transplant recipients with hepatocellular carcinoma: a randomized, multicenter, open-label phase 3 trial. Transplantation, 2016, 100(1), 116-125.
[http://dx.doi.org/10.1097/TP.0000000000000965] [PMID: 26555945]
[41]
Zhang, Z-H.; Li, L.X.; Li, P.; Lv, S-C.; Pan, B.; He, Q. Sirolimus in liver transplant recipients with hepatocellular carcinoma: an updated meta-analysis. J. Invest. Surg., 2019, 32(7), 632-641.
[http://dx.doi.org/10.1080/08941939.2018.1447053] [PMID: 29557691]
[42]
Yeo, W.; Chan, S.L.; Mo, F.K.; Chu, C.M.; Hui, J.W.; Tong, J.H.; Chan, A.W.; Koh, J.; Hui, E.P.; Loong, H.; Lee, K.; Li, L.; Ma, B.; To, K.F.; Yu, S.C. Phase I/II study of temsirolimus for patients with unresectable hepatocellular carcinoma (HCC)-a correlative study to explore potential biomarkers for response. BMC Cancer, 2015, 15(1), 395.
[http://dx.doi.org/10.1186/s12885-015-1334-6] [PMID: 25962426]
[43]
Zhu, A.X.; Kudo, M.; Assenat, E.; Cattan, S.; Kang, Y-K.; Lim, H.Y.; Poon, R.T.P.; Blanc, J-F.; Vogel, A.; Chen, C-L.; Dorval, E.; Peck-Radosavljevic, M.; Santoro, A.; Daniele, B.; Furuse, J.; Jappe, A.; Perraud, K.; Anak, O.; Sellami, D.B.; Chen, L-T. EVOLVE-1: phase 3 study of everolimus for advanced HCC that progressed during or after sorafenib. J. Clin. Oncol., 2014, 32(3), 172.
[http://dx.doi.org/10.1200/jco.2014.32.3_suppl.172]
[44]
Koeberle, D.; Dufour, J-F.; Demeter, G.; Li, Q.; Ribi, K.; Samaras, P.; Saletti, P.; Roth, A.D.; Horber, D.; Buehlmann, M.; Wagner, A.D.; Montemurro, M.; Lakatos, G.; Feilchenfeldt, J.; Peck-Radosavljevic, M.; Rauch, D.; Tschanz, B.; Bodoky, G. Swiss Group for Clinical Cancer Research (SAKK). Sorafenib with or without everolimus in patients with advanced hepatocellular carcinoma (HCC): a randomized multicenter, multinational phase II trial (SAKK 77/08 and SASL 29). Ann. Oncol., 2016, 27(5), 856-861.
[http://dx.doi.org/10.1093/annonc/mdw054] [PMID: 26884590]
[45]
Treiber, G.; Wex, T.; Schneider, G.; Roecken, C.; Dufour, J-F.; Geisel, J.; Hardikar, S.; Group, G.M.B.S. Treatment of advanced or metastatic hepatocellular cancer (HCC): final clinical results of a single-arm phase II study of bevacizumab and everolimus. J. Clin. Oncol., 2012, 30(15), 4107.
[http://dx.doi.org/10.1200/jco.2012.30.15_suppl.4107]
[46]
Salkeni, M.A.; Rixe, O.; Karim, N.A.; Ogara, S.; Feiler, M.; Moorthy, G.; Mercer, C.A.; Thomas, H.; Desai, P.B.; Fathallah, H.; Kozma, S.; Thomas, G.; Morris, J.C. BEZ235 in combination with everolimus for advanced solid malignancies: preliminary results of a phase Ib dose-escalation study J. Clin. Oncol, 2013, 31(15_suppl), , e13518..
[http://dx.doi.org/10.1200/jco.2013.31.15_suppl.e13518]
[47]
Jackson, R.; Psarelli, E-E.; Berhane, S.; Khan, H.; Johnson, P. Impact of viral status on survival in patients receiving sorafenib for advanced hepatocellular cancer: a meta-analysis of randomized phase III trials. J. Clin. Oncol., 2017, 35(6), 622-628.
[http://dx.doi.org/10.1200/JCO.2016.69.5197] [PMID: 28045619]
[48]
Liu, J.; Li, X.; Zhang, H.; Chen, G.; Chen, H.; Hu, Y.; Niu, J.; Ding, Y. Safety, pharmacokinetics and efficacy of donafenib in treating advanced hepatocellular carcinoma: report from a phase 1b trial. Pharmazie, 2019, 74(11), 688-693.
[http://dx.doi.org/10.1691/ph.2019.9626]] [PMID: 31739839]
[49]
Bi, F.; Qiu, M.; Chai, X.; Niu, J.; Ding, Y.; Bai, Y.; Wu, L.; Shentu, J.; Hao, P.; Chen, J.; Li, Q. A multicenter phase II study of donafenib in patients with advanced hepatocellular carcinoma. J. Clin. Oncol, 2019, 35((15_suppl), e15682.
[http://dx.doi.org/10.1200/JCO.2017.35.15_suppl.e15682]
[50]
Wang, E.; Kim, D.W.; Mahipal, A.; Chen, D-T.; Cao, B.; Masawi, F.; Kim, R.D. Phase I study of tramatinib combined with sorafenib in patients (pts) with advanced hepatocellular cancer (HCC). J. Clin. Oncol., 2019, 37(4), 431.
[http://dx.doi.org/10.1691/10.1200/JCO.2019.37.4_suppl.431]
[51]
O’Neil, B.H.; Goff, L.W.; Kauh, J.S.W.; Strosberg, J.R.; Bekaii-Saab, T.S.; Lee, R.M.; Kazi, A.; Moore, D.T.; Learoyd, M.; Lush, R.M.; Sebti, S.M.; Sullivan, D.M. Phase II study of the mitogen-activated protein kinase 1/2 inhibitor selumetinib in patients with advanced hepatocellular carcinoma. J. Clin. Oncol., 2011, 29(17), 2350-2356.
[http://dx.doi.org/10.1200/JCO.2010.33.9432] [PMID: 21519015]
[52]
Lim, H.Y.; Heo, J.; Choi, H.J.; Lin, C-Y.; Yoon, J-H.; Hsu, C.; Rau, K-M.; Poon, R.T.P.; Yeo, W.; Park, J-W.; Tay, M.H.; Hsieh, W-S.; Kappeler, C.; Rajagopalan, P.; Krissel, H.; Jeffers, M.; Yen, C-J.; Tak, W.Y. A phase II study of the efficacy and safety of the combination therapy of the MEK inhibitor refametinib (BAY 86-9766) plus sorafenib for Asian patients with unresectable hepatocellular carcinoma. Clin. Cancer Res., 2014, 20(23), 5976-5985.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-3445] [PMID: 25294897]
[53]
Lim, H.Y.; Merle, P.; Weiss, K.H.; Yau, T.; Ross, P.; Mazzaferro, V.; Blanc, J-F.; Ma, Y.T.; Yen, C.J.; Kocsis, J.; Choo, S.P.; Sukeepaisarnjaroen, W.; Gérolami, R.; Dufour, J-F.; Gane, E.J.; Ryoo, B-Y.; Peck-Radosavljevic, M.; Dao, T.; Yeo, W.; Lamlertthon, W.; Thongsawat, S.; Teufel, M.; Roth, K.; Reis, D.; Childs, B.H.; Krissel, H.; Llovet, J.M. Phase II studies with refametinib or refametinib plus sorafenib in patients with ras-mutated hepatocellular carcinoma. Clin. Cancer Res., 2018, 24(19), 4650-4661.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-3588] [PMID: 29950351]
[54]
Yamazaki, K.; Doi, T.; Ikeda, M.; Okusaka, T.; Schueler, A.; Watanabe, M.; Ohtsu, A. Phase I trial of pimasertib monotherapy in Japanese patients with solid tumors and those with hepatocellular carcinoma. Cancer Chemother. Pharmacol., 2019, 84(5), 1027-1037.
[http://dx.doi.org/10.1007/s00280-019-03924-0] [PMID: 31482223]
[55]
El-Khoueiry, A.B.; Sangro, B.; Yau, T.; Crocenzi, T.S.; Kudo, M.; Hsu, C.; Kim, T-Y.; Choo, S-P.; Trojan, J.; Welling, T.H. III.; Meyer, T.; Kang, Y.K.; Yeo, W.; Chopra, A.; Anderson, J.; Cruz, D.C.; Lang, L.; Neely, J.; Tang, H.; Dastani, H.B.; Melero, I. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet, 2017, 389(10088), 2492-2502.
[http://dx.doi.org/10.1016/S0140-6736(17)31046-2] [PMID: 28434648]
[56]
Zhu, A.X.; Finn, R.S.; Edeline, J.; Cattan, S.; Ogasawara, S.; Palmer, D.; Verslype, C.; Zagonel, V.; Fartoux, L.; Vogel, A.; Sarker, D.; Verset, G.; Chan, S.L.; Knox, J.; Daniele, B.; Webber, A.L.; Ebbinghaus, S.W.; Ma, J.; Siegel, A.B.; Cheng, A.L.; Kudo, M. KEYNOTE-224 investigators Pembrolizumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib (KEYNOTE-224): a non-randomised, open-label phase 2 trial. Lancet Oncol., 2018, 19(7), 940-952.
[http://dx.doi.org/10.1016/S1470-2045(18)30351-6] [PMID: 29875066]
[57]
Qin, S.; Finn, R.S.; Kudo, M.; Meyer, T.; Vogel, A.; Ducreux, M.; Macarulla, T.M.; Tomasello, G.; Boisserie, F.; Hou, J.; Li, X.; Song, J.; Zhu, A.X. RATIONALE 301 study: tislelizumab versus sorafenib as first-line treatment for unresectable hepatocellular carcinoma. Future Oncol., 2019, 15(16), 1811-1822.
[http://dx.doi.org/10.2217/fon-2019-0097] [PMID: 30969136]
[58]
Deva, S.; Lee, J.S.; Lin, C.C.; Yen, C.J.; Millward, M.; Chao, Y.; Keam, B.; Jameson, M.; Hou, M.M.; Kang, Y.K.; Markman, B.; Lu, C.H.; Rau, K.M.; Lee, K.H.; Horvath, L.; Friedlander, M.; Hill, A.; Wu, J.; Hou, J.; Desai, J. A phase Ia/Ib trial of tislelizumab, an anti-PD-1 antibody (ab), in patients (pts) with advanced solid tumors. Ann. Oncol., 2018, 29(10), 24-38.
[http://dx.doi.org/10.1093/annonc/mdy487.042]
[59]
Qin, S.K.; Ren, Z.G.; Meng, Z.Q.; Chen, Z.D.; Chai, X.L.; Xiong, J.P.; Bai, Y.X.; Yang, L.; Zhu, H.; Fang, W.J.; Lin, X.Y.; Chen, X.M.; Li, E.X.; Xia, Y.; Zou, J.J. A randomized multicentered phase II study to evaluate SHR-1210 (PD-1 antibody) in subjects with advanced hepatocellular carcinoma (HCC) who failed or intolerable to prior systemic treatment. Ann. Oncol., 2018, 29(8), 719-720.
[http://dx.doi.org/10.1093/annonc/mdy424.029]
[60]
Ando, Y.; Doi, T.; Mitsuma, A.; Mizutani, T.; Toyoda, M.; Imamura, Y.; Kiyota, N.; Naito, Y.; Matsubara, N.; Ishihara, K.; Tajima, T.; Tokushige, K.; Cameron, S.; Minami, H. Phase I study of spartalizumab (PDR001), an anti-PD1 mAb, in Japanese patients with advanced malignancies. Ann. Oncol., 2018, 36(15), 6024.
[http://dx.doi.org/10.1093/annonc/mdy374.042]
[61]
Wainberg, Z.A.; Segal, N.H.; Jaeger, D.; Lee, K-H.; Marshall, J.; Antonia, S.J.; Butler, M.; Sanborn, R.E.; Nemunaitis, J.J.; Carlson, C.A. Safety and clinical activity of durvalumab monotherapy in patients with hepatocellular carcinoma (HCC). J. Clin. Oncol., 2017, 35(15), 4071.
[http://dx.doi.org/10.1200/JCO.2017.35.15_suppl.4071]
[62]
Shen, L.; Zhang, L.; Hu, X.; Pan, H.; Liu, T.; Bai, Y.; Chen, Y.C.; Huang, J.; Xu, T.; Hsu, W.; Shi, J. Atezolizumab monotherapy in Chinese patients with locally advanced or metastatic solid tumours. Ann. Oncol, 2018, 29(9_suppl.), ix49.
[http://dx.doi.org/10.1093/annonc/mdy432.006]
[63]
Lee, K-H. Phase II study of avelumab in patients with advanced hepatocellular carcinoma after prior sorafenib treatment (avelumab HCC), 2018. NCT No. NCT03389126. Available at: . https://clinicaltrials.gov/ct2/show/NCT03389-126
[64]
Sangro, B.; Gomez-Martin, C.; de la Mata, M.; Iñarrairaegui, M.; Garralda, E.; Barrera, P.; Riezu-Boj, J.I.; Larrea, E.; Alfaro, C.; Sarobe, P.; Lasarte, J.J.; Pérez-Gracia, J.L.; Melero, I.; Prieto, J. A clinical trial of CTLA-4 blockade with tremelimumab in patients with hepatocellular carcinoma and chronic hepatitis C. J. Hepatol., 2013, 59(1), 81-88.
[http://dx.doi.org/10.1016/j.jhep.2013.02.022] [PMID: 23466307]
[65]
Yau, T.; Kang, Y-K.; Kim, T-Y.; El-Khoueiry, A.B.; Santoro, A.; Sangro, B.; Melero, I.; Kudo, M.; Hou, M-M.; Matilla, A.; Tovoli, F.; Knox, J.J.; He, A.R.; El-Rayes, B.F.; Acosta-Rivera, M.; Neely, J.; Shen, Y.; Baccan, C.; Cruz, C.M.D.; Hsu, C. Nivolumab (NIVO) + ipilimumab (IPI) combination therapy in patients (pts) with advanced hepatocellular carcinoma (aHCC): results from CheckMate 040. J. Clin. Oncol., 2019, 37(15), 4012.
[http://dx.doi.org/10.1200/JCO.2019.37.15_suppl.4012]
[66]
Kaseb, A.; Duda, D.G.; Cao, H.S.T.; Abugabal, Y.I.; Vence, L.M.; Rashid, A.; Pestana, R.C.; Blando, J.M.; Singh, S.; Vauthey, J.N.; Chun, Y.S.; Tzeng, C.W.D.; Sakamuri, D.; Wolff, R.A.; Yao, J.C.; Allison, J.; Sharma, P. Randomized, open-label, perioperative phase II study evaluating nivolumab alone versus nivolumab plus ipilimumab in patients with resectable HCC. Ann. Oncol., 2019, 37(15), 4098.
[http://dx.doi.org/10.1200/JCO.2019.37.15_suppl.4098]
[67]
Pishvaian, M.J.; Lee, M.S.; Ryoo, B-Y.; Stein, S.; Lee, K-H.; Verret, W.; Spahn, J.; Shao, H.; Liu, B.; Iizuka, K.; Hsu, C-H. Updated safety and clinical activity results from a phase Ib study of atezolizumab + bevacizumab in hepatocellular carcinoma (HCC). Ann. Oncol., 2018, 29(8), 718-719.
[http://dx.doi.org/10.1093/annonc/mdy424.028]
[68]
Cheng, A.L.; Qin, S.; Ikeda, M.; Galle, P.; Ducreux, M.; Zhu, A.; Kim, T.Y.; Kudo, M.; Breder, V.; Merle, P.; Kaseb, A.; Li, D.; Verret, W.; Xu, Z.; Hernandez, S.; Liu, J.; Huang, C.; Mulla, S.; Lim, H.Y.; Finn, R. IMbrave150: efficacy and safety results from a ph III study evaluating atezolizumab (atezo) + bevacizumab (bev) vs. sorafenib (Sor) as first treatment (tx) for patients (pts) with unresectable hepatocellular carcinoma (HCC). Ann. Oncol., 2019, 30(9), 186-187.
[http://dx.doi.org/10.1093/annonc/mdz446.002]
[69]
Ikeda, M.; Sung, M.W.; Kudo, M.; Kobayashi, M.; Baron, A.D.; Finn, R.S.; Kaneko, S.; Zhu, A.X.; Kubota, T.; Kraljevic, S.; Ishikawa, K.; Siegel, A.B.; Kumada, H.; Okusaka, T. A phase 1b trial of lenvatinib (LEN) plus pembrolizumab (PEM) in patients (pts) with unresectable hepatocellular carcinoma (uHCC). J. Clin. Oncol., 2018, 36(15), 4076.
[http://dx.doi.org/10.1200/JCO.2018.36.15_suppl.4076]
[70]
Llovet, J.M.; Kudo, M.; Cheng, A-L.; Finn, R.S.; Galle, P.R.; Kaneko, S.; Meyer, T.; Qin, S.; Dutcus, C.E.; Chen, E.; Dubrovsky, L.; Zhu, A.X. Lenvatinib (len) plus pembrolizumab (pembro) for the first-line treatment of patients (pts) with advanced hepatocellular carcinoma (HCC): phase 3 LEAP-002 study. J. Clin. Oncol., 2019, 37(15), TPS4152.
[http://dx.doi.org/10.1200/JCO.2019.37.15_suppl.TPS4152]
[71]
Kudo, M.; Motomura, K.; Wada, Y.; Inaba, Y.; Sakamoto, Y.; Kurosaki, M.; Umeyama, Y.; Kamei, Y.; Yoshimitsu, J.; Fujii, Y.; Aizawa, M.; Robbins, P.B.; Furuse, J. First-line avelumab + axitinib in patients with advanced hepatocellular carcinoma: results from a phase 1b trial (VEGF Liver 100). J. Clin. Oncol., 2019, 37(15), 4072.
[http://dx.doi.org/10.1200/10.1200/JCO.2019.37.15_suppl.4072]
[72]
Xu, J.; Zhang, Y.; Jia, R.; Yue, C.; Chang, L.; Liu, R.; Zhang, G.; Zhao, C.; Zhang, Y.; Chen, C.; Wang, Y.; Yi, X.; Hu, Z.; Zou, J.; Wang, Q. Anti-PD-1 antibody SHR-1210 combined with apatinib for advanced hepatocellular carcinoma, gastric, or esophagogastric junction cancer: an open-label, dose escalation and expansion study. Clin. Cancer Res., 2019, 25(2), 515-523.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-2484] [PMID: 30348638]
[73]
Yau, T.; Zagonel, V.; Santoro, A.; Acosta-Rivera, M.; Choo, S.P.; Matilla, A.; He, A.R.; Gracián, A.C.; El-Khoueiry, A.B.; Sangro, B.; Eldawy, T.; Bruix, J.; Frassineti, G.; Vaccaro, G.M.; Tschaika, M.; Scheffold, C.; Shen, Y.; Neely, J.; Piscaglia, F. Nivolumab (NIVO) + ipilimumab (IPI) + cabozantinib (CABO) combination therapy in patients (pts) with advanced hepatocellular carcinoma (aHCC): results from CheckMate 040. J. Clin. Oncol., 2020, 38(4), 478.
[http://dx.doi.org/10.1200/JCO.2020.38.4_suppl.478]
[74]
Dhanasekaran, R.; Bandoh, S.; Roberts, L.R. Molecular pathogenesis of hepatocellular carcinoma and impact of therapeutic advances. F1000 Res., 2016, 5, 879-894.
[http://dx.doi.org/10.12688/f1000research.6946.1] [PMID: 27239288]
[75]
Ranieri, G.; Pantaleo, M.; Piccinno, M.; Roncetti, M.; Mutinati, M.; Marech, I.; Patruno, R.; Rizzo, A.; Sciorsci, R.L. Tyrosine kinase inhibitors (TKIs) in human and pet tumours with special reference to breast cancer: a comparative review. Crit. Rev. Oncol. Hematol., 2013, 88(2), 293-308.
[http://dx.doi.org/10.1016/j.critrevonc.2013.05.009] [PMID: 23768779]
[76]
Wee, P.; Wang, Z. Epidermal growth factor receptor cell proliferation signaling pathways. Cancers (Basel), 2017, 9(5), 52.
[http://dx.doi.org/10.3390/cancers9050052]] [PMID: 28513565]
[77]
Gavrin, L.K.; Saiah, E. Approaches to discover non-ATP site kinase inhibitors. MedChemComm, 2013, 4(1), 41-51.
[http://dx.doi.org/10.1039/C2MD20180A]
[78]
Garuti, L.; Roberti, M.; Bottegoni, G. Non-ATP competitive protein kinase inhibitors. Curr. Med. Chem., 2010, 17(25), 2804-2821.
[http://dx.doi.org/10.2174/092986710791859333] [PMID: 20586715]
[79]
Backes, A.; Zech, B.; Felber, B.; Klebl, B.; Müller, G. Small-molecule inhibitors binding to protein kinases. Part I: exceptions from the traditional pharmacophore approach of type I inhibition. Expert Opin. Drug Discov., 2008, 3(12), 1409-1425.
[http://dx.doi.org/10.1517/17460440802579975] [PMID: 23506106]
[80]
Gotink, K.J.; Verheul, H.M.W. Anti-angiogenic tyrosine kinase inhibitors: what is their mechanism of action? Angiogenesis, 2010, 13(1), 1-14.
[http://dx.doi.org/10.1007/s10456-009-9160-6] [PMID: 20012482]
[81]
Backes, A.; Zech, B.; Felber, B.; Klebl, B.; Müller, G. Small-molecule inhibitors binding to protein kinase. Part II: the novel pharmacophore approach of type II and type III inhibition. Expert Opin. Drug Discov., 2008, 3(12), 1427-1449.
[http://dx.doi.org/10.1517/17460440802580106] [PMID: 23506107]
[82]
Gao, F.; Deng, G.; Liu, W.; Zhou, K.; Li, M. Resveratrol suppresses human hepatocellular carcinoma via targeting HGF-c-Met signaling pathway. Oncol. Rep., 2017, 37(2), 1203-1211.
[http://dx.doi.org/10.3892/or.2017.5347] [PMID: 28075467]
[83]
Hu, C.T.; Wu, J.R.; Cheng, C.C.; Wu, W.S. The therapeutic targeting of hgf/c-Met signaling in hepatocellular carcinoma: alternative approaches. Cancers (Basel), 2017, 9(6), 58-67.
[http://dx.doi.org/10.3390/cancers9060058] [PMID: 28587113]
[84]
Bouattour, M.; Raymond, E.; Qin, S.; Cheng, A.L.; Stammberger, U.; Locatelli, G.; Faivre, S. Recent developments of c-Met as a therapeutic target in hepatocellular carcinoma. Hepatology, 2018, 67(3), 1132-1149.
[http://dx.doi.org/10.1002/hep.29496] [PMID: 28862760]
[85]
Yang, X.; Zhang, X.F.; Lu, X.; Jia, H.L.; Liang, L.; Dong, Q.Z.; Ye, Q.H.; Qin, L.X. MicroRNA-26a suppresses angiogenesis in human hepatocellular carcinoma by targeting hepatocyte growth factor-cMet pathway. Hepatology, 2014, 59(5), 1874-1885.
[http://dx.doi.org/10.1002/hep.26941] [PMID: 24259426]
[86]
Li, N.; Fu, H.; Tie, Y.; Hu, Z.; Kong, W.; Wu, Y.; Zheng, X. MiR-34a inhibits migration and invasion by down-regulation of c-Met expression in human hepatocellular carcinoma cells. Cancer Lett., 2009, 275(1), 44-53.
[http://dx.doi.org/10.1016/j.canlet.2008.09.035] [PMID: 19006648]
[87]
Tan, S.; Li, R.; Ding, K.; Lobie, P.E.; Zhu, T. MiR-198 inhibits migration and invasion of hepatocellular carcinoma cells by targeting the hgf/c-Met pathway. FEBS Lett., 2011, 585(14), 2229-2234.
[http://dx.doi.org/10.1016/j.febslet.2011.05.042] [PMID: 21658389]
[88]
Ghosh, A.; Dasgupta, D.; Ghosh, A.; Roychoudhury, S.; Kumar, D.; Gorain, M.; Butti, R.; Datta, S.; Agarwal, S.; Gupta, S.; Krishna Dhali, G.; Chowdhury, A.; Schmittgen, T.D.; Kundu, G.C.; Banerjee, S. MiRNA199a-3p suppresses tumor growth, migration, invasion and angiogenesis in hepatocellular carcinoma by targeting VEGFA, VEGFR1, VEGFR2, HGF and MMP2. Cell Death Dis., 2017, 8(3), e2706-e2717.
[http://dx.doi.org/10.1038/cddis.2017.123] [PMID: 28358369]
[89]
Yao, Y.; Dou, C.; Lu, Z.; Zheng, X.; Liu, Q. MACC1 suppresses cell apoptosis in hepatocellular carcinoma by targeting the HGF/c-MET/AKT pathway. Cell. Physiol. Biochem., 2015, 35(3), 983-996.
[http://dx.doi.org/10.1159/000369754] [PMID: 25660117]
[90]
You, H.; Ding, W.; Dang, H.; Jiang, Y.; Rountree, C.B. c-Met represents a potential therapeutic target for personalized treatment in hepatocellular carcinoma. Hepatology, 2011, 54(3), 879-889.
[http://dx.doi.org/10.1002/hep.24450] [PMID: 21618573]
[91]
Lee, J.J.X.; Chan, J.J.; Choo, S.P. Clinical development of c-MET inhibition in hepatocellular carcinoma. Diseases, 2015, 3(4), 306-324.
[http://dx.doi.org/10.3390/diseases3040306] [PMID: 28943627]
[92]
Rosen, L.S.; Goldman, J.W.; Algazi, A.P.; Turner, P.K.; Moser, B.; Hu, T.; Wang, X.A.; Tuttle, J.; Wacheck, V.; Wooldridge, J.E.; Banck, M. A first-in-human phase I study of a bivalent MET antibody, emibetuzumab (LY2875358), as monotherapy and in combination with erlotinib in advanced cancer. Clin. Cancer Res., 2017, 23(8), 1910-1919.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-1418] [PMID: 27803065]
[93]
Santoro, A.; Rimassa, L.; Borbath, I.; Daniele, B.; Salvagni, S.; Van Laethem, J.L.; Van Vlierberghe, H.; Trojan, J.; Kolligs, F.T.; Weiss, A.; Miles, S.; Gasbarrini, A.; Lencioni, M.; Cicalese, L.; Sherman, M.; Gridelli, C.; Buggisch, P.; Gerken, G.; Schmid, R.M.; Boni, C.; Personeni, N.; Hassoun, Z.; Abbadessa, G.; Schwartz, B.; Von Roemeling, R.; Lamar, M.E.; Chen, Y.; Porta, C. Tivantinib for second-line treatment of advanced hepatocellular carcinoma: a randomised, placebo-controlled phase 2 study. Lancet Oncol., 2013, 14(1), 55-63.
[http://dx.doi.org/10.1016/S1470-2045(12)70490-4] [PMID: 23182627]
[94]
Pievsky, D.; Pyrsopoulos, N. Profile of tivantinib and its potential in the treatment of hepatocellular carcinoma: the evidence to date. J. Hepatocell. Carcinoma, 2016, 3, 69-76.
[http://dx.doi.org/10.2147/JHC.S106072] [PMID: 27896243]
[95]
Xiang, Q.; Zhen, Z.; Deng, D.Y.; Wang, J.; Chen, Y.; Li, J.; Zhang, Y.; Wang, F.; Chen, N.; Chen, H.; Chen, Y. Tivantinib induces G2/M arrest and apoptosis by disrupting tubulin polymerization in hepatocellular carcinoma. J. Exp. Clin. Cancer Res., 2015, 34(1), 118.
[http://dx.doi.org/10.1186/s13046-015-0238-2] [PMID: 26458953]
[96]
Yakes, F.M.; Chen, J.; Tan, J.; Yamaguchi, K.; Shi, Y.; Yu, P.; Qian, F.; Chu, F.; Bentzien, F.; Cancilla, B.; Orf, J.; You, A.; Laird, A.D.; Engst, S.; Lee, L.; Lesch, J.; Chou, Y.C.; Joly, A.H. Cabozantinib (XL184), a novel MET and VEGFR2 inhibitor, simultaneously suppresses metastasis, angiogenesis, and tumor growth. Mol. Cancer Ther., 2011, 10(12), 2298-2308.
[http://dx.doi.org/10.1158/1535-7163.MCT-11-0264] [PMID: 21926191]
[97]
Huynh, H.; Ong, R.; Soo, K.C. Foretinib demonstrates anti-tumor activity and improves overall survival in preclinical models of hepatocellular carcinoma. Angiogenesis, 2012, 15(1), 59-70.
[http://dx.doi.org/10.1007/s10456-011-9243-z] [PMID: 22187171]
[98]
Liu, X.; Wang, Q.; Yang, G.; Marando, C.; Koblish, H.K.; Hall, L.M.; Fridman, J.S.; Behshad, E.; Wynn, R.; Li, Y.; Boer, J.; Diamond, S.; He, C.; Xu, M.; Zhuo, J.; Yao, W.; Newton, R.C.; Scherle, P.A. A novel kinase inhibitor, INCB28060, blocks c-MET-dependent signaling, neoplastic activities, and cross-talk with EGFR and HER-3. Clin. Cancer Res., 2011, 17(22), 7127-7138.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-1157] [PMID: 21918175]
[99]
Doi, T. Results of phase 1 studies of golvatinib (E7050), a c-Met and eph receptor-targeted multi-kinase inhibitor, administered orally BID to patients with advanced solid tumors. Ann. Oncol., 2012, 23, 3079.
[http://dx.doi.org/10.1016/S0923-7534(20)31988-8]
[100]
Falchook, G.S.; Hong, D.S.; Amin, H.M.; Fu, S.; Piha-Paul, S.A.; Janku, F.; Granda, J.G.; Zheng, H.; Klevesath, M.B.; Köhler, K.; Bladt, F.; Johne, A.; Kurzrock, R. Results of the first-in-human phase I trial assessing MSC2156119J (EMD 1214063), an oral selective c-Met inhibitor, in patients (pts) with advanced solid tumors. J. Clin. Oncol., 2014, 32, 2521.
[http://dx.doi.org/10.1200/jco.2014.32.15_suppl.2521]
[101]
Yan, M.; Wang, H.; Wang, Q.; Zhang, Z.; Zhang, C. Allosteric inhibition of c-Met kinase in sub-microsecond molecular dynamics simulations induced by its inhibitor, tivantinib. Phys. Chem. Chem. Phys., 2016, 18(15), 10367-10374.
[http://dx.doi.org/10.1039/C5CP07001E] [PMID: 27029952]
[102]
Dorsch, D.; Schadt, O.; Stieber, F.; Meyring, M.; Grädler, U.; Bladt, F.; Friese-Hamim, M.; Knühl, C.; Pehl, U.; Blaukat, A. Identification and optimization of pyridazinones as potent and selective c-Met kinase inhibitors. Bioorg. Med. Chem. Lett., 2015, 25(7), 1597-1602.
[http://dx.doi.org/10.1016/j.bmcl.2015.02.002] [PMID: 25736998]
[103]
Zhao, S.; Zhang, Y.; Zhou, H.; Xi, S.; Zou, B.; Bao, G.; Wang, L.; Wang, J.; Zeng, T.; Gong, P.; Zhai, X. Synthesis and biological evaluation of 4-(2-fluorophenoxy)-3,3′-bipyridine derivatives as potential c-met inhibitors. Eur. J. Med. Chem., 2016, 120, 37-50.
[http://dx.doi.org/10.1016/j.ejmech.2016.04.062] [PMID: 27187857]
[104]
Zhang, W.; Ai, J.; Shi, D.; Peng, X.; Ji, Y.; Liu, J.; Geng, M.; Li, Y. Discovery of novel type II c-Met inhibitors based on BMS-777607. Eur. J. Med. Chem., 2014, 80, 254-266.
[http://dx.doi.org/10.1016/j.ejmech.2014.04.056] [PMID: 24792774]
[105]
Li, S.; Huang, Q.; Liu, Y.; Zhang, X.; Liu, S.; He, C.; Gong, P. Design, synthesis and antitumour activity of bisquinoline derivatives connected by 4-oxy-3-fluoroaniline moiety. Eur. J. Med. Chem., 2013, 64(6), 62-73.
[http://dx.doi.org/10.1016/j.ejmech.2013.04.001] [PMID: 23644189]
[106]
Tang, Q.; Wang, L.; Tu, Y.; Zhu, W.; Luo, R.; Tu, Q.; Wang, P.; Wu, C.; Gong, P.; Zheng, P. Discovery of novel pyrrolo[2,3-b]pyridine derivatives bearing 1,2,3-triazole moiety as c-Met kinase inhibitors. Bioorg. Med. Chem. Lett., 2016, 26(7), 1680-1684.
[http://dx.doi.org/10.1016/j.bmcl.2016.02.059] [PMID: 26923692]
[107]
Lien, V.T.; Pettersen, S.; Haugen, M.H.; Olberg, D.E.; Maelandsmo, G.M.; Klaveness, J. Design, synthesis and biological evaluation of 6-substituted quinolines derived from cabozantinib as c-Met inhibitors. Arch. Pharm. (Weinheim), 2019, 352(9), e1900101.
[http://dx.doi.org/10.1002/ardp.201900101] [PMID: 31414521]
[108]
Inagaki, Y.; Qi, F.; Gao, J.; Qu, X.; Hasegawa, K.; Sugawara, Y.; Tang, W.; Kokudo, N. Effect of c-Met inhibitor SU11274 on hepatocellular carcinoma cell growth. Biosci. Trends, 2011, 5(2), 52-56.
[http://dx.doi.org/10.5582/bst.2011.v5.2.52] [PMID: 21572247]
[109]
Wu, J-R.; Hu, C-T.; You, R-I.; Ma, P-L.; Pan, S-M.; Lee, M-C.; Wu, W-S. Preclinical trials for prevention of tumor progression of hepatocellular carcinoma by LZ-8 targeting c-Met dependent and independent pathways. PLoS One, 2015, 10(1), e0114495.
[http://dx.doi.org/10.1371/journal.pone.0114495] [PMID: 25607934]
[110]
Zhao, M.; Wang, Y.; Liu, Y.; Zhang, W.; Liu, Y.; Yang, X.; Cao, Y.; Wang, S. C7 peptide inhibits hepatocellular carcinoma metastasis by targeting the HGF/c-Met signaling pathway. Cancer Biol. Ther., 2019, 20(12), 1430-1442.
[http://dx.doi.org/10.1080/15384047.2019.1647051] [PMID: 31441380]
[111]
Kraizer, Y.; Mawasi, N.; Seagal, J.; Paizi, M.; Assy, N.; Spira, G. Vascular endothelial growth factor and angiopoietin in liver regeneration. Biochem. Biophys. Res. Commun., 2001, 287(1), 209-215.
[http://dx.doi.org/10.1006/bbrc.2001.5548] [PMID: 11549276]
[112]
Sitohy, B.; Nagy, J.A.; Dvorak, H.F. Anti-VEGF/VEGFR therapy for cancer: reassessing the target. Cancer Res., 2012, 72(8), 1909-1914.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-3406] [PMID: 22508695]
[113]
Zhang, L.; Wang, J-N.; Tang, J-M.; Kong, X.; Yang, J-Y.; Zheng, F.; Guo, L-Y.; Huang, Y-Z.; Zhang, L.; Tian, L.; Cao, S.F.; Tuo, C.H.; Guo, H.L.; Chen, S.Y. VEGF is essential for the growth and migration of human hepatocellular carcinoma cells. Mol. Biol. Rep., 2012, 39(5), 5085-5093.
[http://dx.doi.org/10.1007/s11033-011-1304-2] [PMID: 22161247]
[114]
Finn, R.S.; Zhu, A.X. Targeting angiogenesis in hepatocellular carcinoma: focus on VEGF and bevacizumab. Expert Rev. Anticancer Ther., 2009, 9(4), 503-509.
[http://dx.doi.org/10.1586/era.09.6] [PMID: 19374603]
[115]
Hsu, C.H.; Yang, T.S.; Hsu, C.; Toh, H.C.; Epstein, R.J.; Hsiao, L.T.; Chen, P.J.; Lin, Z.Z.; Chao, T.Y.; Cheng, A.L. Efficacy and tolerability of bevacizumab plus capecitabine as first-line therapy in patients with advanced hepatocellular carcinoma. Br. J. Cancer, 2010, 102(6), 981-986.
[http://dx.doi.org/10.1038/sj.bjc.6605580] [PMID: 20160718]
[116]
Thomas, M.B.; Morris, J.S.; Chadha, R.; Iwasaki, M.; Kaur, H.; Lin, E.; Kaseb, A.; Glover, K.; Davila, M.; Abbruzzese, J. Phase II trial of the combination of bevacizumab and erlotinib in patients who have advanced hepatocellular carcinoma. J. Clin. Oncol., 2009, 27(6), 843-850.
[http://dx.doi.org/10.1200/JCO.2008.18.3301] [PMID: 19139433]
[117]
Gao, J.Z.; Du, J.L.; Wang, Y.L.; Li, J.; Wei, L.X.; Guo, M.Z. Synergistic effects of curcumin and bevacizumab on cell signaling pathways in hepatocellular carcinoma. Oncol. Lett., 2015, 9(1), 295-299.
[http://dx.doi.org/10.3892/ol.2014.2694] [PMID: 25435978]
[118]
Peuckmann, V.; Fisch, M.; Bruera, E. Potential novel uses of thalidomide: focus on palliative care. Drugs, 2000, 60(2), 273-292.
[http://dx.doi.org/10.2165/00003495-200060020-00003] [PMID: 10983733]
[119]
Broyl, A.; Kuiper, R.; van Duin, M.; van der Holt, B.; el Jarari, L.; Bertsch, U.; Zweegman, S.; Buijs, A.; Hose, D.; Lokhorst, H.M.; Goldschmidt, H.; Sonneveld, P. Dutch-Belgian HOVON groupGerman GMMG Group. High cereblon expression is associated with better survival in patients with newly diagnosed multiple myeloma treated with thalidomide maintenance. Blood, 2013, 121(4), 624-627.
[http://dx.doi.org/10.1182/blood-2012-06-438101] [PMID: 23233657]
[120]
Cao, D-D.; Xu, H-L.; Liu, L.; Zheng, Y-F.; Gao, S-F.; Xu, X-M.; Ge, W. Thalidomide combined with transcatheter artierial chemoembolzation for primary hepatocellular carcinoma: a systematic review and meta-analysis. Oncotarget, 2017, 8(27), 44976-44993.
[http://dx.doi.org/10.18632/oncotarget.16689] [PMID: 28402958]
[121]
Ang, S-F.; Tan, S-H.; Toh, H-C.; Poon, D.Y.H.; Ong, S.Y.K.; Foo, K-F.; Choo, S-P. Activity of thalidomide and capecitabine in patients with advanced hepatocellular carcinoma. Am. J. Clin. Oncol., 2012, 35(3), 222-227.
[http://dx.doi.org/10.1097/COC.0b013e31820dbf56] [PMID: 21378539]
[122]
Anderson, K.C. Lenalidomide and thalidomide: mechanisms of action-similarities and differences. Semin. Hematol., 2005, 42(4)(Suppl. 4), S3-S8.
[http://dx.doi.org/10.1053/j.seminhematol.2005.10.001] [PMID: 16344099]
[123]
Woo, K.; Stewart, S.G.; Kong, G.S.; Finch-Edmondson, M.L.; Dwyer, B.J.; Yeung, S.Y.; Abraham, L.J.; Kampmann, S.S.; Diepeveen, L.A.; Passman, A.M.; Elsegood, C.L.; Tirnitz-Parker, J.E.; Callus, B.A.; Olynyk, J.K.; Yeoh, G.C. Identification of a thalidomide derivative that selectively targets tumorigenic liver progenitor cells and comparing its effects with lenalidomide and sorafenib. Eur. J. Med. Chem., 2016, 120, 275-283.
[http://dx.doi.org/10.1016/j.ejmech.2016.03.015] [PMID: 27208658]
[124]
Wilhelm, S.M.; Dumas, J.; Adnane, L.; Lynch, M.; Carter, C.A.; Schütz, G.; Thierauch, K.H.; Zopf, D. Regorafenib (BAY 73-4506): a new oral multikinase inhibitor of angiogenic, stromal and oncogenic receptor tyrosine kinases with potent preclinical antitumor activity. Int. J. Cancer, 2011, 129(1), 245-255.
[http://dx.doi.org/10.1002/ijc.25864] [PMID: 21170960]
[125]
Kudo, M. Lenvatinib may drastically change the treatment landscape of hepatocellular carcinoma. Liver Cancer, 2018, 7(1), 1-19.
[http://dx.doi.org/10.1159/000487148] [PMID: 29662829]
[126]
Gardini, A.C.; Puzzoni, M.; Montagnani, F.; Marisi, G.; Tamburini, E.; Cucchetti, A.; Solaini, L.; Foschi, F.G.; Conti, F.; Ercolani, G.; Cascinu, S.; Scartozzi, M. Profile of lenvatinib in the treatment of hepatocellular carcinoma: design, development, potential place in therapy and network meta-analysis of hepatitis B and hepatitis C in all Phase III trials. OncoTargets Ther., 2019, 12, 2981-2988.
[http://dx.doi.org/10.2147/OTT.S192572] [PMID: 31118665]
[127]
Toh, H.C.; Chen, P-J.; Carr, B.I.; Knox, J.J.; Gill, S.; Ansell, P.; McKeegan, E.M.; Dowell, B.; Pedersen, M.; Qin, Q.; Qian, J.; Scappaticci, F.A.; Ricker, J.L.; Carlson, D.M.; Yong, W.P. Phase 2 trial of linifanib (ABT-869) in patients with unresectable or metastatic hepatocellular carcinoma. Cancer, 2013, 119(2), 380-387.
[http://dx.doi.org/10.1002/cncr.27758] [PMID: 22833179]
[128]
Boudou-Rouquette, P.; Tlemsani, C.; Blanchet, B.; Huillard, O.; Jouinot, A.; Arrondeau, J.; Thomas-Schoemann, A.; Vidal, M.; Alexandre, J.; Goldwasser, F. Clinical pharmacology, drug-drug interactions and safety of pazopanib: a review. Expert Opin. Drug Metab. Toxicol., 2016, 12(12), 1433-1444.
[http://dx.doi.org/10.1080/17425255.2016.1225038] [PMID: 27556889]
[129]
Kong, Y.; Sun, L.; Hou, Z.; Zhang, Y.; Chen, P.; Cui, Y.; Zhu, X.; Song, T.; Li, Q.; Li, H.; Zhang, T.; Qin, L. Apatinib is effective for treatment of advanced hepatocellular carcinoma. Oncotarget, 2017, 8(62), 105596-105605.
[http://dx.doi.org/10.18632/oncotarget.22337] [PMID: 29285275]
[130]
Yu, W-C.; Zhang, K-Z.; Chen, S-G.; Liu, W-F. Efficacy and safety of apatinib in patients with intermediate/advanced hepatocellular carcinoma: a prospective observation study. Medicine (Baltimore), 2018, 97(3), e9704.
[http://dx.doi.org/10.1097/MD.0000000000009704] [PMID: 29505026]
[131]
Kou, P.; Zhang, Y.; Shao, W.; Zhu, H.; Zhang, J.; Wang, H.; Kong, L.; Yu, J. Significant efficacy and well safety of apatinib in an advanced liver cancer patient: a case report and literature review. Oncotarget, 2017, 8(12), 20510-20515.
[http://dx.doi.org/10.18632/oncotarget.14724] [PMID: 28103584]
[132]
Chan, S.L.; Yeo, W.; Mo, F.; Chan, A.W.H.; Koh, J.; Li, L.; Hui, E.P.; Chong, C.C.N.; Lai, P.B.S.; Mok, T.S.K.; Yu, S.C.H. A phase 2 study of the efficacy and biomarker on the combination of transarterial chemoembolization and axitinib in the treatment of inoperable hepatocellular carcinoma. Cancer, 2017, 123(20), 3977-3985.
[http://dx.doi.org/10.1002/cncr.30825] [PMID: 28640364]
[133]
Johnson, P.J.; Qin, S.; Park, J-W.; Poon, R.T.P.; Raoul, J-L.; Philip, P.A.; Hsu, C-H.; Hu, T-H.; Heo, J.; Xu, J.; Lu, L.; Chao, Y.; Boucher, E.; Han, K-H.; Paik, S-W.; Robles-Aviña, J.; Kudo, M.; Yan, L.; Sobhonslidsuk, A.; Komov, D.; Decaens, T.; Tak, W-Y. Jeng. L-B.; Liu, D.; Ezzeddine, R.; Walters, I.; Cheng, A.-L. Brivanib versus sorafenib as first-line therapy in patients with unresectable, advanced hepatocellular carcinoma: results from the randomized phase III BRISK-FL study. J. Clin. Oncol., 2013, 31(28), 3517-3524.
[http://dx.doi.org/10.1200/JCO.2012.48.4410] [PMID: 23980084]
[134]
Llovet, J.M.; Decaens, T.; Raoul, J-L.; Boucher, E.; Kudo, M.; Chang, C.; Kang, Y-K.; Assenat, E.; Lim, H-Y.; Boige, V.; Mathurin, P.; Fartoux, L.; Lin, D-Y.; Bruix, J.; Poon, R.T.; Sherman, M.; Blanc, J-F.; Finn, R.S.; Tak, W-Y.; Chao, Y.; Ezzeddine, R.; Liu, D.; Walters, I.; Park, J-W. Brivanib in patients with advanced hepatocellular carcinoma who were intolerant to sorafenib or for whom sorafenib failed: results from the randomized phase III BRISK-PS study. J. Clin. Oncol., 2013, 31(28), 3509-3516.
[http://dx.doi.org/10.1200/JCO.2012.47.3009] [PMID: 23980090]
[135]
Cheng, A.; Kang, Y.; Lin, D.; Park, J.; Kudo, M.; Qin, S.; Omata, M.; Lowenthal, S.W.P.; Lanzalone, S.; Yang, L.; Lechuga, M.; Raymond, E. SUN1170 HCC study group. Phase III trial of sunitinib (Su) versus sorafenib (So) in advanced hepatocellular carcinoma (HCC). J. Clin. Oncol, 2011, 29(15_Suppl.), 4000.
[http://dx.doi.org/10.1200/jco.2011.29.15_suppl.4000]
[136]
Eldehna, W.M.; Abou-Seri, S.M.; El Kerdawy, A.M.; Ayyad, R.R.; Hamdy, A.M.; Ghabbour, H.A.; Ali, M.M.; Abou El Ella, D.A. Increasing the binding affinity of VEGFR-2 inhibitors by extending their hydrophobic interaction with the active site: Design, synthesis and biological evaluation of 1-substituted-4-(4-methoxybenzyl)phthalazine derivatives. Eur. J. Med. Chem., 2016, 113, 50-62.
[http://dx.doi.org/10.1016/j.ejmech.2016.02.029] [PMID: 26922228]
[137]
Chen, J.; Sheng, C.Q.; Zheng, C.H.; Li, Y.W.; Zhu, J. Study of properties of VEGFR2 active site and binding mode of VEGFR2 and its inhibitors. Acta Chimica Sinica-Chinese Edition, 2007, 65(6), 547-552.
[138]
Hoi, P.M.; Li, S.; Vong, C.T.; Tseng, H.H.L.; Kwan, Y.W.; Lee, S.M. Recent advances in structure-based drug design and virtual screening of VEGFR tyrosine kinase inhibitors. Methods, 2015, 71, 85-91.
[http://dx.doi.org/10.1016/j.ymeth.2014.09.004] [PMID: 25239735]
[139]
Zhong, H.; Bowen, J.P. Molecular design and clinical development of VEGFR kinase inhibitors. Curr. Top. Med. Chem., 2007, 7(14), 1379-1393.
[http://dx.doi.org/10.2174/156802607781696855] [PMID: 17692027]
[140]
Shi, L.; Wu, T-T.; Wang, Z.; Xue, J-Y.; Xu, Y-G. Discovery of N-(2-phenyl-1H-benzo[d]imidazol-5-yl)quinolin-4-amine derivatives as novel VEGFR-2 kinase inhibitors. Eur. J. Med. Chem., 2014, 84, 698-707.
[http://dx.doi.org/10.1016/j.ejmech.2014.07.071] [PMID: 25064347]
[141]
Yang, Y.; Shi, L.; Zhou, Y.; Li, H.Q.; Zhu, Z.W.; Zhu, H.L. Design, synthesis and biological evaluation of quinoline amide derivatives as novel VEGFR-2 inhibitors. Bioorg. Med. Chem. Lett., 2010, 20(22), 6653-6656.
[http://dx.doi.org/10.1016/j.bmcl.2010.09.014] [PMID: 20943391]
[142]
Liu, L.; Qin, S.; Zheng, Y.; Han, L.; Zhang, M.; Luo, N.; Liu, Z.; Gu, N.; Gu, X.; Yin, X. Molecular targeting of VEGF/VEGFR signaling by the anti-VEGF monoclonal antibody BD0801 inhibits the growth and induces apoptosis of human hepatocellular carcinoma cells in vitro and in vivo. Cancer Biol. Ther., 2017, 18(3), 166-176.
[http://dx.doi.org/10.1080/15384047.2017.1282019] [PMID: 28368741]
[143]
Ku, C-Y.; Wang, Y-R.; Lin, H-Y.; Lu, S-C.; Lin, J-Y. Corosolic acid inhibits hepatocellular carcinoma cell migration by targeting the vegfr2/src/fak pathway. PLoS One, 2015, 10(5), e0126725.
[http://dx.doi.org/10.1371/journal.pone.0126725] [PMID: 25978354]
[144]
Zhang, H-H.; Zhang, Y.; Cheng, Y-N.; Gong, F-L.; Cao, Z-Q.; Yu, L-G.; Guo, X-L. Metformin incombination with curcumin inhibits the growth, metastasis and angiogenesis of hepatocellular carcinoma in vitro and in vivo. Mol. Carcinog., 2018, 57(1), 44-56.
[http://dx.doi.org/10.1002/mc.22718] [PMID: 28833603]
[145]
Jiang, H.; Wu, D.; Xu, D.; Yu, H.; Zhao, Z.; Ma, D.; Jin, J. Eupafolin exhibits potent anti-angiogenic and antitumor activity in hepatocellular carcinoma. Int. J. Biol. Sci., 2017, 13(6), 701-711.
[http://dx.doi.org/10.7150/ijbs.17534] [PMID: 28655996]
[146]
Arteaga, C. Targeting HER1/EGFR: a molecular approach to cancer therapy. Semin. Oncol., 2003, 30(3)(Suppl. 7), 3-14.
[http://dx.doi.org/10.1016/S0093-7754(03)70010-4] [PMID: 12840796]
[147]
Mitsudomi, T.; Yatabe, Y. Epidermal growth factor receptor in relation to tumor development: EGFR gene and cancer. FEBS J., 2010, 277(2), 301-308.
[http://dx.doi.org/10.1111/j.1742-4658.2009.07448.x] [PMID: 19922469]
[148]
Seshacharyulu, P.; Ponnusamy, M.P.; Haridas, D.; Jain, M.; Ganti, A.K.; Batra, S.K. Targeting the EGFR signaling pathway in cancer therapy. Expert Opin. Ther. Targets, 2012, 16(1), 15-31.
[http://dx.doi.org/10.1517/14728222.2011.648617] [PMID: 22239438]
[149]
Geng, J.; Li, X.; Lang, X.; Qiao, C.; Hu, M.; Yang, J.; Feng, J.; Lv, M. Combination of cetuximab and rapamycin enhances the therapeutic efficacy in hepatocellular carcinoma. Technol. Cancer Res. Treat., 2014, 13(4), 377-385.
[http://dx.doi.org/10.7785/tcrt.2012.500389] [PMID: 24325131]
[150]
Chen, W.; Shen, X.; Xia, X.; Xu, G.; Ma, T.; Bai, X.; Liang, T. NSC 74859-mediated inhibition of STAT3 enhances the anti-proliferative activity of cetuximab in hepatocellular carcinoma. Liver Int., 2012, 32(1), 70-77.
[http://dx.doi.org/10.1111/j.1478-3231.2011.02631.x] [PMID: 22098470]
[151]
Xue, F.; Liu, Y.; Zhang, H.; Wen, Y.; Yan, L.; Tang, Q.; Xiao, E.; Zhang, D. Let-7a enhances the sensitivity of hepatocellular carcinoma cells to cetuximab by regulating STAT3 expression. OncoTargets Ther., 2016, 9, 7253-7261.
[http://dx.doi.org/10.2147/OTT.S116127] [PMID: 27932893]
[152]
Huang, S.; He, R.; Rong, M.; Dang, Y.; Chen, G. Synergistic effect of MiR-146a mimic and cetuximab on hepatocellular carcinoma cells. Biomed Res. Int., 2014, 2014384121.
[http://dx.doi.org/10.1155/2014/384121] [PMID: 24895573]
[153]
Xue, F.; Liang, Y.; Li, Z.; Liu, Y.; Zhang, H.; Wen, Y.; Yan, L.; Tang, Q.; Xiao, E.; Zhang, D. MicroRNA-9 enhances sensitivity to cetuximab in epithelial phenotype hepatocellular carcinoma cells through regulation of the eukaryotic translation initiation factor 5A-2. Oncol. Lett., 2018, 15(1), 813-820.
[http://dx.doi.org/10.3892/ol.2017.7399]] [PMID: 29399149]
[154]
Xue, F.; Liu, Y.; Chu, H.; Wen, Y.; Yan, L.; Tang, Q.; Xiao, E.; Zhang, D.; Zhang, H. eIF5A2 is an alternative pathway for cell proliferation in cetuximab-treated epithelial hepatocellular carcinoma. Am. J. Transl. Res., 2016, 8(11), 4670-4681.
[PMID: 27904670]
[155]
Cui, S.X.; Zhang, Y.S.; Chu, J.H.; Song, Z.Y.; Qu, X.J. Des-gamma-carboxy prothrombin (DCP) antagonizes the effects of gefitinib on human hepatocellular carcinoma cells. Cell. Physiol. Biochem., 2015, 35(1), 201-212.
[http://dx.doi.org/10.1159/000369688] [PMID: 25591763]
[156]
Shao, J.; Xu, Z.; Peng, X.; Chen, M.; Zhu, Y.; Xu, L.; Zhu, H.; Yang, B.; Luo, P.; He, Q. Gefitinib synergizes with irinotecan to suppress hepatocellular carcinoma via antagonizing Rad51-mediated DNA-repair. PLoS One, 2016, 11(1), e0146968.
[http://dx.doi.org/10.1371/journal.pone.0146968] [PMID: 26752698]
[157]
Gu, H.R.; Park, S.C.; Choi, S.J.; Lee, J.C.; Kim, Y.C.; Han, C.J.; Kim, J.; Yang, K.Y.; Kim, Y.J.; Noh, G.Y.; No, S.H.; Jeong, J.H. Combined treatment with silibinin and either sorafenib or gefitinib enhances their growth-inhibiting effects in hepatocellular carcinoma cells. Clin. Mol. Hepatol., 2015, 21(1), 49-59.
[http://dx.doi.org/10.3350/cmh.2015.21.1.49] [PMID: 25834802]
[158]
Tong, Y.; Wang, M.; Huang, H.; Zhang, J.; Huang, Y.; Chen, Y.; Pan, H. Inhibitory effects of genistein in combination with gefitinib on the hepatocellular carcinoma Hep3B cell line. Exp. Ther. Med., 2019, 18(5), 3793-3800.
[http://dx.doi.org/10.3892/etm.2019.8027] [PMID: 31611933]
[159]
Philip, P.A.; Mahoney, M.R.; Allmer, C.; Thomas, J.; Pitot, H.C.; Kim, G.; Donehower, R.C.; Fitch, T.; Picus, J.; Erlichman, C. Phase II study of erlotinib (OSI-774) in patients with advanced hepatocellular cancer. J. Clin. Oncol., 2005, 23(27), 6657-6663.
[http://dx.doi.org/10.1200/JCO.2005.14.696] [PMID: 16170173]
[160]
Zhu, A.X.; Rosmorduc, O.; Evans, T.R.J.; Ross, P.J.; Santoro, A.; Carrilho, F.J.; Bruix, J.; Qin, S.; Thuluvath, P.J.; Llovet, J.M.; Leberre, M-A.; Jensen, M.; Meinhardt, G.; Kang, Y-K. SEARCH: a phase III, randomized, double-blind, placebo-controlled trial of sorafenib plus erlotinib in patients with advanced hepatocellular carcinoma. J. Clin. Oncol., 2015, 33(6), 559-566.
[http://dx.doi.org/10.1200/JCO.2013.53.7746] [PMID: 25547503]
[161]
Thomas, M.B.; Garrett-Mayer, E.; Anis, M.; Anderton, K.; Bentz, T.; Edwards, A.; Brisendine, A.; Weiss, G.; Siegel, A.B.; Bendell, J.; Baron, A.; Duddalwar, V.; El-Khoueiry, A. A randomized phase ii open-label multi-institution study of the combination of bevacizumab and erlotinib compared to sorafenib in the first-line treatment of patients with advanced hepatocellular carcinoma. Oncology, 2018, 94(6), 329-339.
[http://dx.doi.org/10.1159/000485384] [PMID: 29719302]
[162]
Yu, H-C.; Chen, H-J.; Chang, Y-L.; Liu, C-Y.; Shiau, C-W.; Cheng, A-L.; Chen, K-F. Inhibition of CIP2A determines erlotinib-induced apoptosis in hepatocellular carcinoma. Biochem. Pharmacol., 2013, 85(3), 356-366.
[http://dx.doi.org/10.1016/j.bcp.2012.11.009] [PMID: 23178652]
[163]
Chen, Y-J.; Chi, C-W.; Su, W-C.; Huang, H-L. Lapatinib induces autophagic cell death and inhibits growth of human hepatocellular carcinoma. Oncotarget, 2014, 5(13), 4845-4854.
[http://dx.doi.org/10.18632/oncotarget.2045] [PMID: 24947784]
[164]
Yan, Y-Y.; Guo, Y.; Zhang, W.; Ma, C-G.; Zhang, Y-X.; Wang, C.; Wang, H-X. Celastrol enhanced the anticancer effect of lapatinib in human hepatocellular carcinoma cells in vitro. J. BUON, 2014, 19(2), 412-418.
[PMID: 24965400]
[165]
Yun, C-H.; Boggon, T.J.; Li, Y.; Woo, M.S.; Greulich, H.; Meyerson, M.; Eck, M.J. Structures of lung cancer-derived EGFR mutants and inhibitor complexes: mechanism of activation and insights into differential inhibitor sensitivity. Cancer Cell, 2007, 11(3), 217-227.
[http://dx.doi.org/10.1016/j.ccr.2006.12.017] [PMID: 17349580]
[166]
Park, J.H.; Liu, Y.; Lemmon, M.A.; Radhakrishnan, R. Erlotinib binds both inactive and active conformations of the EGFR tyrosine kinase domain. Biochem. J., 2012, 448(3), 417-423.
[http://dx.doi.org/10.1042/BJ20121513] [PMID: 23101586]
[167]
Spicer, J.F.; Rudman, S.M. EGFR inhibitors in non-small cell lung cancer (NSCLC): the emerging role of the dual irreversible EGFR/HER2 inhibitor BIBW 2992. Target. Oncol., 2010, 5(4), 245-255.
[http://dx.doi.org/10.1007/s11523-010-0140-y] [PMID: 20574858]
[168]
Wei, H.; Duan, Y.; Gou, W.; Cui, J.; Ning, H.; Li, D.; Qin, Y.; Liu, Q.; Li, Y. Design, synthesis and biological evaluation of novel 4-anilinoquinazoline derivatives as hypoxia-selective EGFR and VEGFR-2 dual inhibitors. Eur. J. Med. Chem., 2019, 181, 111552.
[http://dx.doi.org/10.1016/j.ejmech.2019.07.055] [PMID: 31387063]
[169]
Zeng, Q.; Wang, J.; Cheng, Z.; Chen, K.; Johnström, P.; Varnäs, K.; Li, D.Y.; Yang, Z.F.; Zhang, X. Discovery and evaluation of clinical candidate azd3759, a potent, oral active, central nervous system-penetrant, epidermal growth factor receptor tyrosine kinase inhibitor. J. Med. Chem., 2015, 58(20), 8200-8215.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01073] [PMID: 26313252]
[170]
Qin, X.; Lv, Y.; Liu, P.; Li, Z.; Hu, L.; Zeng, C.; Yang, L. Novel morpholin-3-one fused quinazoline derivatives as EGFR tyrosine kinase inhibitors. Bioorg. Med. Chem. Lett., 2016, 26(6), 1571-1575.
[http://dx.doi.org/10.1016/j.bmcl.2016.02.009] [PMID: 26879314]
[171]
Xia, G.; Chen, W.; Zhang, J.; Shao, J.; Zhang, Y.; Huang, W.; Zhang, L.; Qi, W.; Sun, X.; Li, B.; Xiang, Z.; Ma, C.; Xu, J.; Deng, H.; Li, Y.; Li, P.; Miao, H.; Han, J.; Liu, Y.; Shen, J.; Yu, Y. A chemical tuned strategy to develop novel irreversible EGFR-TK inhibitors with improved safety and pharmacokinetic profiles. J. Med. Chem., 2014, 57(23), 9889-9900.
[http://dx.doi.org/10.1021/jm5014659] [PMID: 25409491]
[172]
Qian, L.; Liu, Y.; Xu, Y.; Ji, W.; Wu, Q.; Liu, Y.; Gao, Q.; Su, C. Matrine derivative WM130 inhibits hepatocellular carcinoma by suppressing EGFR/ERK/MMP-2 and PTEN/AKT signaling pathways. Cancer Lett., 2015, 368(1), 126-134.
[http://dx.doi.org/10.1016/j.canlet.2015.07.035] [PMID: 26259512]
[173]
Kim, H.; Lim, H.Y. Novel EGFR-TK inhibitor EKB-569 inhibits hepatocellular carcinoma cell proliferation by AKT and MAPK pathways. J. Korean Med. Sci., 2011, 26(12), 1563-1568.
[http://dx.doi.org/10.3346/jkms.2011.26.12.1563] [PMID: 22147992]
[174]
Liu, X.; Tian, S.; Liu, M.; Jian, L.; Zhao, L. Wogonin inhibits the proliferation and invasion, and induces the apoptosis of HepG2 and Bel7402 HCC cells through NF κB/Bcl-2, EGFR and EGFR downstream ERK/AKT signaling. Int. J. Mol. Med., 2016, 38(4), 1250-1256.
[http://dx.doi.org/10.3892/ijmm.2016.2700] [PMID: 27499272]
[175]
Zhou, M.; Mok, M.T.; Sun, H.; Chan, A.W.; Huang, Y.; Cheng, A.S.; Xu, G. The anti-diabetic drug exenatide, a glucagon-like peptide-1 receptor agonist, counteracts hepatocarcinogenesis through cAMP-PKA-EGFR-STAT3 axis. Oncogene, 2017, 36(29), 4135-4149.
[http://dx.doi.org/10.1038/onc.2017.38] [PMID: 28319060]
[176]
Jang, J-W.; Song, Y.; Kim, S-H.; Kim, J.S.; Kim, K.M.; Choi, E.K.; Kim, J.; Seo, H.R. CD133 confers cancer stem-like cell properties by stabilizing EGFR-AKT signaling in hepatocellular carcinoma. Cancer Lett., 2017, 389, 1-10.
[http://dx.doi.org/10.1016/j.canlet.2016.12.023] [PMID: 28034805]
[177]
Zhou, Q.; Lui, V.W.; Yeo, W. Targeting the PI3K/Akt/mTOR pathway in hepatocellular carcinoma. Future Oncol., 2011, 7(10), 1149-1167.
[http://dx.doi.org/10.2217/fon.11.95] [PMID: 21992728]
[178]
Laplante, M.; Sabatini, D.M. mTOR signaling at a glance. J. Cell Sci., 2009, 122(Pt 20), 3589-3594.
[http://dx.doi.org/10.1242/jcs.051011] [PMID: 19812304]
[179]
Xie, J.; Wang, X.; Proud, C.G. mTOR inhibitors in cancer therapy. F1000 Res., 2016, 5, 2078.
[http://dx.doi.org/10.12688/f1000research.9207.1] [PMID: 27635236]
[180]
Villanueva, A.; Chiang, D.Y.; Newell, P.; Peix, J.; Thung, S.; Alsinet, C.; Tovar, V.; Roayaie, S.; Minguez, B.; Sole, M.; Battiston, C.; Van Laarhoven, S.; Fiel, M.I.; Di Feo, A.; Hoshida, Y.; Yea, S.; Toffanin, S.; Ramos, A.; Martignetti, J.A.; Mazzaferro, V.; Bruix, J.; Waxman, S.; Schwartz, M.; Meyerson, M.; Friedman, S.L.; Llovet, J.M. Pivotal role of mTOR signaling in hepatocellular carcinoma. Gastroenterology, 2008, 135(6), 1972-1983-1983.e1-11.
[http://dx.doi.org/10.1053/j.gastro.2008.08.008] [PMID: 18929564]
[181]
Ma, X.M.; Blenis, J. Molecular mechanisms of mTOR-mediated translational control. Nat. Rev. Mol. Cell Biol., 2009, 10(5), 307-318.
[http://dx.doi.org/10.1038/nrm2672] [PMID: 19339977]
[182]
Roohi, A.; Hojjat-Farsangi, M. Recent advances in targeting mTOR signaling pathway using small molecule inhibitors. J. Drug Target., 2017, 25(3), 189-201.
[http://dx.doi.org/10.1080/1061186X.2016.1236112] [PMID: 27632356]
[183]
Chi, H. Regulation and function of mTOR signalling in T cell fate decisions. Nat. Rev. Immunol., 2012, 12(5), 325-338.
[http://dx.doi.org/10.1038/nri3198] [PMID: 22517423]
[184]
Wang, Z.; Zhou, J.; Fan, J.; Tan, C-J.; Qiu, S-J.; Yu, Y.; Huang, X-W.; Tang, Z-Y. Sirolimus inhibits the growth and metastatic progression of hepatocellular carcinoma. J. Cancer Res. Clin. Oncol., 2009, 135(5), 715-722.
[http://dx.doi.org/10.1007/s00432-008-0506-z] [PMID: 19002496]
[185]
Decaens, T.; Luciani, A.; Itti, E.; Hulin, A.; Roudot-Thoraval, F.; Laurent, A.; Zafrani, E.S.; Mallat, A.; Duvoux, C. Phase II study of sirolimus in treatment-naive patients with advanced hepatocellular carcinoma. Dig. Liver Dis., 2012, 44(7), 610-616.
[http://dx.doi.org/10.1016/j.dld.2012.02.005] [PMID: 22459565]
[186]
Kelley, R.K.; Nimeiri, H.S.; Munster, P.N.; Vergo, M.T.; Huang, Y.; Li, C-M.; Hwang, J.; Mulcahy, M.F.; Yeh, B.M.; Kuhn, P.; Luttgen, M.S.; Grabowsky, J.A.; Stucky-Marshall, L.; Korn, W.M.; Ko, A.H.; Bergsland, E.K.; Benson, A.B. III.; Venook, A.P. Temsirolimus combined with sorafenib in hepatocellular carcinoma: a phase I dose-finding trial with pharmacokinetic and biomarker correlates. Ann. Oncol., 2013, 24(7), 1900-1907.
[http://dx.doi.org/10.1093/annonc/mdt109] [PMID: 23519998]
[187]
Kelley, R.K.; Nimeiri, H.S.; Gordan, J.D.; Hwang, J.; McWhirter, R.M.; Kanakamedala, A.; Atreya, C.E.; Kulik, L.; Kircher, S.; Mulcahy, M.F.; Benson, A.B.; Venook, A.P. Phase II trial of temsirolimus (TEM) plus sorafenib (SOR) in hepatocellular carcinoma (HCC). J. Clin. Oncol, 2015, 33(Suppl_3), TPS501.
[http://dx.doi.org/10.1200/jco.2015.33.3_suppl.tps501]
[188]
Li, A.; Zhang, R.; Zhang, Y.; Liu, X.; Wang, R.; Liu, J.; Liu, X.; Xie, Y.; Cao, W.; Xu, R.; Ma, Y.; Cai, W.; Wu, B.; Cai, S.; Tang, X. BEZ235 increases sorafenib inhibition of hepatocellular carcinoma cells by suppressing the PI3K/AKT/mTOR pathway. Am. J. Transl. Res., 2019, 11(9), 5573-5585.
[PMID: 31632530]
[189]
O’Reilly, K.E.; Rojo, F.; She, Q.B.; Solit, D.; Mills, G.B.; Smith, D.; Lane, H.; Hofmann, F.; Hicklin, D.J.; Ludwig, D.L.; Baselga, J.; Rosen, N. mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res., 2006, 66(3), 1500-1508.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-2925] [PMID: 16452206]
[190]
Kharas, M.G.; Janes, M.R.; Scarfone, V.M.; Lilly, M.B.; Knight, Z.A.; Shokat, K.M.; Fruman, D.A. Ablation of PI3K blocks BCR-ABL leukemogenesis in mice, and a dual PI3K/mTOR inhibitor prevents expansion of human BCR-ABL+ leukemia cells. J. Clin. Invest., 2008, 118(9), 3038-3050.
[http://dx.doi.org/10.1172/JCI33337] [PMID: 18704194]
[191]
Hugle, M.; Fulda, S. Dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor NVP-BEZ235 synergizes with chloroquine to induce apoptosis in embryonal rhabdomyosarcoma. Cancer Lett., 2015, 360(1), 1-9.
[http://dx.doi.org/10.1016/j.canlet.2014.12.016] [PMID: 25637161]
[192]
Lv, X.; Ma, X.; Hu, Y. Furthering the design and the discovery of small molecule ATP-competitive mTOR inhibitors as an effective cancer treatment. Expert Opin. Drug Discov., 2013, 8(8), 991-1012.
[http://dx.doi.org/10.1517/17460441.2013.800479] [PMID: 23668243]
[193]
Huang, Z.; Wu, Y.; Zhou, X.; Qian, J.; Zhu, W.; Shu, Y.; Liu, P. Clinical efficacy of mTOR inhibitors in solid tumors: a systematic review. Future Oncol., 2015, 11(11), 1687-1699.
[http://dx.doi.org/10.2217/fon.15.70] [PMID: 26043220]
[194]
Xiao, Z.; Lei, F.; Chen, X.; Wang, X.; Cao, L.; Ye, K.; Zhu, W.; Xu, S. Design, synthesis, and antitumor evaluation of quinoline-imidazole derivatives. Arch. Pharm. (Weinheim), 2018, 351(6), e1700407.
[http://dx.doi.org/10.1002/ardp.201700407] [PMID: 29732607]
[195]
Ma, X.; Lv, X.; Qiu, N.; Yang, B.; He, Q.; Hu, Y. Discovery of novel quinoline-based mTOR inhibitors via introducing intra-molecular hydrogen bonding scaffold (iMHBS): the design, synthesis and biological evaluation. Bioorg. Med. Chem., 2015, 23(24), 7585-7596.
[http://dx.doi.org/10.1016/j.bmc.2015.11.003] [PMID: 26596710]
[196]
Ma, X.D.; Qiu, N.; Yang, B.; He, Q.J.; Hu, Y.Z. Novel quinoline-derived mTOR inhibitors with remarkable enzymatic and cellular activities: design, synthesis and biological evaluation. MedChemComm, 2016, 7(2), 297-310.
[http://dx.doi.org/10.1039/C5MD00401B]
[197]
Cheng, H.; Johnson, T.W.; Hoffman, J.E.; Guo, L.C.; Liu, Z.; Johnson, T.O.; Liu, K.K-C. Imidazo[1,5]naphthyridine compounds, their pharmaceutical use and compositions. U.S. Patent 20110190326, 2009.
[198]
Hu, M.; Huang, H.; Zhao, R.; Li, P.; Li, M.; Miao, H.; Chen, N.; Chen, M. AZD8055 induces cell death associated with autophagy and activation of AMPK in hepatocellular carcinoma. Oncol. Rep., 2014, 31(2), 649-656.
[http://dx.doi.org/10.3892/or.2013.2890] [PMID: 24297300]
[199]
Liu, M.; Gu, P.; Guo, W.; Fan, X. C6 ceramide sensitizes the anti-hepatocellular carcinoma (HCC) activity by AZD-8055, a novel mTORC1/2 dual inhibitor. Tumour Biol., 2016, 37(8), 11039-11048.
[http://dx.doi.org/10.1007/s13277-015-4598-1] [PMID: 26897748]
[200]
Liao, H.; Huang, Y.; Guo, B.; Liang, B.; Liu, X.; Ou, H.; Jiang, C.; Li, X.; Yang, D. Dramatic antitumor effects of the dual mTORC1 and mTORC2 inhibitor AZD2014 in hepatocellular carcinoma. Am. J. Cancer Res., 2014, 5(1), 125-139.
[PMID: 25628925]
[201]
Wang, K.; Fan, Y.; Chen, G.; Wang, Z.; Kong, D.; Zhang, P. MEK-ERK inhibition potentiates WAY-600-induced anti-cancer efficiency in preclinical hepatocellular carcinoma (HCC) models. Biochem. Biophys. Res. Commun., 2016, 474(2), 330-337.
[http://dx.doi.org/10.1016/j.bbrc.2016.04.099] [PMID: 27107695]
[202]
Yongxi, T.; Haijun, H.; Jiaping, Z.; Guoliang, S.; Hongying, P. Autophagy inhibition sensitizes KU-0063794-mediated anti-HepG2 hepatocellular carcinoma cell activity in vitro and in vivo. Biochem. Biophys. Res. Commun., 2015, 465(3), 494-500.
[http://dx.doi.org/10.1016/j.bbrc.2015.08.045] [PMID: 26278819]
[203]
Kang, H.G.; Wang, B.Z.; Zhang, J.; Liu, M.R.; Li, Y.X. Combination of temsirolimus and adriamycin exhibits an enhanced antitumor effect in hepatocellular carcinoma. Clin. Res. Hepatol. Gastroenterol., 2017, 41(2), 197-203.
[http://dx.doi.org/10.1016/j.clinre.2016.09.005] [PMID: 27863926]
[204]
Yang, S.; Liu, G. Targeting the Ras/Raf/MEK/ERK pathway in hepatocellular carcinoma. Oncol. Lett., 2017, 13(3), 1041-1047.
[http://dx.doi.org/10.3892/ol.2017.5557] [PMID: 28454211]
[205]
Li, L.; Zhao, G.D.; Shi, Z.; Qi, L.L.; Zhou, L.Y.; Fu, Z.X. The Ras/Raf/MEK/ERK signaling pathway and its role in the occurrence and development of HCC. Oncol. Lett., 2016, 12(5), 3045-3050.
[http://dx.doi.org/10.3892/ol.2016.5110] [PMID: 27899961]
[206]
Roberts, P.J.; Der, C.J. Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene, 2007, 26(22), 3291-3310.
[http://dx.doi.org/10.1038/sj.onc.1210422] [PMID: 17496923]
[207]
Kudo, M.; Ueshima, K.; Ikeda, M.; Torimura, T.; Tanabe, N.; Aikata, H.; Izumi, N.; Yamasaki, T.; Nojiri, S.; Hino, K.; Tsumura, H.; Kuzuya, T.; Isoda, N.; Yasui, K.; Yoshimura, K.; Okusaka, T.; Furuse, J.; Kokudo, N.; Okita, K.; Arai, Y. Randomized, open label, multicenter, phase II trial comparing transarterial chemoembolization (TACE) plus sorafenib with TACE alone in patients with hepatocellular carcinoma (HCC): TACTICS trial. J. Clin. Oncol, 2018, 36(Suppl_4), 206.
[http://dx.doi.org/10.1200/JCO.2018.36.4_suppl.206]
[208]
Bruix, J.; Cheng, A.L.; Meinhardt, G.; Nakajima, K.; De Sanctis, Y.; Llovet, J. Prognostic factors and predictors of sorafenib benefit in patients with hepatocellular carcinoma: analysis of two phase III studies. J. Hepatol., 2017, 67(5), 999-1008.
[http://dx.doi.org/10.1016/j.jhep.2017.06.026] [PMID: 28687477]
[209]
Gong, X.; Qin, S. Study progression of anti-angiogenetic therapy and its combination with other agents for the treatment of advanced hepatocellular carcinoma. Hepatobiliary Surg. Nutr., 2018, 7(6), 466-474.
[http://dx.doi.org/10.21037/hbsn.2018.11.04] [PMID: 30652091]
[210]
Li, X.; Qiu, M.; Wang, S.; Zhu, H.; Feng, B.; Zheng, L. A Phase I dose-escalation, pharmacokinetics and food-effect study of oral donafenib in patients with advanced solid tumours. Cancer Chemother. Pharmacol., 2020, 85(3), 593-604.
[http://dx.doi.org/10.1007/s00280-020-04031-1] [PMID: 32008115]
[211]
Wan, P.T.C.; Garnett, M.J.; Roe, S.M.; Lee, S.; Niculescu-Duvaz, D.; Good, V.M.; Jones, C.M.; Marshall, C.J.; Springer, C.J.; Barford, D.; Marais, R.; Marais, R. Cancer Genome Project. Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. Cell, 2004, 116(6), 855-867.
[http://dx.doi.org/10.1016/S0092-8674(04)00215-6] [PMID: 15035987]
[212]
Chu, J.H.; Zhao, C.R.; Song, Z.Y.; Wang, R.Q.; Qin, Y.Z.; Li, W.B.; Qu, X.J. 1082-39, an analogue of sorafenib, inhibited human cancer cell growth more potently than sorafenib. Biomed. Pharmacother., 2014, 68(3), 335-341.
[http://dx.doi.org/10.1016/j.biopha.2014.01.010] [PMID: 24581722]
[213]
Yang, Z.; Fang, Z.; Wang, Z.X.; Wei, P. Synthesis and biological evaluation of sorafenib thiourea derivatives. Yao Xue Xue Bao, 2011, 46(9), 1093-1097.
[PMID: 22121780]
[214]
Yao, J.; He, Z.; Chen, J.; Sun, W.; Fang, H.; Xu, W. Design, synthesis and biological activities of sorafenib derivatives as antitumor agents. Bioorg. Med. Chem. Lett., 2012, 22(21), 6549-6553.
[http://dx.doi.org/10.1016/j.bmcl.2012.09.031] [PMID: 23021967]
[215]
Wang, M.; Xu, S.; Wu, C.; Liu, X.; Tao, H.; Huang, Y.; Liu, Y.; Zheng, P.; Zhu, W. Design, synthesis and activity of novel sorafenib analogues bearing chalcone unit. Bioorg. Med. Chem. Lett., 2016, 26(22), 5450-5454.
[http://dx.doi.org/10.1016/j.bmcl.2016.10.029] [PMID: 27777009]
[216]
Hwang, S.H.; Wecksler, A.T.; Zhang, G.; Morisseau, C.; Nguyen, L.V.; Fu, S.H.; Hammock, B.D. Synthesis and biological evaluation of sorafenib- and regorafenib-like sEH inhibitors. Bioorg. Med. Chem. Lett., 2013, 23(13), 3732-3737.
[http://dx.doi.org/10.1016/j.bmcl.2013.05.011] [PMID: 23726028]
[217]
Chen, F.; Fang, Y.; Zhao, R.; Le, J.; Zhang, B.; Huang, R.; Chen, Z.; Shao, J. Evolution in medicinal chemistry of sorafenib derivatives for hepatocellular carcinoma. Eur. J. Med. Chem., 2019, 179, 916-935.
[http://dx.doi.org/10.1016/j.ejmech.2019.06.070] [PMID: 31306818]
[218]
Jiao, Y.; Xin, B.T.; Zhang, Y.; Wu, J.; Lu, X.; Zheng, Y.; Tang, W.; Zhou, X. Design, synthesis and evaluation of novel 2-(1H-imidazol-2-yl) pyridine sorafenib derivatives as potential BRAF inhibitors and anti-tumor agents. Eur. J. Med. Chem., 2015, 90, 170-183.
[http://dx.doi.org/10.1016/j.ejmech.2014.11.008] [PMID: 25461318]
[219]
Facciorusso, A.; Licinio, R.; Carr, B.I.; Di Leo, A.; Barone, M. MEK 1/2 inhibitors in the treatment of hepatocellular carcinoma. Expert Rev. Gastroenterol. Hepatol., 2015, 9(7), 993-1003.
[http://dx.doi.org/10.1586/17474124.2015.1040763] [PMID: 25915713]
[220]
Tolcher, A.W.; Bendell, J.C.; Papadopoulos, K.P.; Burris, H.A., III; Patnaik, A.; Jones, S.F.; Rasco, D.; Cox, D.S.; Durante, M.; Bellew, K.M.; Park, J.; Le, N.T.; Infante, J.R. A phase IB trial of the oral MEK inhibitor trametinib (GSK1120212) in combination with everolimus in patients with advanced solid tumors. Ann. Oncol., 2015, 26(1), 58-64.
[http://dx.doi.org/10.1093/annonc/mdu482] [PMID: 25344362]
[221]
Huynh, H.; Ngo, V.C.; Koong, H.N.; Poon, D.; Choo, S.P.; Toh, H.C.; Thng, C.H.; Chow, P.; Ong, H.S.; Chung, A.; Goh, B.C.; Smith, P.D.; Soo, K.C. AZD6244 enhances the anti-tumor activity of sorafenib in ectopic and orthotopic models of human hepatocellular carcinoma (HCC). J. Hepatol., 2010, 52(1), 79-87.
[http://dx.doi.org/10.1016/j.jhep.2009.10.008] [PMID: 19910069]
[222]
Tai, W.M.; Yong, W.P.; Lim, C.; Low, L.S.; Tham, C.K.; Koh, T.S.; Ng, Q.S.; Wang, W.W.; Wang, L.Z.; Hartano, S.; Thng, C.H.; Huynh, H.; Lim, K.T.; Toh, H.C.; Goh, B.C.; Choo, S.P. A phase Ib study of selumetinib (AZD6244, ARRY-142886) in combination with sorafenib in advanced hepatocellular carcinoma (HCC). Ann. Oncol., 2016, 27(12), 2210-2215.
[http://dx.doi.org/10.1093/annonc/mdw415] [PMID: 27681866]
[223]
Lito, P.; Saborowski, A.; Yue, J.; Solomon, M.; Joseph, E.; Gadal, S.; Saborowski, M.; Kastenhuber, E.; Fellmann, C.; Ohara, K.; Morikami, K.; Miura, T.; Lukacs, C.; Ishii, N.; Lowe, S.; Rosen, N. Disruption of CRAF-mediated MEK activation is required for effective MEK inhibition in KRAS mutant tumors. Cancer Cell, 2014, 25(5), 697-710.
[http://dx.doi.org/10.1016/j.ccr.2014.03.011] [PMID: 24746704]
[224]
Charette, N.; De Saeger, C.; Lannoy, V.; Horsmans, Y.; Leclercq, I.; Stärkel, P. Salirasib inhibits the growth of hepatocarcinoma cell lines in vitro and tumor growth in vivo through ras and mTOR inhibition. Mol. Cancer, 2010, 9(1), 256.
[http://dx.doi.org/10.1186/1476-4598-9-256] [PMID: 20860815]
[225]
Charette, N.; De Saeger, C.; Horsmans, Y.; Leclercq, I.; Stärkel, P. Salirasib sensitizes hepatocarcinoma cells to TRAIL-induced apoptosis through DR5 and survivin-dependent mechanisms. Cell Death Dis., 2013, 4(1), e471.
[http://dx.doi.org/10.1038/cddis.2012.200] [PMID: 23348585]
[226]
Hennig, M.; Yip-Schneider, M.T.; Wentz, S.; Wu, H.; Hekmatyar, S.K.; Klein, P.; Bansal, N.; Schmidt, C.M. Targeting mitogen-activated protein kinase kinase with the inhibitor PD0325901 decreases hepatocellular carcinoma growth in vitro and in mouse model systems. Hepatology, 2010, 51(4), 1218-1225.
[http://dx.doi.org/10.1002/hep.23470] [PMID: 20112426]
[227]
Wang, Y.; Nie, H.; Zhao, X.; Qin, Y.; Gong, X. Bicyclol induces cell cycle arrest and autophagy in HepG2 human hepatocellular carcinoma cells through the PI3K/AKT and Ras/Raf/MEK/ERK pathways. BMC Cancer, 2016, 16(1), 742.
[http://dx.doi.org/10.1186/s12885-016-2767-2] [PMID: 27654866]
[228]
Yang, F.; Li, J.; Zhu, J.; Wang, D.; Chen, S.; Bai, X. Hydroxysafflor yellow A inhibits angiogenesis of hepatocellular carcinoma via blocking ERK/MAPK and NF-κB signaling pathway in H22 tumor-bearing mice. Eur. J. Pharmacol., 2015, 754, 105-114.
[http://dx.doi.org/10.1016/j.ejphar.2015.02.015] [PMID: 25720342]
[229]
Burdeos, G.C.; Ito, J.; Eitsuka, T.; Nakagawa, K.; Kimura, F.; Miyazawa, T. δ and γ tocotrienols suppress human hepatocellular carcinoma cell proliferation via regulation of Ras-Raf-MEK-ERK pathway-associated upstream signaling. Food Funct., 2016, 7(10), 4170-4174.
[http://dx.doi.org/10.1039/C6FO00826G] [PMID: 27713963]
[230]
Heindryckx, F.; Gerwins, P. Targeting the tumor stroma in hepatocellular carcinoma. World J. Hepatol., 2015, 7(2), 165-176.
[http://dx.doi.org/10.4254/wjh.v7.i2.165] [PMID: 25729472]
[231]
Harding, J.J.; El Dika, I.; Abou-Alfa, G.K. Immunotherapy in hepatocellular carcinoma: primed to make a difference? Cancer, 2016, 122(3), 367-377.
[http://dx.doi.org/10.1002/cncr.29769] [PMID: 26540029]
[232]
Prieto, J.; Melero, I.; Sangro, B. Immunological landscape and immunotherapy of hepatocellular carcinoma. Nat. Rev. Gastroenterol. Hepatol., 2015, 12(12), 681-700.
[http://dx.doi.org/10.1038/nrgastro.2015.173] [PMID: 26484443]
[233]
Parry, R.V.; Chemnitz, J.M.; Frauwirth, K.A.; Lanfranco, A.R.; Braunstein, I.; Kobayashi, S.V.; Linsley, P.S.; Thompson, C.B.; Riley, J.L. CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms. Mol. Cell. Biol., 2005, 25(21), 9543-9553.
[http://dx.doi.org/10.1128/MCB.25.21.9543-9553.2005] [PMID: 16227604]
[234]
Lo, B.; Fritz, J.M.; Su, H.C.; Uzel, G.; Jordan, M.B.; Lenardo, M.J. CHAI and LATAIE: new genetic diseases of CTLA-4 checkpoint insufficiency. Blood, 2016, 128(8), 1037-1042.
[http://dx.doi.org/10.1182/blood-2016-04-712612] [PMID: 27418640]
[235]
Finkelmeier, F.; Waidmann, O.; Trojan, J. Nivolumab for the treatment of hepatocellular carcinoma. Expert Rev. Anticancer Ther., 2018, 18(12), 1169-1175.
[http://dx.doi.org/10.1080/14737140.2018.1535315] [PMID: 30304963]
[236]
Sangro, B.; Park, J.-W.; Cruz, C.M.D.; Anderson, J.; Lang, L.; Neely, J.; Shaw, J.W.; Cheng, A.-L. A randomized, multicenter, phase 3 study of nivolumab vs. sorafenib as firstline treatment in patients (pts) with advanced hepatocellular carcinoma (HCC): CheckMate-459. J. Clin. Oncol., 2016, 34, TPS4147.
[http://dx.doi.org/10.1200/JCO.2016.34.15_suppl.TPS4147]
[237]
Shrestha, R.; Bridle, K.R.; Crawford, D.H.G.; Jayachandran, A. Immune checkpoint blockade therapies for HCC: current status and future implications. Hepatoma Res., 2019, 5, 32.
[http://dx.doi.org/10.20517/2394-5079.2019.24]
[238]
Exposito, M.J.J.; Akce, M.; Alvarez, J.L.M.; Assenat, E.; Balart, L.A.; Baron, A.D.; Decaens, T.; Heurgue-Berlot, A.; Martin, A.O.; Paik, S.W.; Poulart, V.; Sehbai, A.S.; Shemada, M.; Takemura, N.; Yoon, J.-H. CA209-9DX: phase III, randomized, double-blind study of adjuvant nivolumab vs. placebo for patients with hepatocellular carcinoma (HCC) at high risk of recurrence after curative resection or ablation. Ann. Oncol., 2018, 29(Suppl_8), viii267-viii268.
[http://dx.doi.org/10.1093/annonc/mdy282.166]
[239]
Zhu, A.X.; Finn, R.S.; Edeline, J.; Cattan, S.; Ogasawara, S.; Palmer, D.H.; Verslype, C.; Zagonel, V.; Fartoux, L.; Vogel, A.; Sarker, D.; Verset, G.; Chan, S.L.; Knox, J.J.; Daniele, B.; Ebbinghaus, S.; Ma, J.; Siegel, A.B.; Cheng, A.-L.; Kudo, M. Pembrolizumab (pembro) in patients with advanced hepatocellular carcinoma (HCC): KEYNOTE-224 update. J. Clin. Oncol., 2018, 36(Suppl_15), 4020.
[http://dx.doi.org/10.1200/JCO.2018.36.15_suppl.4020]
[240]
Finn, R.S.; Ryoo, B.-Y.; Merle, P.; Kudo, M.; Bouattour, M.; Lim, H.-Y.; Breder, V.V.; Edeline, J.; Chao, Y.; Ogasawara, S.; Yau, T.; Garrido, M.; Chan, S.L.; Knox, J.J.; Daniele, B.; Ebbinghaus, S.; Chen, E.; Siegel, A.B.; Zhu, A.X.; Cheng, A.-L. Results of KEYNOTE-240: phase 3 study of pembrolizumab (pembro) vs. best supportive care (BSC) for second line therapy in advanced hepatocellular carcinoma (HCC). J. Clin. Oncol., 2019, 37(Suppl_15), 4004.
[http://dx.doi.org/10.1200/JCO.2019.37.15_suppl.4004]
[241]
Pinato, D.J.; Cole, T.; Bengsch, B.; Tait, P.; Sayed, A.A.; Abomeli, F.; Gramenitskaya, D.; Allara, E.; Thomas, R.; Ward, C.; Wong, C.N.; Akarca, A.U.; Blanco, J.M.; Marafioti, T.; Marchesi, J.; Sharma, R. 750PA phase Ib study of Pembrolizumab following trans-arterial chemoembolization (TACE) in hepatocellular carcinoma (HCC): PETAL Ann. Oncol., 2019, 30(Suppl_5), v288.
[http://dx.doi.org/10.1093/annonc/mdz247.076]
[242]
Qin, S.; Finn, R.S.; Kudo, M.; Meyer, T.; Vogel, A.; Ducreux, M.; Mercade, T.M.; Tomasello, G.; Boisserie, F.; Hou, J.; Li, C.; Song, J.; Zhu, A.X. A phase 3, randomized, open-label, multicenter study to compare the efficacy and safety of Tislelizumab, an anti-PD-1 antibody, versus sorafenib as first-line treatment in patients with advanced hepato3146 Current Medicinal Chemistry, 2021, Vol. 28, No. 16 Wang et al. cellular carcinoma J. Clin. Oncol, 2018, 36(15_Suppl), TPS3110.
[http://dx.doi.org/10.1200/JCO.2018.36.15_suppl.TPS3110]
[243]
Huang, J.; Mo, H.; Wu, D.; Chen, X.; Ma, L.; Lan, B.; Qu, D.; Yang, Q.; Xu, B. Phase I study of the anti-PD-1 antibody SHR-1210 in patients with advanced solid tumors J. Clin.Oncol., 2017, 35(15_Suppl), e15572.
[http://dx.doi.org/10.1200/JCO.2017.35.15_suppl.e15572]
[244]
Qin, S.; Chen, Z.; Liu, Y.; Xiong, J.; Ren, Z.; Meng, Z.; Gu, S.; Wang, L.; Zou, J. A phase II study of anti-PD-1 antibody camrelizumab plus FOLFOX4 or GEMOX systemic chemotherapy as first-line therapy for advanced hepatocellular carcinoma or biliary tract cancer J. Clin.Oncol., 2019, 35(15_Suppl), 4074.
[http://dx.doi.org/10.1200/JCO.2019.37.15_suppl.4074]
[245]
Busato, D.; Mossenta, M.; Baboci, L.; Di Cintio, F.; Toffoli, G.; Dal Bo, M. Novel immunotherapeutic approaches for hepatocellular carcinoma treatment. Expert Rev. Clin. Pharmacol., 2019, 12(5), 453-470.
[http://dx.doi.org/10.1080/17512433.2019.1598859] [PMID: 30907177]
[246]
Nishida, N.; Kudo, M. Immune checkpoint blockade for the treatment of human hepatocellular carcinoma. Hepatol. Res., 2018, 48(8), 622-634.
[http://dx.doi.org/10.1111/hepr.13191] [PMID: 29734514]
[247]
Duffy, A.G.; Makarova-Rusher, O.V.; Pratt, D.; Kleiner, D.E.; Fioravanti, S.; Walker, M.; Carey, S.; Figg, W.D.; Steinberg, S.M.; Anderson, V.; Levy, E.; Krishnasamy, V.; Wood, B.J.; Greten, T.F. Tremelimumab, a monoclonal antibody against CTLA-4, in combination with subtotal ablation (trans-catheter arterial chemoembolization (TACE), radiofrequency ablation (RFA) or cryoablation) in patients with hepatocellular carcinoma (HCC) and biliary tract carcinoma (BTC). J. Clin.Oncol., 2016, 34(4_Suppl), 270.
[http://dx.doi.org/10.1200/jco.2016.34.4_suppl.270]
[248]
Abou-Alfa, G.K.; Chan, S.L.; Furuse, J.; Galle, P.R.; Kelley, R.K.; Qin, S.; Armstrong, J.; Darilay, A.; Vlahovic, G.; Negro, A.; Sangro, B. A randomized, multicenter phase 3 study of durvalumab (D) and tremelimumab (T) as first-line treatment in patients with unresectable hepatocellular carcinoma (HCC): HIMALAYA study. J. Clin.Oncol., 2018, 36(15_Suppl), TPS4144.
[http://dx.doi.org/10.1200/JCO.2018.36.15_suppl.TPS4144]
[249]
Kelley, R.K.; Abou-Alfa, G.K.; Bendell, J.C.; Kim, T-Y.; Borad, M.J.; Yong, W-P.; Morse, M.; Kang, Y-K.; Rebelatto, M.; Makowsky, M.; Xiao, F.; Morris, S.R.; Sangro, B. Phase I/II study of durvalumab and tremelimumab in patients with unresectable hepatocellular carcinoma (HCC): phase I safety and efficacy analyses. J. Clin.Oncol., 2017, 35(15_Suppl), 4073.
[http://dx.doi.org/10.1200/JCO.2017.35.15_suppl.4073]
[250]
Floudas, C.S.; Xie, C.; Brar, G.; Morelli, M.P.; Fioravanti, S.; Walker, M.; Mabry-Hrones, D.; Wood, B.J.; Levy, E.B.; Krishnasamy, V.P.; Greten, T.F. Combined immune checkpoint inhibition (ICI) with tremelimumab and durvalumab in patients with advanced hepatocellular carcinoma (HCC) or biliary tract carcinomas (BTC). J. Clin.Oncol., 2019, 37(4_Suppl), 336.
[http://dx.doi.org/10.1200/JCO.2019.37.4_suppl.336]
[251]
Dawkins, J.; Webster, R.M. The hepatocellular carcinoma market. Nat. Rev. Drug Discov., 2019, 18(1), 13-14.
[http://dx.doi.org/10.1038/nrd.2018.146] [PMID: 30168534]
[252]
Lee, M.; Ryoo, B.Y.; Hsu, C.H.; Numata, K.; Stein, S.; Verret, W.; Hack, S.; Spahn, J.; Liu, B.; Abdullah, H.; He, R.; Lee, K.H. LBA39 - Randomised efficacy and safety results for atezolizumab (atezo) + bevacizumab (bev) in patients (pts) with previously untreated, unresectable hepatocellular carcinoma (HCC). JAnn. Oncol., 2019, 30(Suppl.5), v875.
[http://dx.doi.org/10.1093/annonc/mdz394.030]
[253]
Harding, J.J. Immune checkpoint blockade in advanced hepatocellular carcinoma: an update and critical review of ongoing clinical trials. Future Oncol., 2018, 14(22), 2293-2302.
[http://dx.doi.org/10.2217/fon-2018-0008] [PMID: 29663837]
[254]
Singh, A.V.; Sitti, M. Targeted drug delivery and imaging using mobile milli/microrobots: a promising future towards theranostic pharmaceutical design. Curr. Pharm. Des., 2016, 22(11), 1418-1428.
[http://dx.doi.org/10.2174/1381612822666151210124326] [PMID: 26654436]
[255]
Singh, A.V.; Ansari, M.H.D.; Laux, P.; Luch, A. Micro-nanorobots: important considerations when developing novel drug delivery platforms. Expert Opin. Drug Deliv., 2019, 16(11), 1259-1275.
[http://dx.doi.org/10.1080/17425247.2019.1676228] [PMID: 31580731]
[256]
Sun, M.; Fan, X.; Meng, X.; Song, J.; Chen, W.; Sun, L.; Xie, H. Magnetic biohybrid micromotors with high maneuverability for efficient drug loading and targeted drug delivery. Nanoscale, 2019, 11(39), 18382-18392.
[http://dx.doi.org/10.1039/c9nr06221a] [PMID: 31573587]
[257]
Singh, A.V.; Ansari, M.H.D.; Dayan, C.B.; Giltinan, J.; Wang, S.; Yu, Y.; Kishore, V.; Laux, P.; Luch, A.; Sitti, M. Multifunctional magnetic hairbot for untethered osteogenesis, ultrasound contrast imaging and drug delivery. Biomaterials, 2019, 219, 119394.
[http://dx.doi.org/10.1016/j.biomaterials.2019.119394] [PMID: 31382208]
[258]
Baxi, S.; Yang, A.; Gennarelli, R.L.; Khan, N.; Wang, Z.; Boyce, L.; Korenstein, D. Immune-related adverse events for anti-PD-1 and anti-PD-L1 drugs: systematic review and meta-analysis. BMJ, 2018, 360, k793.
[http://dx.doi.org/10.1136/bmj.k793] [PMID: 29540345]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy