Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

G4-Interacting DNA Helicases and Polymerases: Potential Therapeutic Targets

Author(s): Katrina N. Estep, Thomas J. Butler, Jun Ding and Robert M. Brosh*

Volume 26, Issue 16, 2019

Page: [2881 - 2897] Pages: 17

DOI: 10.2174/0929867324666171116123345

Price: $65

Abstract

Background: Guanine-rich DNA can fold into highly stable four-stranded DNA structures called G-quadruplexes (G4). In recent years, the G-quadruplex field has blossomed as new evidence strongly suggests that such alternately folded DNA structures are likely to exist in vivo. G4 DNA presents obstacles for the replication machinery, and both eukaryotic DNA helicases and polymerases have evolved to resolve and copy G4 DNA in vivo. In addition, G4-forming sequences are prevalent in gene promoters, suggesting that G4-resolving helicases act to modulate transcription.

Methods: We have searched the PubMed database to compile an up-to-date and comprehensive assessment of the field’s current knowledge to provide an overview of the molecular interactions of Gquadruplexes with DNA helicases and polymerases implicated in their resolution.

Results: Novel computational tools and alternative strategies have emerged to detect G4-forming sequences and assess their biological consequences. Specialized DNA helicases and polymerases catalytically act upon G4-forming sequences to maintain normal replication and genomic stability as well as appropriate gene regulation and cellular homeostasis. G4 helicases also resolve telomeric repeats to maintain chromosomal DNA ends. Bypass of many G4-forming sequences is achieved by the action of translesion DNS polymerases or the PrimPol DNA polymerase. While the collective work has supported a role of G4 in nuclear DNA metabolism, an emerging field centers on G4 abundance in the mitochondrial genome.

Conclusion: Discovery of small molecules that specifically bind and modulate DNA helicases and polymerases or interact with the G4 DNA structure itself may be useful for the development of anticancer regimes.

Keywords: G-quadruplex, replication, helicase, polymerase, translesion synthesis, G4 DNA, PrimPol.

[1]
Bang, I. Untersuchungen über die Guanylsäure. Biochemistry, 1910, 26, 293-231.
[2]
Gellert, M.; Lipsett, M.N.; Davies, D.R. Helix formation by guanylic acid. Proc. Natl. Acad. Sci. USA, 1962, 48, 2013-2018. [http://dx.doi.org/10.1073/pnas.48.12.2013]. [PMID: 13947099].
[3]
Watson, J.D.; Crick, F.H. Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature, 1953, 171(4356), 737-738. [http://dx.doi.org/10.1038/171737a0]. [PMID: 13054692].
[4]
Sen, D.; Gilbert, W. Formation of parallel four-stranded complexes by guanine-rich motifs in DNA and its implications for meiosis. Nature, 1988, 334(6180), 364-366. [http://dx.doi.org/10.1038/334364a0]. [PMID: 3393228].
[5]
Sundquist, W.I.; Klug, A. Telomeric DNA dimerizes by formation of guanine tetrads between hairpin loops. Nature, 1989, 342(6251), 825-829. [http://dx.doi.org/10.1038/342825a0]. [PMID: 2601741].
[6]
Zahler, A.M.; Williamson, J.R.; Cech, T.R.; Prescott, D.M. Inhibition of telomerase by G-quartet DNA structures. Nature, 1991, 350(6320), 718-720. [http://dx.doi.org/10.1038/350718a0]. [PMID: 2023635].
[7]
Sun, D.; Thompson, B.; Cathers, B.E.; Salazar, M.; Kerwin, S.M.; Trent, J.O.; Jenkins, T.C.; Neidle, S.; Hurley, L.H. Inhibition of human telomerase by a G-quadruplex-interactive compound. J. Med. Chem., 1997, 40(14), 2113-2116. [http://dx.doi.org/10.1021/jm970199z]. [PMID: 9216827].
[8]
Zhao, J.; Bacolla, A.; Wang, G.; Vasquez, K.M. Non-B DNA structure-induced genetic instability and evolution. Cell. Mol. Life Sci., 2010, 67(1), 43-62. [http://dx.doi.org/10.1007/s00018-009-0131-2]. [PMID: 19727556].
[9]
Choi, J.; Majima, T. Conformational changes of non-B DNA. Chem. Soc. Rev., 2011, 40(12), 5893-5909. [http://dx.doi.org/10.1039/c1cs15153c]. [PMID: 21901191].
[10]
Wang, G.; Vasquez, K.M. Impact of alternative DNA structures on DNA damage, DNA repair, and genetic instability. DNA Repair (Amst.), 2014, 19, 143-151. [http://dx.doi.org/10.1016/j.dnarep.2014.03.017]. [PMID: 24767258].
[11]
Schaffitzel, C.; Berger, I.; Postberg, J.; Hanes, J.; Lipps, H.J.; Plückthun, A. In vitro generated antibodies specific for telomeric guanine-quadruplex DNA react with Stylonychia lemnae macronuclei. Proc. Natl. Acad. Sci. USA, 2001, 98(15), 8572-8577. [http://dx.doi.org/10.1073/pnas.141229498]. [PMID: 11438689].
[12]
Siddiqui-Jain, A.; Grand, C.L.; Bearss, D.J.; Hurley, L.H. Direct evidence for a G-quadruplex in a promoter region and its targeting with a small molecule to repress c-MYC transcription. Proc. Natl. Acad. Sci. USA, 2002, 99(18), 11593-11598. [http://dx.doi.org/10.1073/pnas.182256799]. [PMID: 12195017].
[13]
Wu, Y.; Shin-ya, K.; Brosh, R.M. Jr FANCJ helicase defective in Fanconia anemia and breast cancer unwinds G-quadruplex DNA to defend genomic stability. Mol. Cell. Biol., 2008, 28(12), 4116-4128. [http://dx.doi.org/10.1128/MCB.02210-07]. [PMID: 18426915].
[14]
London, T.B.; Barber, L.J.; Mosedale, G.; Kelly, G.P.; Balasubramanian, S.; Hickson, I.D.; Boulton, S.J.; Hiom, K. FANCJ is a structure-specific DNA helicase associated with the maintenance of genomic G/C tracts. J. Biol. Chem., 2008, 283(52), 36132-36139. [http://dx.doi.org/10.1074/jbc.M808152200]. [PMID: 18978354].
[15]
Ribeyre, C.; Lopes, J.; Boulé, J.B.; Piazza, A.; Guédin, A.; Zakian, V.A.; Mergny, J.L.; Nicolas, A. The yeast Pif1 helicase prevents genomic instability caused by G-quadruplex-forming CEB1 sequences in vivo. PLoS Genet., 2009, 5(5)e1000475 [http://dx.doi.org/10.1371/journal.pgen.1000475]. [PMID: 19424434].
[16]
Biffi, G.; Tannahill, D.; McCafferty, J.; Balasubramanian, S. Quantitative visualization of DNA G-quadruplex structures in human cells. Nat. Chem., 2013, 5(3), 182-186. [http://dx.doi.org/10.1038/nchem.1548]. [PMID: 23422559].
[17]
Henderson, A.; Wu, Y.; Huang, Y.C.; Chavez, E.A.; Platt, J.; Johnson, F.B.; Brosh, R.M., Jr; Sen, D.; Lansdorp, P.M. Detection of G-quadruplex DNA in mammalian cells. Nucleic Acids Res., 2014, 42(2), 860-869. [http://dx.doi.org/10.1093/nar/gkt957]. [PMID: 24163102].
[18]
Huang, W.C.; Tseng, T.Y.; Chen, Y.T.; Chang, C.C.; Wang, Z.F.; Wang, C.L.; Hsu, T.N.; Li, P.T.; Chen, C.T.; Lin, J.J.; Lou, P.J.; Chang, T.C. Direct evidence of mitochondrial G-quadruplex DNA by using fluorescent anti-cancer agents. Nucleic Acids Res., 2015, 43(21), 10102-10113. [PMID: 26487635].
[19]
Xu, H.; Di Antonio, M.; McKinney, S.; Mathew, V.; Ho, B.; O’Neil, N.J.; Santos, N.D.; Silvester, J.; Wei, V.; Garcia, J.; Kabeer, F.; Lai, D.; Soriano, P.; Banáth, J.; Chiu, D.S.; Yap, D.; Le, D.D.; Ye, F.B.; Zhang, A.; Thu, K.; Soong, J.; Lin, S.C.; Tsai, A.H.; Osako, T.; Algara, T.; Saunders, D.N.; Wong, J.; Xian, J.; Bally, M.B.; Brenton, J.D.; Brown, G.W.; Shah, S.P.; Cescon, D.; Mak, T.W.; Caldas, C.; Stirling, P.C.; Hieter, P.; Balasubramanian, S.; Aparicio, S. CX-5461 is a DNA G-quadruplex stabilizer with selective lethality in BRCA1/2 deficient tumours. Nat. Commun., 2017, 8, 14432. [http://dx.doi.org/10.1038/ncomms14432]. [PMID: 28211448].
[20]
Zimmer, J.; Tacconi, E.M.; Folio, C.; Badie, S.; Porru, M.; Klare, K.; Tumiati, M.; Markkanen, E.; Halder, S.; Ryan, A.; Jackson, S.P.; Ramadan, K.; Kuznetsov, S.G.; Biroccio, A.; Sale, J.E.; Tarsounas, M. Targeting BRCA1 and BRCA2 Deficiencies with G-Quadruplex-Interacting Compounds. Mol. Cell, 2016, 61(3), 449-460. [http://dx.doi.org/10.1016/j.molcel.2015.12.004]. [PMID: 26748828].
[21]
Huppert, J.L.; Balasubramanian, S. Prevalence of quadruplexes in the human genome. Nucleic Acids Res., 2005, 33(9), 2908-2916. [http://dx.doi.org/10.1093/nar/gki609]. [PMID: 15914667].
[22]
Todd, A.K.; Johnston, M.; Neidle, S. Highly prevalent putative quadruplex sequence motifs in human DNA. Nucleic Acids Res., 2005, 33(9), 2901-2907. [http://dx.doi.org/10.1093/nar/gki553]. [PMID: 15914666].
[23]
Sarkies, P.; Reams, C.; Simpson, L.J.; Sale, J.E. Epigenetic instability due to defective replication of structured DNA. Mol. Cell, 2010, 40(5), 703-713. [http://dx.doi.org/10.1016/j.molcel.2010.11.009]. [PMID: 21145480].
[24]
Paeschke, K.; Capra, J.A.; Zakian, V.A. DNA replication through G-quadruplex motifs is promoted by the Saccharomyces cerevisiae Pif1 DNA helicase. Cell, 2011, 145(5), 678-691. [http://dx.doi.org/10.1016/j.cell.2011.04.015]. [PMID: 21620135].
[25]
Rodriguez, R.; Miller, K.M.; Forment, J.V.; Bradshaw, C.R.; Nikan, M.; Britton, S.; Oelschlaegel, T.; Xhemalce, B.; Balasubramanian, S.; Jackson, S.P. Small-molecule-induced DNA damage identifies alternative DNA structures in human genes. Nat. Chem. Biol., 2012, 8(3), 301-310. [http://dx.doi.org/10.1038/nchembio.780]. [PMID: 22306580].
[26]
Besnard, E.; Babled, A.; Lapasset, L.; Milhavet, O.; Parrinello, H.; Dantec, C.; Marin, J.M.; Lemaitre, J.M. Unraveling cell type-specific and reprogrammable human replication origin signatures associated with G-quadruplex consensus motifs. Nat. Struct. Mol. Biol., 2012, 19(8), 837-844. [http://dx.doi.org/10.1038/nsmb.2339]. [PMID: 22751019].
[27]
Hoshina, S.; Yura, K.; Teranishi, H.; Kiyasu, N.; Tominaga, A.; Kadoma, H.; Nakatsuka, A.; Kunichika, T.; Obuse, C.; Waga, S. Human origin recognition complex binds preferentially to G-quadruplex-preferable RNA and single-stranded DNA. J. Biol. Chem., 2013, 288(42), 30161-30171. [http://dx.doi.org/10.1074/jbc.M113.492504]. [PMID: 24003239].
[28]
Hänsel-Hertsch, R.; Di Antonio, M.; Balasubramanian, S. DNA G-quadruplexes in the human genome: detection, functions and therapeutic potential. Nat. Rev. Mol. Cell Biol., 2017, 18(5), 279-284. [http://dx.doi.org/10.1038/nrm.2017.3]. [PMID: 28225080].
[29]
Maizels, N. G4-associated human diseases. EMBO Rep., 2015, 16(8), 910-922. [http://dx.doi.org/10.15252/embr.201540607]. [PMID: 26150098].
[30]
Cammas, A.; Millevoi, S. RNA G-quadruplexes: emerging mechanisms in disease. Nucleic Acids Res., 2017, 45(4), 1584-1595. [PMID: 28013268].
[31]
Fay, M.M.; Lyons, S.M.; Ivanov, P. RNA G-quadruplexes in biology: Principles and molecular mechanisms. J. Mol. Biol., 2017, 429(14), 2127-2147. [http://dx.doi.org/10.1016/j.jmb.2017.05.017]. [PMID: 28554731].
[32]
Kikin, O.; D'Antonio, L.; Bagga, P.S. QGRS Mapper: a web-based server for predicting G-quadruplexes in nucleotide sequences. Nucleic Acids Res, 2006, 34 (Web Server issue). , W676- W682.
[http://dx.doi.org/10.1093/nar/gkl253]
[33]
Yadav, V.K.; Abraham, J.K.; Mani, P.; Kulshrestha, R.; Chowdhury, S. QuadBase: genome-wide database of G4 DNA--occurrence and conservation in human, chimpanzee, mouse and rat promoters and 146 microbes. Nucleic Acids Res., 2008, 36(Database issue), D381-D385. [PMID: 17962308].
[34]
Menendez, C.; Frees, S.; Bagga, P.S. QGRS-H Predictor: A web server for predicting homologous quadruplex forming G-rich sequence motifs in nucleotide se-quences. Nucleic Acids Res, 2012, 40 (Web Server issue). , W96- W103.
[http://dx.doi.org/10.1093/nar/gks422]
[35]
Frees, S.; Menendez, C.; Crum, M.; Bagga, P.S. QGRS-Conserve: a computational method for discovering evolutionarily conserved G-quadruplex motifs. Hum. Genomics, 2014, 8, 8. [http://dx.doi.org/10.1186/1479-7364-8-8]. [PMID: 24885782].
[36]
Bedrat, A.; Lacroix, L.; Mergny, J.L. Re-evaluation of G-quadruplex propensity with G4Hunter. Nucleic Acids Res., 2016, 44(4), 1746-1759. [http://dx.doi.org/10.1093/nar/gkw006]. [PMID: 26792894].
[37]
Stegle, O.; Payet, L.; Mergny, J.L.; MacKay, D.J.; Leon, J.H. Predicting and understanding the stability of G-quadruplexes. Bioinformatics, 2009, 25(12), i374-i382. [http://dx.doi.org/10.1093/bioinformatics/btp210]. [PMID: 19478012].
[38]
Chambers, V.S.; Marsico, G.; Boutell, J.M.; Di Antonio, M.; Smith, G.P.; Balasubramanian, S. High-throughput sequencing of DNA G-quadruplex structures in the human genome. Nat. Biotechnol., 2015, 33(8), 877-881. [http://dx.doi.org/10.1038/nbt.3295]. [PMID: 26192317].
[39]
Tradigo, G.C.F.; Alcaro, S.; Greco, S.; Pollastri, G.; Veltri, P.; Prosperi, M. G-qaudruplex Structure Prediction and integration in the GenData2020 data model. Proceedings of the 7th ACM International Conference on Bioinformatics, Computation Biology, and Health Informatics, 2016, pp. 663-670.
[40]
Tradigo, G.M.L.; Veltri, P. Assessment of G-quadruplex prediction tools., 2014, 243-246.
[41]
Wong, H.M. A toolbox for predicting g-quadruplex formation and stability. J. Nucleic Acids, 2010.2010 Article ID. 564946
[42]
Kim, M.; Kreig, A.; Lee, C.Y.; Rube, H.T.; Calvert, J.; Song, J.S.; Myong, S. Quantitative analysis and prediction of G-quadruplex forming sequences in double-stranded DNA. Nucleic Acids Res., 2016, 44(10), 4807-4817. [http://dx.doi.org/10.1093/nar/gkw272]. [PMID: 27095201].
[43]
Hänsel-Hertsch, R.; Beraldi, D.; Lensing, S.V.; Marsico, G.; Zyner, K.; Parry, A.; Di Antonio, M.; Pike, J.; Kimura, H.; Narita, M.; Tannahill, D.; Balasubramanian, S. G-quadruplex structures mark human regulatory chromatin. Nat. Genet., 2016, 48(10), 1267-1272. [http://dx.doi.org/10.1038/ng.3662]. [PMID: 27618450].
[44]
Mishra, S.K.; Tawani, A.; Mishra, A.; Kumar, A. G4IPDB: A database for G-quadruplex structure forming nucleic acid interacting proteins. Sci. Rep., 2016, 6, 38144. [http://dx.doi.org/10.1038/srep38144]. [PMID: 27905517].
[45]
Geronimo, C.L.; Zakian, V.A. Getting it done at the ends: Pif1 family DNA helicases and telomeres. DNA Repair (Amst.), 2016, 44, 151-158. [http://dx.doi.org/10.1016/j.dnarep.2016.05.021]. [PMID: 27233114].
[46]
León-Ortiz, A.M.; Svendsen, J.; Boulton, S.J. Metabolism of DNA secondary structures at the eukaryotic replication fork. DNA Repair (Amst.), 2014, 19, 152-162. [http://dx.doi.org/10.1016/j.dnarep.2014.03.016]. [PMID: 24815912].
[47]
Bochman, M.L.; Paeschke, K.; Zakian, V.A. DNA secondary structures: stability and function of G-quadruplex structures. Nat. Rev. Genet., 2012, 13(11), 770-780. [http://dx.doi.org/10.1038/nrg3296]. [PMID: 23032257].
[48]
Wu, Y.; Brosh, R.M., Jr G-quadruplex nucleic acids and human disease. FEBS J., 2010, 277(17), 3470-3488. [http://dx.doi.org/10.1111/j.1742-4658.2010.07760.x]. [PMID: 20670277].
[49]
Bharti, S.K.; Awate, S.; Banerjee, T.; Brosh, R.M. Getting Ready for the Dance: FANCJ Irons Out DNA Wrinkles. Genes (Basel), 2016, 7(7)E31 [http://dx.doi.org/10.3390/genes7070031]. [PMID: 27376332].
[50]
Mendoza, O.; Bourdoncle, A.; Boulé, J.B.; Brosh, R.M., Jr; Mergny, J.L. G-quadruplexes and helicases. Nucleic Acids Res., 2016, 44(5), 1989-2006. [http://dx.doi.org/10.1093/nar/gkw079]. [PMID: 26883636].
[51]
Bharti, S.K.; Sommers, J.A.; George, F.; Kuper, J.; Hamon, F.; Shin-ya, K.; Teulade-Fichou, M.P.; Kisker, C.; Brosh, R.M. Jr Specialization among iron-sulfur cluster helicases to resolve G-quadruplex DNA structures that threaten genomic stability. J. Biol. Chem., 2013, 288(39), 28217-28229. [http://dx.doi.org/10.1074/jbc.M113.496463]. [PMID: 23935105].
[52]
Brosh, R.M. Jr DNA helicases involved in DNA repair and their roles in cancer. Nat. Rev. Cancer, 2013, 13(8), 542-558. [http://dx.doi.org/10.1038/nrc3560]. [PMID: 23842644].
[53]
Puigvert, J.C.; Sanjiv, K.; Helleday, T. Targeting DNA repair, DNA metabolism and replication stress as anti-cancer strategies. FEBS J., 2016, 283(2), 232-245. [http://dx.doi.org/10.1111/febs.13574]. [PMID: 26507796].
[54]
Liu, W.; Zhou, M.; Li, Z.; Li, H.; Polaczek, P.; Dai, H.; Wu, Q.; Liu, C.; Karanja, K.K.; Popuri, V.; Shan, S.O.; Schlacher, K.; Zheng, L.; Campbell, J.L.; Shen, B. A selective small molecule DNA2 inhibitor for sensitization of human cancer cells to chemotherapy. EBioMedicine, 2016, 6, 73-86. [http://dx.doi.org/10.1016/j.ebiom.2016.02.043]. [PMID: 27211550].
[55]
Aggarwal, M.; Banerjee, T.; Sommers, J.A.; Iannascoli, C.; Pichierri, P.; Shoemaker, R.H.; Brosh, R.M. Jr Werner syndrome helicase has a critical role in DNA damage responses in the absence of a functional fanconi anemia pathway. Cancer Res., 2013, 73(17), 5497-5507. [http://dx.doi.org/10.1158/0008-5472.CAN-12-2975]. [PMID: 23867477].
[56]
Aggarwal, M.; Sommers, J.A.; Shoemaker, R.H.; Brosh, R.M., Jr Inhibition of helicase activity by a small molecule impairs Werner syndrome helicase (WRN) function in the cellular response to DNA damage or replication stress. Proc. Natl. Acad. Sci. USA, 2011, 108(4), 1525-1530. [http://dx.doi.org/10.1073/pnas.1006423108]. [PMID: 21220316].
[57]
Nguyen, G.H.; Dexheimer, T.S.; Rosenthal, A.S.; Chu, W.K.; Singh, D.K.; Mosedale, G.; Bachrati, C.Z.; Schultz, L.; Sakurai, M.; Savitsky, P.; Abu, M.; McHugh, P.J.; Bohr, V.A.; Harris, C.C.; Jadhav, A.; Gileadi, O.; Maloney, D.J.; Simeonov, A.; Hickson, I.D. A small molecule inhibitor of the BLM helicase modulates chromosome stability in human cells. Chem. Biol., 2013, 20(1), 55-62. [http://dx.doi.org/10.1016/j.chembiol.2012.10.016]. [PMID: 23352139].
[58]
Castillo Bosch, P.; Segura-Bayona, S.; Koole, W.; van Heteren, J.T.; Dewar, J.M.; Tijsterman, M.; Knipscheer, P. FANCJ promotes DNA synthesis through G-quadruplex structures. EMBO J., 2014, 33(21), 2521-2533. [http://dx.doi.org/10.15252/embj.201488663]. [PMID: 25193968].
[59]
Schwab, R.A.; Nieminuszczy, J.; Shin-ya, K.; Niedzwiedz, W. FANCJ couples replication past natural fork barriers with maintenance of chromatin structure. J. Cell Biol., 2013, 201(1), 33-48. [http://dx.doi.org/10.1083/jcb.201208009]. [PMID: 23530069].
[60]
Cheung, I.; Schertzer, M.; Rose, A.; Lansdorp, P.M. Disruption of dog-1 in Caenorhabditis elegans triggers deletions upstream of guanine-rich DNA. Nat. Genet., 2002, 31(4), 405-409. [http://dx.doi.org/10.1038/ng928]. [PMID: 12101400].
[61]
Sarkies, P.; Murat, P.; Phillips, L.G.; Patel, K.J.; Balasubramanian, S.; Sale, J.E. FANCJ coordinates two pathways that maintain epigenetic stability at G-quadruplex DNA. Nucleic Acids Res., 2012, 40(4), 1485-1498. [http://dx.doi.org/10.1093/nar/gkr868]. [PMID: 22021381].
[62]
Vannier, J.B.; Sandhu, S.; Petalcorin, M.I.; Wu, X.; Nabi, Z.; Ding, H.; Boulton, S.J. RTEL1 is a replisome-associated helicase that promotes telomere and genome-wide replication. Science, 2013, 342(6155), 239-242. [http://dx.doi.org/10.1126/science.1241779]. [PMID: 24115439].
[63]
Vannier, J.B.; Pavicic-Kaltenbrunner, V.; Petalcorin, M.I.; Ding, H.; Boulton, S.J. RTEL1 dismantles T loops and counteracts telomeric G4-DNA to maintain telomere integrity. Cell, 2012, 149(4), 795-806. [http://dx.doi.org/10.1016/j.cell.2012.03.030]. [PMID: 22579284].
[64]
Piazza, A.; Boulé, J.B.; Lopes, J.; Mingo, K.; Largy, E.; Teulade-Fichou, M.P.; Nicolas, A. Genetic instability triggered by G-quadruplex interacting Phen-DC compounds in Saccharomyces cerevisiae. Nucleic Acids Res., 2010, 38(13), 4337-4348. [http://dx.doi.org/10.1093/nar/gkq136]. [PMID: 20223771].
[65]
Lopes, J.; Piazza, A.; Bermejo, R.; Kriegsman, B.; Colosio, A.; Teulade-Fichou, M.P.; Foiani, M.; Nicolas, A. G-quadruplex-induced instability during leading-strand replication. EMBO J., 2011, 30(19), 4033-4046. [http://dx.doi.org/10.1038/emboj.2011.316]. [PMID: 21873979].
[66]
Lin, W.; Sampathi, S.; Dai, H.; Liu, C.; Zhou, M.; Hu, J.; Huang, Q.; Campbell, J.; Shin-Ya, K.; Zheng, L.; Chai, W.; Shen, B. Mammalian DNA2 helicase/nuclease cleaves G-quadruplex DNA and is required for telomere integrity. EMBO J., 2013, 32(10), 1425-1439. [http://dx.doi.org/10.1038/emboj.2013.88]. [PMID: 23604072].
[67]
Gray, L.T.; Vallur, A.C.; Eddy, J.; Maizels, N. G quadruplexes are genomewide targets of transcriptional helicases XPB and XPD. Nat. Chem. Biol., 2014, 10(4), 313-318. [http://dx.doi.org/10.1038/nchembio.1475]. [PMID: 24609361].
[68]
Crabbe, L.; Verdun, R.E.; Haggblom, C.I.; Karlseder, J. Defective telomere lagging strand synthesis in cells lacking WRN helicase activity. Science, 2004, 306(5703), 1951-1953. [http://dx.doi.org/10.1126/science.1103619]. [PMID: 15591207].
[69]
Smestad, J.A.; Maher, L.J. III Relationships between putative G-quadruplex-forming sequences, RecQ helicases, and transcription. BMC Med. Genet., 2015, 16, 91. [http://dx.doi.org/10.1186/s12881-015-0236-4]. [PMID: 26449372].
[70]
Tang, W.; Robles, A.I.; Beyer, R.P.; Gray, L.T.; Nguyen, G.H.; Oshima, J.; Maizels, N.; Harris, C.C.; Monnat, R.J., Jr The Werner syndrome RECQ helicase targets G4 DNA in human cells to modulate transcription. Hum. Mol. Genet., 2016, 25(10), 2060-2069. [http://dx.doi.org/10.1093/hmg/ddw079]. [PMID: 26984941].
[71]
Johnson, J.E.; Cao, K.; Ryvkin, P.; Wang, L.S.; Johnson, F.B. Altered gene expression in the Werner and Bloom syndromes is associated with sequences having G-quadruplex forming potential. Nucleic Acids Res., 2010, 38(4), 1114-1122. [http://dx.doi.org/10.1093/nar/gkp1103]. [PMID: 19966276].
[72]
Drosopoulos, W.C.; Kosiyatrakul, S.T.; Schildkraut, C.L. BLM helicase facilitates telomere replication during leading strand synthesis of telomeres. J. Cell Biol., 2015, 210(2), 191-208. [http://dx.doi.org/10.1083/jcb.201410061]. [PMID: 26195664].
[73]
Nguyen, G.H.; Tang, W.; Robles, A.I.; Beyer, R.P.; Gray, L.T.; Welsh, J.A.; Schetter, A.J.; Kumamoto, K.; Wang, X.W.; Hickson, I.D.; Maizels, N.; Monnat, R.J., Jr; Harris, C.C. Regulation of gene expression by the BLM helicase correlates with the presence of G-quadruplex DNA motifs. Proc. Natl. Acad. Sci. USA, 2014, 111(27), 9905-9910. [http://dx.doi.org/10.1073/pnas.1404807111]. [PMID: 24958861].
[74]
Li, X.L.; Lu, X.; Parvathaneni, S.; Bilke, S.; Zhang, H.; Thangavel, S.; Vindigni, A.; Hara, T.; Zhu, Y.; Meltzer, P.S.; Lal, A.; Sharma, S. Identification of RECQ1-regulated transcriptome uncovers a role of RECQ1 in regulation of cancer cell migration and invasion. Cell Cycle, 2014, 13(15), 2431-2445. [http://dx.doi.org/10.4161/cc.29419]. [PMID: 25483193].
[75]
De, S.; Michor, F. DNA secondary structures and epigenetic determinants of cancer genome evolution. Nat. Struct. Mol. Biol., 2011, 18(8), 950-955. [http://dx.doi.org/10.1038/nsmb.2089]. [PMID: 21725294].
[76]
Hubscher, U.; Maga, G.; Spadari, S. Eukaryotic DNA polymerases. Annu. Rev. Biochem., 2002, 71, 133-163. [http://dx.doi.org/10.1146/annurev.biochem.71.090501.150041]. [PMID: 12045093].
[77]
Masumoto, H.; Sugino, A.; Araki, H. Dpb11 controls the association between DNA polymerases alpha and epsilon and the autonomously replicating sequence region of budding yeast. Mol. Cell. Biol., 2000, 20(8), 2809-2817. [http://dx.doi.org/10.1128/MCB.20.8.2809-2817.2000]. [PMID: 10733584].
[78]
Feng, W.; Rodriguez-Menocal, L.; Tolun, G.; D’Urso, G. Schizosacchromyces pombe Dpb2 binds to origin DNA early in S phase and is required for chromosomal DNA replication. Mol. Biol. Cell, 2003, 14(8), 3427-3436. [http://dx.doi.org/10.1091/mbc.e03-02-0088]. [PMID: 12925774].
[79]
Hiraga, S.; Hagihara-Hayashi, A.; Ohya, T.; Sugino, A. DNA polymerases alpha, delta, and epsilon localize and function together at replication forks in Saccharomyces cerevisiae. Genes Cells, 2005, 10(4), 297-309. [http://dx.doi.org/10.1111/j.1365-2443.2005.00843.x]. [PMID: 15773893].
[80]
Johansson, E.; Majka, J.; Burgers, P.M. Structure of DNA polymerase delta from Saccharomyces cerevisiae. J. Biol. Chem., 2001, 276(47), 43824-43828. [http://dx.doi.org/10.1074/jbc.M108842200]. [PMID: 11568188].
[81]
Chilkova, O.; Jonsson, B.H.; Johansson, E. The quaternary structure of DNA polymerase epsilon from Saccharomyces cerevisiae. J. Biol. Chem., 2003, 278(16), 14082-14086. [http://dx.doi.org/10.1074/jbc.M211818200]. [PMID: 12571237].
[82]
Karthikeyan, R.; Vonarx, E.J.; Straffon, A.F.; Simon, M.; Faye, G.; Kunz, B.A. Evidence from mutational specificity studies that yeast DNA polymerases delta and epsilon replicate different DNA strands at an intracellular replication fork. J. Mol. Biol., 2000, 299(2), 405-419. [http://dx.doi.org/10.1006/jmbi.2000.3744]. [PMID: 10860748].
[83]
Garg, P.; Stith, C.M.; Sabouri, N.; Johansson, E.; Burgers, P.M. Idling by DNA polymerase delta maintains a ligatable nick during lagging-strand DNA replication. Genes Dev., 2004, 18(22), 2764-2773. [http://dx.doi.org/10.1101/gad.1252304]. [PMID: 15520275].
[84]
Pursell, Z.F.; Isoz, I.; Lundström, E.B.; Johansson, E.; Kunkel, T.A. Yeast DNA polymerase epsilon participates in leading-strand DNA replication. Science, 2007, 317(5834), 127-130. [http://dx.doi.org/10.1126/science.1144067]. [PMID: 17615360].
[85]
Weitzmann, M.N.; Woodford, K.J.; Usdin, K. The development and use of a DNA polymerase arrest assay for the evaluation of parameters affecting intrastrand tetraplex formation. J. Biol. Chem., 1996, 271(34), 20958-20964. [http://dx.doi.org/10.1074/jbc.271.34.20958]. [PMID: 8702855].
[86]
Kamath-Loeb, A.S.; Loeb, L.A.; Johansson, E.; Burgers, P.M.; Fry, M. Interactions between the Werner syndrome helicase and DNA polymerase delta specifically facilitate copying of tetraplex and hairpin structures of the d(CGG)n trinucleotide repeat sequence. J. Biol. Chem., 2001, 276(19), 16439-16446. [http://dx.doi.org/10.1074/jbc.M100253200]. [PMID: 11279038].
[87]
Lormand, J.D.; Buncher, N.; Murphy, C.T.; Kaur, P.; Lee, M.Y.; Burgers, P.; Wang, H.; Kunkel, T.A.; Opresko, P.L. DNA polymerase δ stalls on telomeric lagging strand templates independently from G-quadruplex formation. Nucleic Acids Res., 2013, 41(22), 10323-10333. [http://dx.doi.org/10.1093/nar/gkt813]. [PMID: 24038470].
[88]
Eddy, S.; Tillman, M.; Maddukuri, L.; Ketkar, A.; Zafar, M.K.; Eoff, R.L. Human translesion polymerase κ exhibits enhanced activity and reduced fidelity two nucleotides from G-quadruplex DNA. Biochemistry, 2016, 55(37), 5218-5229. [http://dx.doi.org/10.1021/acs.biochem.6b00374]. [PMID: 27525498].
[89]
Kaguni, L.S.; Clayton, D.A. Template-directed pausing in in vitro DNA synthesis by DNA polymerase a from Drosophila melanogaster embryos. Proc. Natl. Acad. Sci. USA, 1982, 79(4), 983-987. [http://dx.doi.org/10.1073/pnas.79.4.983]. [PMID: 6803240].
[90]
Lemmens, B.; van Schendel, R.; Tijsterman, M. Mutagenic consequences of a single G-quadruplex demonstrate mitotic inheritance of DNA replication fork barriers. Nat. Commun., 2015, 6, 8909. [http://dx.doi.org/10.1038/ncomms9909]. [PMID: 26563448].
[91]
Eddy, S.; Ketkar, A.; Zafar, M.K.; Maddukuri, L.; Choi, J.Y.; Eoff, R.L. Human Rev1 polymerase disrupts G-quadruplex DNA. Nucleic Acids Res., 2014, 42(5), 3272-3285. [http://dx.doi.org/10.1093/nar/gkt1314]. [PMID: 24366879].
[92]
Guo, C.; Fischhaber, P.L.; Luk-Paszyc, M.J.; Masuda, Y.; Zhou, J.; Kamiya, K.; Kisker, C.; Friedberg, E.C. Mouse Rev1 protein interacts with multiple DNA polymerases involved in translesion DNA synthesis. EMBO J., 2003, 22(24), 6621-6630. [http://dx.doi.org/10.1093/emboj/cdg626]. [PMID: 14657033].
[93]
Waters, L.S.; Minesinger, B.K.; Wiltrout, M.E.; D’Souza, S.; Woodruff, R.V.; Walker, G.C. Eukaryotic translesion polymerases and their roles and regulation in DNA damage tolerance. Microbiol. Mol. Biol. Rev., 2009, 73(1), 134-154. [http://dx.doi.org/10.1128/MMBR.00034-08]. [PMID: 19258535].
[94]
Bétous, R.; Rey, L.; Wang, G.; Pillaire, M.J.; Puget, N.; Selves, J.; Biard, D.S.; Shin-ya, K.; Vasquez, K.M.; Cazaux, C.; Hoffmann, J.S. Role of TLS DNA polymerases eta and kappa in processing naturally occurring structured DNA in human cells. Mol. Carcinog., 2009, 48(4), 369-378. [http://dx.doi.org/10.1002/mc.20509]. [PMID: 19117014].
[95]
Song, Q.; Sherrer, S.M.; Suo, Z.; Taylor, J.S. Preparation of site-specific T=mCG cis-syn cyclobutane dimer-containing template and its error-free bypass by yeast and human polymerase η. J. Biol. Chem., 2012, 287(11), 8021-8028. [http://dx.doi.org/10.1074/jbc.M111.333591]. [PMID: 22262850].
[96]
Eddy, S.; Maddukuri, L.; Ketkar, A.; Zafar, M.K.; Henninger, E.E.; Pursell, Z.F.; Eoff, R.L. Evidence for the kinetic partitioning of polymerase activity on G-quadruplex DNA. Biochemistry, 2015, 54(20), 3218-3230. [http://dx.doi.org/10.1021/acs.biochem.5b00060]. [PMID: 25903680].
[97]
Ogi, T.; Lehmann, A.R. The Y-family DNA polymerase kappa (pol kappa) functions in mammalian nucleotide-excision repair. Nat. Cell Biol., 2006, 8(6), 640-642. [http://dx.doi.org/10.1038/ncb1417]. [PMID: 16738703].
[98]
Wickramasinghe, C.M.; Arzouk, H.; Frey, A.; Maiter, A.; Sale, J.E. Contributions of the specialised DNA polymerases to replication of structured DNA. DNA Repair (Amst.), 2015, 29, 83-90. [http://dx.doi.org/10.1016/j.dnarep.2015.01.004]. [PMID: 25704659].
[99]
Koole, W.; van Schendel, R.; Karambelas, A.E.; van Heteren, J.T.; Okihara, K.L.; Tijsterman, M. A Polymerase Theta-dependent repair pathway suppresses extensive genomic instability at endogenous G4 DNA sites. Nat. Commun., 2014, 5, 3216. [http://dx.doi.org/10.1038/ncomms4216]. [PMID: 24496117].
[100]
Seki, M.; Marini, F.; Wood, R.D. POLQ (Pol theta), a DNA polymerase and DNA-dependent ATPase in human cells. Nucleic Acids Res., 2003, 31(21), 6117-6126. [http://dx.doi.org/10.1093/nar/gkg814]. [PMID: 14576298].
[101]
Singh, B.; Li, X.; Owens, K.M.; Vanniarajan, A.; Liang, P.; Singh, K.K. Human REV3 DNA polymerase zeta localizes to mitochondria and protects the mitochondrial genome. PLoS One, 2015, 10(10)e0140409 [http://dx.doi.org/10.1371/journal.pone.0140409]. [PMID: 26462070].
[102]
Zhang, H.; Chatterjee, A.; Singh, K.K. Saccharomyces cerevisiae polymerase zeta functions in mitochondria. Genetics, 2006, 172(4), 2683-2688. [http://dx.doi.org/10.1534/genetics.105.051029]. [PMID: 16452144].
[103]
Andersen, P.L.; Xu, F.; Ziola, B.; McGregor, W.G.; Xiao, W. Sequential assembly of translesion DNA polymerases at UV-induced DNA damage sites. Mol. Biol. Cell, 2011, 22(13), 2373-2383. [http://dx.doi.org/10.1091/mbc.e10-12-0938]. [PMID: 21551069].
[104]
Murakumo, Y.; Ogura, Y.; Ishii, H.; Numata, S.; Ichihara, M.; Croce, C.M.; Fishel, R.; Takahashi, M. Interactions in the error-prone postreplication repair proteins hREV1, hREV3, and hREV7. J. Biol. Chem., 2001, 276(38), 35644-35651. [http://dx.doi.org/10.1074/jbc.M102051200]. [PMID: 11485998].
[105]
Ohashi, E.; Murakumo, Y.; Kanjo, N.; Akagi, J.; Masutani, C.; Hanaoka, F.; Ohmori, H. Interaction of hREV1 with three human Y-family DNA polymerases. Genes Cells, 2004, 9(6), 523-531. [http://dx.doi.org/10.1111/j.1356-9597.2004.00747.x]. [PMID: 15189446].
[106]
Nair, D.T.; Johnson, R.E.; Prakash, L.; Prakash, S.; Aggarwal, A.K. Rev1 employs a novel mechanism of DNA synthesis using a protein template. Science, 2005, 309(5744), 2219-2222. [http://dx.doi.org/10.1126/science.1116336]. [PMID: 16195463].
[107]
Swan, M.K.; Johnson, R.E.; Prakash, L.; Prakash, S.; Aggarwal, A.K. Structure of the human Rev1-DNA-dNTP ternary complex. J. Mol. Biol., 2009, 390(4), 699-709. [http://dx.doi.org/10.1016/j.jmb.2009.05.026]. [PMID: 19464298].
[108]
Yeom, M.; Kim, I.H.; Kim, J.K.; Kang, K.; Eoff, R.L.; Guengerich, F.P.; Choi, J.Y. Effects of twelve germline missense variations on DNA lesion and G-quadruplex bypass activities of human DNA polymerase REV1. Chem. Res. Toxicol., 2016, 29(3), 367-379. [http://dx.doi.org/10.1021/acs.chemrestox.5b00513]. [PMID: 26914252].
[109]
McCulloch, S.D.; Kokoska, R.J.; Kunkel, T.A. Efficiency, fidelity and enzymatic switching during translesion DNA synthesis. Cell Cycle, 2004, 3(5), 580-583. [http://dx.doi.org/10.4161/cc.3.5.893]. [PMID: 15118407].
[110]
Lone, S.; Townson, S.A.; Uljon, S.N.; Johnson, R.E.; Brahma, A.; Nair, D.T.; Prakash, S.; Prakash, L.; Aggarwal, A.K. Human DNA polymerase kappa encircles DNA: implications for mismatch extension and lesion bypass. Mol. Cell, 2007, 25(4), 601-614. [http://dx.doi.org/10.1016/j.molcel.2007.01.018]. [PMID: 17317631].
[111]
Beagan, K.; Armstrong, R.L.; Witsell, A.; Roy, U.; Renedo, N.; Baker, A.E.; Schärer, O.D.; McVey, M. Drosophila DNA polymerase theta utilizes both helicase-like and polymerase domains during microhomology-mediated end joining and interstrand crosslink repair. PLoS Genet., 2017, 13(5)e1006813 [http://dx.doi.org/10.1371/journal.pgen.1006813]. [PMID: 28542210].
[112]
Newman, J.A.; Cooper, C.D.; Aitkenhead, H.; Gileadi, O. Structure of the helicase domain of DNA polymerase theta reveals a possible role in the microhomology-mediated end-joining pathway. Structure, 2015, 23(12), 2319-2330. [http://dx.doi.org/10.1016/j.str.2015.10.014]. [PMID: 26636256].
[113]
Lambert, S.; Carr, A.M. Impediments to replication fork movement: stabilisation, reactivation and genome instability. Chromosoma, 2013, 122(1-2), 33-45. [http://dx.doi.org/10.1007/s00412-013-0398-9]. [PMID: 23446515].
[114]
Krasich, R.; Copeland, W.C. DNA polymerases in the mitochondria: a critical review of the evidence. Front. Biosci. (Landmark Ed.), 2017, 22, 692-709. [http://dx.doi.org/10.2741/4510]. [PMID: 27814640].
[115]
Nelson, J.R.; Lawrence, C.W.; Hinkle, D.C. Thymine-thymine dimer bypass by yeast DNA polymerase zeta. Science, 1996, 272(5268), 1646-1649. [http://dx.doi.org/10.1126/science.272.5268.1646]. [PMID: 8658138].
[116]
Northam, M.R.; Moore, E.A.; Mertz, T.M.; Binz, S.K.; Stith, C.M.; Stepchenkova, E.I.; Wendt, K.L.; Burgers, P.M.; Shcherbakova, P.V. DNA polymerases ζ and Rev1 mediate error-prone bypass of non-B DNA structures. Nucleic Acids Res., 2014, 42(1), 290-306. [http://dx.doi.org/10.1093/nar/gkt830]. [PMID: 24049079].
[117]
Lawrence, C.W.; Maher, V.M. Mutagenesis in eukaryotes dependent on DNA polymerase zeta and Rev1p. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2001, 356(1405), 41-46. [http://dx.doi.org/10.1098/rstb.2000.0001]. [PMID: 11205328].
[118]
Bianchi, J.; Rudd, S.G.; Jozwiakowski, S.K.; Bailey, L.J.; Soura, V.; Taylor, E.; Stevanovic, I.; Green, A.J.; Stracker, T.H.; Lindsay, H.D.; Doherty, A.J. PrimPol bypasses UV photoproducts during eukaryotic chromosomal DNA replication. Mol. Cell, 2013, 52(4), 566-573. [http://dx.doi.org/10.1016/j.molcel.2013.10.035]. [PMID: 24267451].
[119]
García-Gómez, S.; Reyes, A.; Martínez-Jiménez, M.I.; Chocrón, E.S.; Mourón, S.; Terrados, G.; Powell, C.; Salido, E.; Méndez, J.; Holt, I.J.; Blanco, L. PrimPol, an archaic primase/polymerase operating in human cells. Mol. Cell, 2013, 52(4), 541-553. [http://dx.doi.org/10.1016/j.molcel.2013.09.025]. [PMID: 24207056].
[120]
Mourón, S.; Rodriguez-Acebes, S.; Martínez-Jiménez, M.I.; García-Gómez, S.; Chocrón, S.; Blanco, L.; Méndez, J. Repriming of DNA synthesis at stalled replication forks by human PrimPol. Nat. Struct. Mol. Biol., 2013, 20(12), 1383-1389. [http://dx.doi.org/10.1038/nsmb.2719]. [PMID: 24240614].
[121]
Zhao, F.; Wu, J.; Xue, A.; Su, Y.; Wang, X.; Lu, X.; Zhou, Z.; Qu, J.; Zhou, X. Exome sequencing reveals CCDC111 mutation associated with high myopia. Hum. Genet., 2013, 132(8), 913-921. [http://dx.doi.org/10.1007/s00439-013-1303-6]. [PMID: 23579484].
[122]
Wanrooij, S.; Fusté, J.M.; Farge, G.; Shi, Y.; Gustafsson, C.M.; Falkenberg, M. Human mitochondrial RNA polymerase primes lagging-strand DNA synthesis in vitro. Proc. Natl. Acad. Sci. USA, 2008, 105(32), 11122-11127. [http://dx.doi.org/10.1073/pnas.0805399105]. [PMID: 18685103].
[123]
Wong, T.W.; Clayton, D.A. Isolation and characterization of a DNA primase from human mitochondria. J. Biol. Chem., 1985, 260(21), 11530-11535. [PMID: 4044569].
[124]
Schiavone, D.; Jozwiakowski, S.K.; Romanello, M.; Guilbaud, G.; Guilliam, T.A.; Bailey, L.J.; Sale, J.E.; Doherty, A.J. PrimPol is required for replicative tolerance of G quadruplexes in vertebrate cells. Mol. Cell, 2016, 61(1), 161-169. [http://dx.doi.org/10.1016/j.molcel.2015.10.038]. [PMID: 26626482].
[125]
Kobayashi, K.; Guilliam, T.A.; Tsuda, M.; Yamamoto, J.; Bailey, L.J.; Iwai, S.; Takeda, S.; Doherty, A.J.; Hirota, K. Repriming by PrimPol is critical for DNA replication restart downstream of lesions and chain-terminating nucleosides. Cell Cycle, 2016, 15(15), 1997-2008. [http://dx.doi.org/10.1080/15384101.2016.1191711]. [PMID: 27230014].
[126]
Bailey, L.J.; Bianchi, J.; Hégarat, N.; Hochegger, H.; Doherty, A.J. PrimPol-deficient cells exhibit a pronounced G2 checkpoint response following UV damage. Cell Cycle, 2016, 15(7), 908-918. [http://dx.doi.org/10.1080/15384101.2015.1128597]. [PMID: 26694751].
[127]
Dong, D.W.; Pereira, F.; Barrett, S.P.; Kolesar, J.E.; Cao, K.; Damas, J.; Yatsunyk, L.A.; Johnson, F.B.; Kaufman, B.A. Association of G-quadruplex forming sequences with human mtDNA deletion breakpoints. BMC Genomics, 2014, 15, 677. [http://dx.doi.org/10.1186/1471-2164-15-677]. [PMID: 25124333].
[128]
Bharti, S.K.; Sommers, J.A.; Zhou, J.; Kaplan, D.L.; Spelbrink, J.N.; Mergny, J.L.; Brosh, R.M. Jr DNA sequences proximal to human mitochondrial DNA deletion breakpoints prevalent in human disease form G-quadruplexes, a class of DNA structures inefficiently unwound by the mitochondrial replicative Twinkle helicase. J. Biol. Chem., 2014, 289(43), 29975-29993. [http://dx.doi.org/10.1074/jbc.M114.567073]. [PMID: 25193669].
[129]
Bailey, L.J.; Doherty, A.J. Mitochondrial DNA replication: a PrimPol perspective. Biochem. Soc. Trans., 2017, 45(2), 513-529. [http://dx.doi.org/10.1042/BST20160162]. [PMID: 28408491].
[130]
Lyonnais, S.; Tarrés-Solé, A.; Rubio-Cosials, A.; Cuppari, A.; Brito, R.; Jaumot, J.; Gargallo, R.; Vilaseca, M.; Silva, C.; Granzhan, A.; Teulade-Fichou, M.P.; Eritja, R.; Solà, M. Corrigendum: The human mitochondrial transcription factor A is a versatile G-quadruplex binding protein. Sci. Rep., 2017, 7, 45948. [http://dx.doi.org/10.1038/srep45948]. [PMID: 28383057].
[131]
Martínez-Jiménez, M.I.; Lahera, A.; Blanco, L. Human PrimPol activity is enhanced by RPA. Sci. Rep., 2017, 7(1), 783. [http://dx.doi.org/10.1038/s41598-017-00958-3]. [PMID: 28396594].
[132]
Guilliam, T.A.; Brissett, N.C.; Ehlinger, A.; Keen, B.A.; Kolesar, P.; Taylor, E.M.; Bailey, L.J.; Lindsay, H.D.; Chazin, W.J.; Doherty, A.J. Molecular basis for PrimPol recruitment to replication forks by RPA. Nat. Commun., 2017, 8, 15222. [http://dx.doi.org/10.1038/ncomms15222]. [PMID: 28534480].
[133]
Guilliam, T.A.; Doherty, A.J. PrimPol-Prime Time to Reprime. Genes (Basel), 2017, 8(1)E20 [http://dx.doi.org/10.3390/genes8010020]. [PMID: 28067825].
[134]
Kamath-Loeb, A.; Loeb, L.A.; Fry, M. The Werner syndrome protein is distinguished from the Bloom syndrome protein by its capacity to tightly bind diverse DNA structures. PLoS One, 2012, 7(1)e30189 [http://dx.doi.org/10.1371/journal.pone.0030189]. [PMID: 22272300].
[135]
Piazza, A.; Cui, X.; Adrian, M.; Samazan, F.; Heddi, B.; Phan, A.T.; Nicolas, A.G. Non-Canonical G-quadruplexes cause the hCEB1 minisatellite instability in Saccharomyces cerevisiae. eLife, 2017, 6, 6. [http://dx.doi.org/10.7554/eLife.26884]. [PMID: 28661396].
[136]
Musumeci, D.; Amato, J.; Zizza, P.; Platella, C.; Cosconati, S.; Cingolani, C.; Biroccio, A.; Novellino, E.; Randazzo, A.; Giancola, C.; Pagano, B.; Montesarchio, D. Tandem application of ligand-based virtual screening and G4-OAS assay to identify novel G-quadruplex-targeting chemotypes. Biochim. Biophys. Acta, Gen. Subj., 2017, 1861(5 Pt B), 1341-1352. [http://dx.doi.org/10.1016/j.bbagen.2017.01.024]. [PMID: 28130159].
[137]
Rocca, R.; Moraca, F.; Costa, G.; Nadai, M.; Scalabrin, M.; Talarico, C.; Distinto, S.; Maccioni, E.; Ortuso, F.; Artese, A.; Alcaro, S.; Richter, S.N. Identification of G-quadruplex DNA/RNA binders: Structure-based virtual screening and biophysical characterization. Biochim. Biophys. Acta, Gen. Subj., 2017, 1861(5 Pt B), 1329-1340. [http://dx.doi.org/10.1016/j.bbagen.2016.12.023]. [PMID: 28025082].
[138]
Salvati, E.; Botta, L.; Amato, J.; Di Leva, F.S.; Zizza, P.; Gioiello, A.; Pagano, B.; Graziani, G.; Tarsounas, M.; Randazzo, A.; Novellino, E.; Biroccio, A.; Cosconati, S. Lead discovery of dual G-quadruplex stabilizers and Poly(ADP-ribose) polymerases (PARPs) inhibitors: a new avenue in anticancer treatment. J. Med. Chem., 2017, 60(9), 3626-3635. [http://dx.doi.org/10.1021/acs.jmedchem.6b01563]. [PMID: 28445046].

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy