Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Research Article

Identification of Potential Antimicrobial Compounds from a Marine Streptomyces sp. SM2.4 Strain (MH752437) Isolated from Rachgoun Island in Western Algeria

Author(s): Nesrine Boublenza, Nadir Boudjlal Dergal*, Larbi Belyagoubi, Noujoud Gabed, Djamel-Eddine Abdelouahid, Alaeddine Redissi, Ameur Cherif, Amor Mosbah, Valme Jurado, Cesareo Saiz-Jimenez and Sidi-Mohammed El-Amine Abi-Ayad

Volume 17, Issue 10, 2021

Published on: 22 February, 2021

Article ID: e190721191724 Pages: 14

DOI: 10.2174/1573407217666210223104350

Price: $65

Abstract

Background: Marine actinobacteria are a potential resource for natural products; their secondary bioactive metabolites have shown several biological activities. Most of the isolated and identified actinobacteria in Algeria were usually explored from caves, Saharan soil or palm groves. The marine ecosystem is poorly explored and documented.

Methods: Five Streptomyces strains producing bioactive compounds were isolated from Rachgoun Island located in Western Algeria and characterised phenotypically and genotypically using microbiological and 16S rRNA sequencing methods, respectively. The crude extract of the most representative strain “Streptomyces sp. strain SM2.4” and its seven active fractions were characterised by GC/MS analysis.

Results: Streptomyces sp. strain SM2.4 revealed the strongest activity against the Gram-positive bacteria Staphylococcus aureus and Bacillus subtilis, the fungus Aspergillus niger and was inactive against Gram-negative bacteria.

GC/MS analysis of the methylated crude extract of Streptomyces sp. strain SM2.4 revealed the presence of 11 major compounds, including fatty acids methyl ester (12-methyltridecanoic acid methyl ester, 9-hexadecenoic acid methyl ester, hexadecanoic acid methyl ester, 14-methylhexadecanoic acid methyl ester and 16-methylheptadecanoic acid methyl ester), 2,4-di-tert-butylphenol, (4S,4aS,8aR)-4,8a-dimethyloctahydro-4a(2H)-naphthalenol (geosmin), 2,4-dimethylbenzaldehyde, 3,4-difluorobenzaldehyde, dimethylfuran-2,4-dicarboxylate and pyrrolo(1,2-a)pyrazine-1,4-dione, hexahydro-3-(2-methylpropyl)-. Partial purification of the crude extract by Thin-layer chromatography provided seven active fractions, which were tested by radial diffusion assay. GC/MS analysis of the active TLC-fractions revealed the presence of a mixture of active compounds from which 2- (bromomethyl)-2-(2-methylphenyl)-1,3-dioxolane was found to be a new 1,3 dioxolane derivative. Furthermore, 3,4-dimethylbenzamide and pyrido[2,3-d] pyridazine-1,4-dione, hexahydro- 3-(2-methylpropyl)-, were extracted for the first time from a natural source.

Conclusion: Our study reveals that marine Streptomyces sp. strain SM2.4 has an interesting antimicrobial potential due to its panel of bioactive compounds.

Keywords: 16S rRNA gene, antimicrobial activity, bioactive compounds, crude extract, GC/MS, marine actinomycetes.

Graphical Abstract

[1]
Lindequist, U. Marine-derived pharmaceuticals - Challenges and opportunities. Biomol. Ther. (Seoul), 2016, 24(6), 561-571.
[http://dx.doi.org/10.4062/biomolther.2016.181] [PMID: 27795450]
[2]
Carroll, A.R.; Copp, B.R.; Davis, R.A.; Keyzers, R.A.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep., 2019, 36(1), 122-173.
[http://dx.doi.org/10.1039/C8NP00092A] [PMID: 30663727]
[3]
Waksman, S.A.; Woodruff, H.B. Bacteriostatic and bactericidal substances produced by a soil Actinomyces. Exp. Biol. Med., 1940, 45(2), 609-614.
[http://dx.doi.org/10.3181/00379727-45-11768]
[4]
Schatz, A.; Bugle, E.; Waksman, S.A. Streptomycin, a substance exhibiting antibiotic activity against Gram-positive and Gram-negative bacteria. Exp. Biol. Med., 1944, 55, 66-69.
[http://dx.doi.org/10.3181/00379727-55-14461]
[5]
Cuevas, C.; Francesch, A. Development of Yondelis® (trabectedin, ET-743). A semisynthetic process solves the supply problem. Nat. Prod. Rep., 2009, 26(3), 322.
[http://dx.doi.org/10.1039/b808331m] [PMID: 19240944]
[6]
Cuevas, C.; Francesch, A. Development of Yondelis_ (trabectedin, ET-743). A semisynthetic process solves the supply problem. Nat. Prod. Rep., 2009, 26(3), 322-337.
[http://dx.doi.org/10.1039/B808331M] [PMID: 19240944]
[7]
Rath, C.M.; Janto, B.; Earl, J.; Ahmed, A.; Hu, F.Z.; Hiller, L.; Dahlgren, M.; Kreft, R.; Yu, F.; Wolff, J.J.; Kweon, H.K.; Christiansen, M.A.; Håkansson, K.; Williams, R.M.; Ehrlich, G.D.; Sherman, D.H. Meta-omic characterization of the marine invertebrate microbial consortium that produces the chemotherapeutic natural product ET-743. ACS Chem. Biol., 2011, 6(11), 1244-1256.
[http://dx.doi.org/10.1021/cb200244t] [PMID: 21875091]
[8]
Schofield, M.M.; Jain, S.; Porat, D.; Dick, G.J.; Sherman, D.H. Identification and analysis of the bacterial endosymbiont specialized for production of the chemotherapeutic natural product ET-743. Environ. Microbiol., 2015, 17(10), 3964-3975.
[http://dx.doi.org/10.1111/1462-2920.12908] [PMID: 26013440]
[9]
Di, X.; Rouger, C.; Hardardottir, I.; Jona Freysdottir, J.; Molinski, T.F. Tasdemir, D.; Omarsdottir, S. 6-Bromoindole Derivatives from the icelandic marine sponge Geodia barretti: Isolation and anti-inflammatory. Activity Mar. Drugs., 2018, 16(11), 437.
[http://dx.doi.org/10.3390/md16110437] [PMID: 30413031]
[10]
Williams, P.G. Panning for chemical gold: marine bacteria as a source of new therapeutics. Trends Biotechnol., 2009, 27(1), 45-52.
[http://dx.doi.org/10.1016/j.tibtech.2008.10.005] [PMID: 19022511]
[11]
Watve, M.G.; Tickoo, R.; Jog, M.M.; Bhole, B.D. How many antibiotics are produced by the genus Streptomyces? Arch. Microbiol., 2001, 176(5), 386-390.
[http://dx.doi.org/10.1007/s002030100345] [PMID: 11702082]
[12]
Lam, K.S. Discovery of novel metabolites from marine actinomycetes. Curr. Opin. Microbiol., 2006, 9(3), 245-251.
[http://dx.doi.org/10.1016/j.mib.2006.03.004] [PMID: 16675289]
[13]
Djinni, I.; Defant, A.; Kecha, M.; Mancini, I. Actinobacteria derived from Algerian ecosystems as a prominent source of antimicrobial molecules. Antibiotics (Basel), 2019, 8(4), 172.
[http://dx.doi.org/10.3390/antibiotics8040172] [PMID: 31581466]
[14]
Ramos, E.A.; Benabdi, M.; Sghaier, Y.R.; Forcada, A.A.; Valle, P.C.; Ouerghi, A. Algérie: Île de Rachgoun. Cartographie des habitats marins clés de Méditerranée et initiation de réseaux de surveillance. Ed. CAR/ASP - Projet MedKeyHabitats edn. PNUE/PAM-CAR/ASP; , 2016, p. 113.
[15]
Shirling, E.B.; Gottlieb, D. Methods for characterization of Streptomyces species. Int. J. Syst. Bacteriol., 1966, 16(3), 313-340.
[http://dx.doi.org/10.1099/00207713-16-3-313]
[16]
Marmur, J. A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J. Mol. Biol., 1961, 3, 208-218.
[http://dx.doi.org/10.1016/S0022-2836(61)80047-8]
[17]
Juretschko, S.; Timmermann, G.; Schmid, M.; Schleifer, K-H.; Pommerening-Röser, A.; Koops, H-P.; Wagner, M. Combined molecular and conventional analyses of nitrifying bacterium diversity in activated sludge: Nitrosococcus mobilis and Nitrospira-like bacteria as dominant populations. Appl. Environ. Microbiol., 1998, 64(8), 3042-3051.
[http://dx.doi.org/10.1128/AEM.64.8.3042-3051.1998] [PMID: 9687471]
[18]
Edwards, U.; Rogall, T.; Blöcker, H.; Emde, M.; Böttger, E.C. Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res., 1989, 17(19), 7843-7853.
[http://dx.doi.org/10.1093/nar/17.19.7843] [PMID: 2798131]
[19]
Teske, A.; Wawer, C.; Muyzer, G.; Ramsing, N.B. Distribution of sulfate-reducing bacteria in a stratified fjord (Mariager Fjord, Denmark) as evaluated by most-probable-number counts and denaturing gradient gel electrophoresis of PCR-amplified ribosomal DNA fragments. Appl. Environ. Microbiol., 1996, 62(4), 1405-1415.
[http://dx.doi.org/10.1128/AEM.62.4.1405-1415.1996] [PMID: 8919802]
[20]
Thompson, J.D.; Gibson, T.J.; Plewniak, F.; Jeanmougin, F.; Higgins, D.G. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res., 1997, 25(24), 4876-4882.
[http://dx.doi.org/10.1093/nar/25.24.4876] [PMID: 9396791]
[21]
Yoon, S-H.; Ha, S-M.; Kwon, S.; Lim, J.; Kim, Y.; Seo, H.; Chun, J. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int. J. Syst. Evol. Microbiol., 2017, 67(5), 1613-1617.
[http://dx.doi.org/10.1099/ijsem.0.001755] [PMID: 28005526]
[22]
Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol., 2016, 33(7), 1870-1874.
[http://dx.doi.org/10.1093/molbev/msw054] [PMID: 27004904]
[23]
Felsenstein, J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evol., 1981, 17(6), 368-376.
[http://dx.doi.org/10.1007/BF01734359] [PMID: 7288891]
[24]
Kuester, E.; Williams, S.T. Selection of media for isolation of streptomycetes. Nature, 1964, 202, 928-929.
[http://dx.doi.org/10.1038/202928a0] [PMID: 14190108]
[25]
Bastide, A.; de Méo, M.; Andriantsoa, M.; Laget, M.; Dumènil, G. Isolement et sèlection de souches d’actinomycètes productrices de substances antifongiques de structure non-polyènique. MIRCEN J., 1986, 2, 453-466.
[http://dx.doi.org/10.1007/BF00933368]
[26]
Subramaniyam, R.; Vimala, R. Duction of bioactive substances: A comparative study. Int. J. Sci. Nat., 2012, 3(3), 480-486.
[27]
Karaman, I.; Şahin, F.; Güllüce, M.; Ogütçü, H.; Sengül, M.; Adigüzel, A. Antimicrobial activity of aqueous and methanol extracts of Juniperus oxycedrus L. J. Ethnopharmacol., 2003, 85(2-3), 231-235.
[http://dx.doi.org/10.1016/S0378-8741(03)00006-0] [PMID: 12639746]
[28]
Cambon, F.; Soudière, O. Comment produire un inoculum de Fusarium graminearum en grande quantité pour le criblage de nouvelles sources de résistance à la fusariose de l’épi au champ? Cah. Tech. INRA, 2018, 94, 1-11.
[29]
Lehrer, R.I.; Rosenman, M.; Harwig, S.S.L.; Jackson, R.; Eisenhauer, P. Ultrasensitive assays for endogenous antimicrobial polypeptides. J. Immunol. Methods, 1991, 137(2), 167-173.
[http://dx.doi.org/10.1016/0022-1759(91)90021-7] [PMID: 1901580]
[30]
Zare-Zardini, H.; Taheri-Kafrani, A.; Ordooei, M.; Ebrahimi, L.; Tolueinia, B.; Soleimanizadeh, M. Identification and biochemical characterization of a new antibacterial and antifungal peptide derived from the insect Sphodromantis viridis. Biochemistry (Mosc.), 2015, 80(4), 433-440.
[http://dx.doi.org/10.1134/S0006297915040069] [PMID: 25869360]
[31]
Tivendale, N.D.; Jewett, E.M.; Hegeman, A.D.; Cohen, J.D. Extraction, purification, methylation and GC-MS analysis of short-chain carboxylic acids for metabolic flux analysis. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2016, 1028, 165-174.
[http://dx.doi.org/10.1016/j.jchromb.2016.05.042] [PMID: 27348709]
[32]
Yang, Z.; He, J.; Wei, X.; Ju, J.; Ma, J. Exploration and genome mining of natural products from marine Streptomyces. Appl. Microbiol. Biotechnol., 2020, 104(1), 67-76.
[http://dx.doi.org/10.1007/s00253-019-10227-0] [PMID: 31773207]
[33]
Dalisay, D.S.; Williams, D.E.; Wang, X.L.; Centko, R.; Chen, J.; Andersen, R.J. Marine sediment-derived Streptomyces bacteria from British Columbia, Canada are a promising microbiota resource for the discovery of antimicrobial natural products. PLoS One, 2013, 8(10), e77078.
[http://dx.doi.org/10.1371/journal.pone.0077078] [PMID: 24130838]
[34]
Loqman, S.; Bouizgarne, B.; Barka, E.A.; Clément, C.; von Jan, M.; Spröer, C.; Klenk, H.P.; Ouhdouch, Y. Streptomyces thinghirensis sp. nov. isolated from rhizosphere soil of Vitis vinifera. Int. J. Syst. Evol. Microbiol., 2009, 59(Pt 12), 3063-3067.
[http://dx.doi.org/10.1099/ijs.0.008946-0] [PMID: 19643894]
[35]
Smati, M.; Kitouni, M. Diversity of actinobacteria in the marshes of Ezzemoul and Djendli in northeastern Algeria. Eur. J. Ecol., 2019, 5(2), 41-53.
[http://dx.doi.org/10.2478/eje-2019-0009]
[36]
Hasaneen, M.N.A.; El-Sayed, A.K.A.; Sabry, S.M. Identification, characterization and optimized antimicrobial production of Streptomyces thinghirensis isolate. J. Agric. Chem. Biotechnol., 2018, 9, 263-268.
[37]
Ningthoujam, D.S.; Sanasam, S. Studies on Bioactive Actinomycetes in a Niche Biotope, Nambul River in Manipur, India. J. Microb. Biochem. Technol., 2011, 1(S6), 001.
[http://dx.doi.org/10.4172/1948-5948.S6-001]
[38]
Sarmiento-Vizcaíno, A.; Espadas, J.; Martín, J.; Braña, A.F.; Reyes, F.; García, L.A.; Blanco, G. Atmospheric precipitations, hailstone and rainwater, as a novel source of Streptomyces producing bioactive natural products. Front. Microbiol., 2018, 9(9), 773.
[http://dx.doi.org/10.3389/fmicb.2018.00773] [PMID: 29740412]
[39]
Zhao, F.; Wang, P.; Lucardi, R.D.; Su, Z.; Li, S. Natural Sources and Bioactivities of 2,4-Di-Tert-Butylphenol and Its Analogs. Toxins (Basel), 2020, 12(1), 35.
[http://dx.doi.org/10.3390/toxins12010035] [PMID: 31935944]
[40]
Belghit, S.; Driche, E.H.; Bijani, C.; Zitouni, A.; Sabaou, N.; Badji, B.; Mathieu, F. Activity of 2,4-Di-tert-butylphenol produced by a strain of Streptomyces mutabilis isolated from a Saharan soil against Candida albicans and other pathogenic fungi. J. Mycol. Med., 2016, 26(2), 160-169.
[http://dx.doi.org/10.1016/j.mycmed.2016.03.001] [PMID: 27107984]
[41]
Chawawisit, K.; Phuangthip, B.; Worrapong, P.; Monthon, L. 2,4-Di-tert-butylphenol, the bioactive compound produced by Streptomyces sp. KB1. J. Appl. Pharm. Sci., 2015, 5(3), 7-12.
[http://dx.doi.org/10.7324/japs.2015.510.s2]
[42]
Ser, H-L.; Palanisamy, U.D.; Yin, W-F.; Abd Malek, S.N.; Chan, K-G.; Goh, B-H.; Lee, L-H. Presence of antioxidative agent, Pyrrolo[1,2-a]pyrazine-1,4-dione, hexahydro- in newly isolated Streptomyces mangrovisoli sp. nov. Front. Microbiol., 2015, 6, 854.
[http://dx.doi.org/10.3389/fmicb.2015.00854] [PMID: 26347733]
[43]
Pooja, S.; Aditi, T.; Naine, S.J.; Subathra Devi, C. Bioactive compounds from marine Streptomyces sp. VITPSA as therapeutics. Front. Biol., 2017, 12(4), 280-289.
[http://dx.doi.org/10.1007/s11515-017-1459-x]
[44]
Nabila, I.M.; Kannabiran, K. Antagonistic activity of terrestrial Streptomyces sp. VITNK9 against Gram negative bacterial pathogens affecting the fish and shellfish in aquaculture. Rev. Biol. Mar. Oceanogr., 2018, 53(2), 171.
[http://dx.doi.org/10.22370/rbmo.2018.53.2.1291]
[45]
Siddharth, S.; Vittal, R.R. Evaluation of antimicrobial, enzyme inhibitory, antioxidant and cytotoxic activities of partially purified volatile metabolites of marine Streptomyces sp.S2A. Microorganisms, 2018, 6(3), 72.
[http://dx.doi.org/10.3390/microorganisms6030072] [PMID: 30021990]
[46]
Tan, L.T-H.; Chan, K-G.; Pusparajah, P.; Yin, W-F.; Khan, T.M.; Lee, L-H.; Goh, B-H. Mangrove derived Streptomyces sp. MUM265 as a potential source of antioxidant and anticolon-cancer agents. BMC Microbiol., 2019, 19(1), 38.
[http://dx.doi.org/10.1186/s12866-019-1409-7] [PMID: 30760201]
[47]
Kiran, G.S.; Priyadharsini, S.; Sajayan, A.; Ravindran, A.; Selvin, J. An antibiotic agent pyrrolo[1,2-a]pyrazine-1,4-dione,hexahydro isolated from a marine bacteria Bacillus tequilensis MSI45 effectively controls multi-drug resistant Staphylococcus aureus. RSC Adv., 2018, 8, 17837-17846..
[http://dx.doi.org/10.1039/c8ra00820e]
[48]
Lalitha, P.; Veena, V.; Vidhyapriya, P.; Lakshmi, P.; Krishna, R.; Sakthivel, N. Anticancer potential of pyrrole (1, 2, a) pyrazine 1, 4, dione, hexahydro 3-(2-methyl propyl) (PPDHMP) extracted from a new marine bacterium, Staphylococcus sp. strain MB30. Apoptosis, 2016, 21(5), 566-577.
[http://dx.doi.org/10.1007/s10495-016-1221-x] [PMID: 26852140]
[49]
Manimaran, M.; Kannabiran, K. Marine Streptomyces sp. VITMK1 derived pyrrolo [1, 2-A] pyrazine-1, 4-dione, hexahydro-3-(2-methylpropyl) and its free radical scavenging activity. Open Bioactive Compd. J., 2017, 5(1), 23-30.
[http://dx.doi.org/10.2174/1874847301705010023]
[50]
Davoodbasha, M.; Edachery, B.; Nooruddin, T.; Lee, S-Y.; Kim, J-W. An evidence of C16 fatty acid methyl esters extracted from microalga for effective antimicrobial and antioxidant property. Microb. Pathog., 2018, 115, 233-238.
[http://dx.doi.org/10.1016/j.micpath.2017.12.049] [PMID: 29277474]
[51]
Asif, M. The biological potentials of substituted 1,2-diazines: A review on versatile pyridazine derivatives. J. Chin. Pharm. Sci., 2016, 25(10)
[52]
Döşler, S.; Matarac, E.; Başpınar-Küçük, H.; Yusufoğlu, A. Antibacterial and anti-biofilm activities of new chiral and racemic 1,3-Dioxolanes. İstanbul. Ecz. Fak. Derg. J. Fac. Pharm. Istanbul, 2015, 45(1), 19-28.
[53]
Küçük, H.B.; Yusufoğlu, A.; Mataracı, E.; Döşler, S. Synthesis and biological activity of new 1,3-dioxolanes as potential antibacterial and antifungal compounds. Molecules, 2011, 16(8), 6806-6815.
[http://dx.doi.org/10.3390/molecules16086806] [PMID: 21832971]
[54]
Keszler, A.; Forgács, E.; Kótai, L.; Vizcaíno, J.A.; Monte, E.; García-Acha, I. Separation and identification of volatile components in the fermentation broth of Trichoderma atroviride by solid-phase extraction and gas chromatography-mass spectrometry. J. Chromatogr. Sci., 2000, 38(10), 421-424.
[http://dx.doi.org/10.1093/chromsci/38.10.421] [PMID: 11048777]
[55]
Kim, S.M.; Son, S.; Kim, J.W.; Jeon, E.S.; Ko, S-K.; Ryoo, I-J.; Shin, K-S.; Hirota, H.; Takahashi, S.; Osada, H.; Jang, J-H.; Ahn, J.S. Penidioxolanes a and b, 1,3-dioxolane containing azaphilone derivatives from marine-derived Penicillium sp. KCB12C078. Nat. Prod. Sci., 2015, 21(4), 231.
[http://dx.doi.org/10.20307/nps.2015.21.4.231]
[56]
Blum, S.; Groth, I.; Rohr, J.; Fielder, H.P. Biosynthetic capacities of actinomycetes. 5. Dioxolides, novel secondary metabolites from Streptomyces tendae. J. Basic Microbiol., 1996, 36(1), 19-25.
[http://dx.doi.org/10.1002/jobm.3620360105] [PMID: 8819841]
[57]
Bala, S.; Sharma, N.; Kajal, A.; Kamboj, S. Design, synthesis, characterization, and computational studies on benzamide substituted Mannich bases as novel, potential antibacterial agents. Sci. World J., 2014, 2014, 732141.
[http://dx.doi.org/10.1155/2014/732141] [PMID: 24574915]
[58]
Guo, Z.K.; Wang, R.; Chen, F.X.; Liu, T.M.; Yang, M.Q. Bioactive aromatic metabolites from the sea urchin-derived actinomycete Streptomyces spectabilis strain HDa1. Phytochem. Lett., 2018, 25, 132-135.
[http://dx.doi.org/10.1016/j.phytol.2018.04.014]
[59]
Zhang, X.; Shu, C.; Li, Q.; Lian, X-Y.; Zhang, Z. Novel cyclohexene and benzamide derivatives from marine-associated Streptomyces sp. ZZ502. Nat. Prod. Res., 2019, 33(15), 2151-2159.
[http://dx.doi.org/10.1080/14786419.2018.1489391] [PMID: 30417673]
[60]
Kobayashi, I.; Muraoka, H.; Hasegawa, M.; Saika, T.; Nishida, M.; Kawamura, M.; Ando, R. In vitro anti-Helicobacter pylori activity of BAS-118, a new benzamide derivative. J. Antimicrob. Chemother., 2002, 50(1), 129-132.
[http://dx.doi.org/10.1093/jac/dkf106] [PMID: 12096019]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy