Review Article

G4-相互作用的DNA解旋酶和聚合酶:潜在的治疗靶点

卷 26, 期 16, 2019

页: [2881 - 2897] 页: 17

弟呕挨: 10.2174/0929867324666171116123345

价格: $65

摘要

背景:富含鸟嘌呤的DNA可折叠成高度稳定的四链DNA结构,称为G-四链体(G4)。 近年来,G-quadruplex领域蓬勃发展,因为新的证据强烈表明这种交替折叠的DNA结构可能存在于体内。 G4 DNA为复制机制提供了障碍,并且真核DNA解旋酶和聚合酶已经进化为在体内分辨和复制G4 DNA。 此外,G4形成序列在基因启动子中普遍存在,表明G4-拆分解旋酶起调节转录的作用。 方法:我们搜索了PubMed数据库,以编制该领域当前知识的最新和全面评估,以概述Gquadruplexes与DNA解旋酶和聚合酶分子相互作用的分子相互作用。 结果:出现了新的计算工具和替代策略来检测G4形成序列并评估其生物学后果。 专门的DNA解旋酶和聚合酶催化作用于G4形成序列,以维持正常的复制和基因组稳定性以及适当的基因调节和细胞稳态。 G4解旋酶也解决端粒重复以维持染色体DNA末端。 通过反式DNS聚合酶或PrimPol DNA聚合酶的作用实现许多G4形成序列的旁路。 虽然集体工作支持G4在核DNA代谢中的作用,但新兴领域的核心是线粒体基因组中的G4丰度。 结论:发现特异性结合和调节DNA解旋酶和聚合酶或与G4 DNA结构本身相互作用的小分子可能对开发抗癌方案有用。

关键词: G-四链体,复制,解旋酶,聚合酶,翻译合成,G4 DNA,PrimPol。

[1]
Bang, I. Untersuchungen über die Guanylsäure. Biochemistry, 1910, 26, 293-231.
[2]
Gellert, M.; Lipsett, M.N.; Davies, D.R. Helix formation by guanylic acid. Proc. Natl. Acad. Sci. USA, 1962, 48, 2013-2018. [http://dx.doi.org/10.1073/pnas.48.12.2013]. [PMID: 13947099].
[3]
Watson, J.D.; Crick, F.H. Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature, 1953, 171(4356), 737-738. [http://dx.doi.org/10.1038/171737a0]. [PMID: 13054692].
[4]
Sen, D.; Gilbert, W. Formation of parallel four-stranded complexes by guanine-rich motifs in DNA and its implications for meiosis. Nature, 1988, 334(6180), 364-366. [http://dx.doi.org/10.1038/334364a0]. [PMID: 3393228].
[5]
Sundquist, W.I.; Klug, A. Telomeric DNA dimerizes by formation of guanine tetrads between hairpin loops. Nature, 1989, 342(6251), 825-829. [http://dx.doi.org/10.1038/342825a0]. [PMID: 2601741].
[6]
Zahler, A.M.; Williamson, J.R.; Cech, T.R.; Prescott, D.M. Inhibition of telomerase by G-quartet DNA structures. Nature, 1991, 350(6320), 718-720. [http://dx.doi.org/10.1038/350718a0]. [PMID: 2023635].
[7]
Sun, D.; Thompson, B.; Cathers, B.E.; Salazar, M.; Kerwin, S.M.; Trent, J.O.; Jenkins, T.C.; Neidle, S.; Hurley, L.H. Inhibition of human telomerase by a G-quadruplex-interactive compound. J. Med. Chem., 1997, 40(14), 2113-2116. [http://dx.doi.org/10.1021/jm970199z]. [PMID: 9216827].
[8]
Zhao, J.; Bacolla, A.; Wang, G.; Vasquez, K.M. Non-B DNA structure-induced genetic instability and evolution. Cell. Mol. Life Sci., 2010, 67(1), 43-62. [http://dx.doi.org/10.1007/s00018-009-0131-2]. [PMID: 19727556].
[9]
Choi, J.; Majima, T. Conformational changes of non-B DNA. Chem. Soc. Rev., 2011, 40(12), 5893-5909. [http://dx.doi.org/10.1039/c1cs15153c]. [PMID: 21901191].
[10]
Wang, G.; Vasquez, K.M. Impact of alternative DNA structures on DNA damage, DNA repair, and genetic instability. DNA Repair (Amst.), 2014, 19, 143-151. [http://dx.doi.org/10.1016/j.dnarep.2014.03.017]. [PMID: 24767258].
[11]
Schaffitzel, C.; Berger, I.; Postberg, J.; Hanes, J.; Lipps, H.J.; Plückthun, A. In vitro generated antibodies specific for telomeric guanine-quadruplex DNA react with Stylonychia lemnae macronuclei. Proc. Natl. Acad. Sci. USA, 2001, 98(15), 8572-8577. [http://dx.doi.org/10.1073/pnas.141229498]. [PMID: 11438689].
[12]
Siddiqui-Jain, A.; Grand, C.L.; Bearss, D.J.; Hurley, L.H. Direct evidence for a G-quadruplex in a promoter region and its targeting with a small molecule to repress c-MYC transcription. Proc. Natl. Acad. Sci. USA, 2002, 99(18), 11593-11598. [http://dx.doi.org/10.1073/pnas.182256799]. [PMID: 12195017].
[13]
Wu, Y.; Shin-ya, K.; Brosh, R.M. Jr FANCJ helicase defective in Fanconia anemia and breast cancer unwinds G-quadruplex DNA to defend genomic stability. Mol. Cell. Biol., 2008, 28(12), 4116-4128. [http://dx.doi.org/10.1128/MCB.02210-07]. [PMID: 18426915].
[14]
London, T.B.; Barber, L.J.; Mosedale, G.; Kelly, G.P.; Balasubramanian, S.; Hickson, I.D.; Boulton, S.J.; Hiom, K. FANCJ is a structure-specific DNA helicase associated with the maintenance of genomic G/C tracts. J. Biol. Chem., 2008, 283(52), 36132-36139. [http://dx.doi.org/10.1074/jbc.M808152200]. [PMID: 18978354].
[15]
Ribeyre, C.; Lopes, J.; Boulé, J.B.; Piazza, A.; Guédin, A.; Zakian, V.A.; Mergny, J.L.; Nicolas, A. The yeast Pif1 helicase prevents genomic instability caused by G-quadruplex-forming CEB1 sequences in vivo. PLoS Genet., 2009, 5(5)e1000475 [http://dx.doi.org/10.1371/journal.pgen.1000475]. [PMID: 19424434].
[16]
Biffi, G.; Tannahill, D.; McCafferty, J.; Balasubramanian, S. Quantitative visualization of DNA G-quadruplex structures in human cells. Nat. Chem., 2013, 5(3), 182-186. [http://dx.doi.org/10.1038/nchem.1548]. [PMID: 23422559].
[17]
Henderson, A.; Wu, Y.; Huang, Y.C.; Chavez, E.A.; Platt, J.; Johnson, F.B.; Brosh, R.M., Jr; Sen, D.; Lansdorp, P.M. Detection of G-quadruplex DNA in mammalian cells. Nucleic Acids Res., 2014, 42(2), 860-869. [http://dx.doi.org/10.1093/nar/gkt957]. [PMID: 24163102].
[18]
Huang, W.C.; Tseng, T.Y.; Chen, Y.T.; Chang, C.C.; Wang, Z.F.; Wang, C.L.; Hsu, T.N.; Li, P.T.; Chen, C.T.; Lin, J.J.; Lou, P.J.; Chang, T.C. Direct evidence of mitochondrial G-quadruplex DNA by using fluorescent anti-cancer agents. Nucleic Acids Res., 2015, 43(21), 10102-10113. [PMID: 26487635].
[19]
Xu, H.; Di Antonio, M.; McKinney, S.; Mathew, V.; Ho, B.; O’Neil, N.J.; Santos, N.D.; Silvester, J.; Wei, V.; Garcia, J.; Kabeer, F.; Lai, D.; Soriano, P.; Banáth, J.; Chiu, D.S.; Yap, D.; Le, D.D.; Ye, F.B.; Zhang, A.; Thu, K.; Soong, J.; Lin, S.C.; Tsai, A.H.; Osako, T.; Algara, T.; Saunders, D.N.; Wong, J.; Xian, J.; Bally, M.B.; Brenton, J.D.; Brown, G.W.; Shah, S.P.; Cescon, D.; Mak, T.W.; Caldas, C.; Stirling, P.C.; Hieter, P.; Balasubramanian, S.; Aparicio, S. CX-5461 is a DNA G-quadruplex stabilizer with selective lethality in BRCA1/2 deficient tumours. Nat. Commun., 2017, 8, 14432. [http://dx.doi.org/10.1038/ncomms14432]. [PMID: 28211448].
[20]
Zimmer, J.; Tacconi, E.M.; Folio, C.; Badie, S.; Porru, M.; Klare, K.; Tumiati, M.; Markkanen, E.; Halder, S.; Ryan, A.; Jackson, S.P.; Ramadan, K.; Kuznetsov, S.G.; Biroccio, A.; Sale, J.E.; Tarsounas, M. Targeting BRCA1 and BRCA2 Deficiencies with G-Quadruplex-Interacting Compounds. Mol. Cell, 2016, 61(3), 449-460. [http://dx.doi.org/10.1016/j.molcel.2015.12.004]. [PMID: 26748828].
[21]
Huppert, J.L.; Balasubramanian, S. Prevalence of quadruplexes in the human genome. Nucleic Acids Res., 2005, 33(9), 2908-2916. [http://dx.doi.org/10.1093/nar/gki609]. [PMID: 15914667].
[22]
Todd, A.K.; Johnston, M.; Neidle, S. Highly prevalent putative quadruplex sequence motifs in human DNA. Nucleic Acids Res., 2005, 33(9), 2901-2907. [http://dx.doi.org/10.1093/nar/gki553]. [PMID: 15914666].
[23]
Sarkies, P.; Reams, C.; Simpson, L.J.; Sale, J.E. Epigenetic instability due to defective replication of structured DNA. Mol. Cell, 2010, 40(5), 703-713. [http://dx.doi.org/10.1016/j.molcel.2010.11.009]. [PMID: 21145480].
[24]
Paeschke, K.; Capra, J.A.; Zakian, V.A. DNA replication through G-quadruplex motifs is promoted by the Saccharomyces cerevisiae Pif1 DNA helicase. Cell, 2011, 145(5), 678-691. [http://dx.doi.org/10.1016/j.cell.2011.04.015]. [PMID: 21620135].
[25]
Rodriguez, R.; Miller, K.M.; Forment, J.V.; Bradshaw, C.R.; Nikan, M.; Britton, S.; Oelschlaegel, T.; Xhemalce, B.; Balasubramanian, S.; Jackson, S.P. Small-molecule-induced DNA damage identifies alternative DNA structures in human genes. Nat. Chem. Biol., 2012, 8(3), 301-310. [http://dx.doi.org/10.1038/nchembio.780]. [PMID: 22306580].
[26]
Besnard, E.; Babled, A.; Lapasset, L.; Milhavet, O.; Parrinello, H.; Dantec, C.; Marin, J.M.; Lemaitre, J.M. Unraveling cell type-specific and reprogrammable human replication origin signatures associated with G-quadruplex consensus motifs. Nat. Struct. Mol. Biol., 2012, 19(8), 837-844. [http://dx.doi.org/10.1038/nsmb.2339]. [PMID: 22751019].
[27]
Hoshina, S.; Yura, K.; Teranishi, H.; Kiyasu, N.; Tominaga, A.; Kadoma, H.; Nakatsuka, A.; Kunichika, T.; Obuse, C.; Waga, S. Human origin recognition complex binds preferentially to G-quadruplex-preferable RNA and single-stranded DNA. J. Biol. Chem., 2013, 288(42), 30161-30171. [http://dx.doi.org/10.1074/jbc.M113.492504]. [PMID: 24003239].
[28]
Hänsel-Hertsch, R.; Di Antonio, M.; Balasubramanian, S. DNA G-quadruplexes in the human genome: detection, functions and therapeutic potential. Nat. Rev. Mol. Cell Biol., 2017, 18(5), 279-284. [http://dx.doi.org/10.1038/nrm.2017.3]. [PMID: 28225080].
[29]
Maizels, N. G4-associated human diseases. EMBO Rep., 2015, 16(8), 910-922. [http://dx.doi.org/10.15252/embr.201540607]. [PMID: 26150098].
[30]
Cammas, A.; Millevoi, S. RNA G-quadruplexes: emerging mechanisms in disease. Nucleic Acids Res., 2017, 45(4), 1584-1595. [PMID: 28013268].
[31]
Fay, M.M.; Lyons, S.M.; Ivanov, P. RNA G-quadruplexes in biology: Principles and molecular mechanisms. J. Mol. Biol., 2017, 429(14), 2127-2147. [http://dx.doi.org/10.1016/j.jmb.2017.05.017]. [PMID: 28554731].
[32]
Kikin, O.; D'Antonio, L.; Bagga, P.S. QGRS Mapper: a web-based server for predicting G-quadruplexes in nucleotide sequences. Nucleic Acids Res, 2006, 34 (Web Server issue). , W676- W682.
[http://dx.doi.org/10.1093/nar/gkl253]
[33]
Yadav, V.K.; Abraham, J.K.; Mani, P.; Kulshrestha, R.; Chowdhury, S. QuadBase: genome-wide database of G4 DNA--occurrence and conservation in human, chimpanzee, mouse and rat promoters and 146 microbes. Nucleic Acids Res., 2008, 36(Database issue), D381-D385. [PMID: 17962308].
[34]
Menendez, C.; Frees, S.; Bagga, P.S. QGRS-H Predictor: A web server for predicting homologous quadruplex forming G-rich sequence motifs in nucleotide se-quences. Nucleic Acids Res, 2012, 40 (Web Server issue). , W96- W103.
[http://dx.doi.org/10.1093/nar/gks422]
[35]
Frees, S.; Menendez, C.; Crum, M.; Bagga, P.S. QGRS-Conserve: a computational method for discovering evolutionarily conserved G-quadruplex motifs. Hum. Genomics, 2014, 8, 8. [http://dx.doi.org/10.1186/1479-7364-8-8]. [PMID: 24885782].
[36]
Bedrat, A.; Lacroix, L.; Mergny, J.L. Re-evaluation of G-quadruplex propensity with G4Hunter. Nucleic Acids Res., 2016, 44(4), 1746-1759. [http://dx.doi.org/10.1093/nar/gkw006]. [PMID: 26792894].
[37]
Stegle, O.; Payet, L.; Mergny, J.L.; MacKay, D.J.; Leon, J.H. Predicting and understanding the stability of G-quadruplexes. Bioinformatics, 2009, 25(12), i374-i382. [http://dx.doi.org/10.1093/bioinformatics/btp210]. [PMID: 19478012].
[38]
Chambers, V.S.; Marsico, G.; Boutell, J.M.; Di Antonio, M.; Smith, G.P.; Balasubramanian, S. High-throughput sequencing of DNA G-quadruplex structures in the human genome. Nat. Biotechnol., 2015, 33(8), 877-881. [http://dx.doi.org/10.1038/nbt.3295]. [PMID: 26192317].
[39]
Tradigo, G.C.F.; Alcaro, S.; Greco, S.; Pollastri, G.; Veltri, P.; Prosperi, M. G-qaudruplex Structure Prediction and integration in the GenData2020 data model. Proceedings of the 7th ACM International Conference on Bioinformatics, Computation Biology, and Health Informatics, 2016, pp. 663-670.
[40]
Tradigo, G.M.L.; Veltri, P. Assessment of G-quadruplex prediction tools., 2014, 243-246.
[41]
Wong, H.M. A toolbox for predicting g-quadruplex formation and stability. J. Nucleic Acids, 2010.2010 Article ID. 564946
[42]
Kim, M.; Kreig, A.; Lee, C.Y.; Rube, H.T.; Calvert, J.; Song, J.S.; Myong, S. Quantitative analysis and prediction of G-quadruplex forming sequences in double-stranded DNA. Nucleic Acids Res., 2016, 44(10), 4807-4817. [http://dx.doi.org/10.1093/nar/gkw272]. [PMID: 27095201].
[43]
Hänsel-Hertsch, R.; Beraldi, D.; Lensing, S.V.; Marsico, G.; Zyner, K.; Parry, A.; Di Antonio, M.; Pike, J.; Kimura, H.; Narita, M.; Tannahill, D.; Balasubramanian, S. G-quadruplex structures mark human regulatory chromatin. Nat. Genet., 2016, 48(10), 1267-1272. [http://dx.doi.org/10.1038/ng.3662]. [PMID: 27618450].
[44]
Mishra, S.K.; Tawani, A.; Mishra, A.; Kumar, A. G4IPDB: A database for G-quadruplex structure forming nucleic acid interacting proteins. Sci. Rep., 2016, 6, 38144. [http://dx.doi.org/10.1038/srep38144]. [PMID: 27905517].
[45]
Geronimo, C.L.; Zakian, V.A. Getting it done at the ends: Pif1 family DNA helicases and telomeres. DNA Repair (Amst.), 2016, 44, 151-158. [http://dx.doi.org/10.1016/j.dnarep.2016.05.021]. [PMID: 27233114].
[46]
León-Ortiz, A.M.; Svendsen, J.; Boulton, S.J. Metabolism of DNA secondary structures at the eukaryotic replication fork. DNA Repair (Amst.), 2014, 19, 152-162. [http://dx.doi.org/10.1016/j.dnarep.2014.03.016]. [PMID: 24815912].
[47]
Bochman, M.L.; Paeschke, K.; Zakian, V.A. DNA secondary structures: stability and function of G-quadruplex structures. Nat. Rev. Genet., 2012, 13(11), 770-780. [http://dx.doi.org/10.1038/nrg3296]. [PMID: 23032257].
[48]
Wu, Y.; Brosh, R.M., Jr G-quadruplex nucleic acids and human disease. FEBS J., 2010, 277(17), 3470-3488. [http://dx.doi.org/10.1111/j.1742-4658.2010.07760.x]. [PMID: 20670277].
[49]
Bharti, S.K.; Awate, S.; Banerjee, T.; Brosh, R.M. Getting Ready for the Dance: FANCJ Irons Out DNA Wrinkles. Genes (Basel), 2016, 7(7)E31 [http://dx.doi.org/10.3390/genes7070031]. [PMID: 27376332].
[50]
Mendoza, O.; Bourdoncle, A.; Boulé, J.B.; Brosh, R.M., Jr; Mergny, J.L. G-quadruplexes and helicases. Nucleic Acids Res., 2016, 44(5), 1989-2006. [http://dx.doi.org/10.1093/nar/gkw079]. [PMID: 26883636].
[51]
Bharti, S.K.; Sommers, J.A.; George, F.; Kuper, J.; Hamon, F.; Shin-ya, K.; Teulade-Fichou, M.P.; Kisker, C.; Brosh, R.M. Jr Specialization among iron-sulfur cluster helicases to resolve G-quadruplex DNA structures that threaten genomic stability. J. Biol. Chem., 2013, 288(39), 28217-28229. [http://dx.doi.org/10.1074/jbc.M113.496463]. [PMID: 23935105].
[52]
Brosh, R.M. Jr DNA helicases involved in DNA repair and their roles in cancer. Nat. Rev. Cancer, 2013, 13(8), 542-558. [http://dx.doi.org/10.1038/nrc3560]. [PMID: 23842644].
[53]
Puigvert, J.C.; Sanjiv, K.; Helleday, T. Targeting DNA repair, DNA metabolism and replication stress as anti-cancer strategies. FEBS J., 2016, 283(2), 232-245. [http://dx.doi.org/10.1111/febs.13574]. [PMID: 26507796].
[54]
Liu, W.; Zhou, M.; Li, Z.; Li, H.; Polaczek, P.; Dai, H.; Wu, Q.; Liu, C.; Karanja, K.K.; Popuri, V.; Shan, S.O.; Schlacher, K.; Zheng, L.; Campbell, J.L.; Shen, B. A selective small molecule DNA2 inhibitor for sensitization of human cancer cells to chemotherapy. EBioMedicine, 2016, 6, 73-86. [http://dx.doi.org/10.1016/j.ebiom.2016.02.043]. [PMID: 27211550].
[55]
Aggarwal, M.; Banerjee, T.; Sommers, J.A.; Iannascoli, C.; Pichierri, P.; Shoemaker, R.H.; Brosh, R.M. Jr Werner syndrome helicase has a critical role in DNA damage responses in the absence of a functional fanconi anemia pathway. Cancer Res., 2013, 73(17), 5497-5507. [http://dx.doi.org/10.1158/0008-5472.CAN-12-2975]. [PMID: 23867477].
[56]
Aggarwal, M.; Sommers, J.A.; Shoemaker, R.H.; Brosh, R.M., Jr Inhibition of helicase activity by a small molecule impairs Werner syndrome helicase (WRN) function in the cellular response to DNA damage or replication stress. Proc. Natl. Acad. Sci. USA, 2011, 108(4), 1525-1530. [http://dx.doi.org/10.1073/pnas.1006423108]. [PMID: 21220316].
[57]
Nguyen, G.H.; Dexheimer, T.S.; Rosenthal, A.S.; Chu, W.K.; Singh, D.K.; Mosedale, G.; Bachrati, C.Z.; Schultz, L.; Sakurai, M.; Savitsky, P.; Abu, M.; McHugh, P.J.; Bohr, V.A.; Harris, C.C.; Jadhav, A.; Gileadi, O.; Maloney, D.J.; Simeonov, A.; Hickson, I.D. A small molecule inhibitor of the BLM helicase modulates chromosome stability in human cells. Chem. Biol., 2013, 20(1), 55-62. [http://dx.doi.org/10.1016/j.chembiol.2012.10.016]. [PMID: 23352139].
[58]
Castillo Bosch, P.; Segura-Bayona, S.; Koole, W.; van Heteren, J.T.; Dewar, J.M.; Tijsterman, M.; Knipscheer, P. FANCJ promotes DNA synthesis through G-quadruplex structures. EMBO J., 2014, 33(21), 2521-2533. [http://dx.doi.org/10.15252/embj.201488663]. [PMID: 25193968].
[59]
Schwab, R.A.; Nieminuszczy, J.; Shin-ya, K.; Niedzwiedz, W. FANCJ couples replication past natural fork barriers with maintenance of chromatin structure. J. Cell Biol., 2013, 201(1), 33-48. [http://dx.doi.org/10.1083/jcb.201208009]. [PMID: 23530069].
[60]
Cheung, I.; Schertzer, M.; Rose, A.; Lansdorp, P.M. Disruption of dog-1 in Caenorhabditis elegans triggers deletions upstream of guanine-rich DNA. Nat. Genet., 2002, 31(4), 405-409. [http://dx.doi.org/10.1038/ng928]. [PMID: 12101400].
[61]
Sarkies, P.; Murat, P.; Phillips, L.G.; Patel, K.J.; Balasubramanian, S.; Sale, J.E. FANCJ coordinates two pathways that maintain epigenetic stability at G-quadruplex DNA. Nucleic Acids Res., 2012, 40(4), 1485-1498. [http://dx.doi.org/10.1093/nar/gkr868]. [PMID: 22021381].
[62]
Vannier, J.B.; Sandhu, S.; Petalcorin, M.I.; Wu, X.; Nabi, Z.; Ding, H.; Boulton, S.J. RTEL1 is a replisome-associated helicase that promotes telomere and genome-wide replication. Science, 2013, 342(6155), 239-242. [http://dx.doi.org/10.1126/science.1241779]. [PMID: 24115439].
[63]
Vannier, J.B.; Pavicic-Kaltenbrunner, V.; Petalcorin, M.I.; Ding, H.; Boulton, S.J. RTEL1 dismantles T loops and counteracts telomeric G4-DNA to maintain telomere integrity. Cell, 2012, 149(4), 795-806. [http://dx.doi.org/10.1016/j.cell.2012.03.030]. [PMID: 22579284].
[64]
Piazza, A.; Boulé, J.B.; Lopes, J.; Mingo, K.; Largy, E.; Teulade-Fichou, M.P.; Nicolas, A. Genetic instability triggered by G-quadruplex interacting Phen-DC compounds in Saccharomyces cerevisiae. Nucleic Acids Res., 2010, 38(13), 4337-4348. [http://dx.doi.org/10.1093/nar/gkq136]. [PMID: 20223771].
[65]
Lopes, J.; Piazza, A.; Bermejo, R.; Kriegsman, B.; Colosio, A.; Teulade-Fichou, M.P.; Foiani, M.; Nicolas, A. G-quadruplex-induced instability during leading-strand replication. EMBO J., 2011, 30(19), 4033-4046. [http://dx.doi.org/10.1038/emboj.2011.316]. [PMID: 21873979].
[66]
Lin, W.; Sampathi, S.; Dai, H.; Liu, C.; Zhou, M.; Hu, J.; Huang, Q.; Campbell, J.; Shin-Ya, K.; Zheng, L.; Chai, W.; Shen, B. Mammalian DNA2 helicase/nuclease cleaves G-quadruplex DNA and is required for telomere integrity. EMBO J., 2013, 32(10), 1425-1439. [http://dx.doi.org/10.1038/emboj.2013.88]. [PMID: 23604072].
[67]
Gray, L.T.; Vallur, A.C.; Eddy, J.; Maizels, N. G quadruplexes are genomewide targets of transcriptional helicases XPB and XPD. Nat. Chem. Biol., 2014, 10(4), 313-318. [http://dx.doi.org/10.1038/nchembio.1475]. [PMID: 24609361].
[68]
Crabbe, L.; Verdun, R.E.; Haggblom, C.I.; Karlseder, J. Defective telomere lagging strand synthesis in cells lacking WRN helicase activity. Science, 2004, 306(5703), 1951-1953. [http://dx.doi.org/10.1126/science.1103619]. [PMID: 15591207].
[69]
Smestad, J.A.; Maher, L.J. III Relationships between putative G-quadruplex-forming sequences, RecQ helicases, and transcription. BMC Med. Genet., 2015, 16, 91. [http://dx.doi.org/10.1186/s12881-015-0236-4]. [PMID: 26449372].
[70]
Tang, W.; Robles, A.I.; Beyer, R.P.; Gray, L.T.; Nguyen, G.H.; Oshima, J.; Maizels, N.; Harris, C.C.; Monnat, R.J., Jr The Werner syndrome RECQ helicase targets G4 DNA in human cells to modulate transcription. Hum. Mol. Genet., 2016, 25(10), 2060-2069. [http://dx.doi.org/10.1093/hmg/ddw079]. [PMID: 26984941].
[71]
Johnson, J.E.; Cao, K.; Ryvkin, P.; Wang, L.S.; Johnson, F.B. Altered gene expression in the Werner and Bloom syndromes is associated with sequences having G-quadruplex forming potential. Nucleic Acids Res., 2010, 38(4), 1114-1122. [http://dx.doi.org/10.1093/nar/gkp1103]. [PMID: 19966276].
[72]
Drosopoulos, W.C.; Kosiyatrakul, S.T.; Schildkraut, C.L. BLM helicase facilitates telomere replication during leading strand synthesis of telomeres. J. Cell Biol., 2015, 210(2), 191-208. [http://dx.doi.org/10.1083/jcb.201410061]. [PMID: 26195664].
[73]
Nguyen, G.H.; Tang, W.; Robles, A.I.; Beyer, R.P.; Gray, L.T.; Welsh, J.A.; Schetter, A.J.; Kumamoto, K.; Wang, X.W.; Hickson, I.D.; Maizels, N.; Monnat, R.J., Jr; Harris, C.C. Regulation of gene expression by the BLM helicase correlates with the presence of G-quadruplex DNA motifs. Proc. Natl. Acad. Sci. USA, 2014, 111(27), 9905-9910. [http://dx.doi.org/10.1073/pnas.1404807111]. [PMID: 24958861].
[74]
Li, X.L.; Lu, X.; Parvathaneni, S.; Bilke, S.; Zhang, H.; Thangavel, S.; Vindigni, A.; Hara, T.; Zhu, Y.; Meltzer, P.S.; Lal, A.; Sharma, S. Identification of RECQ1-regulated transcriptome uncovers a role of RECQ1 in regulation of cancer cell migration and invasion. Cell Cycle, 2014, 13(15), 2431-2445. [http://dx.doi.org/10.4161/cc.29419]. [PMID: 25483193].
[75]
De, S.; Michor, F. DNA secondary structures and epigenetic determinants of cancer genome evolution. Nat. Struct. Mol. Biol., 2011, 18(8), 950-955. [http://dx.doi.org/10.1038/nsmb.2089]. [PMID: 21725294].
[76]
Hubscher, U.; Maga, G.; Spadari, S. Eukaryotic DNA polymerases. Annu. Rev. Biochem., 2002, 71, 133-163. [http://dx.doi.org/10.1146/annurev.biochem.71.090501.150041]. [PMID: 12045093].
[77]
Masumoto, H.; Sugino, A.; Araki, H. Dpb11 controls the association between DNA polymerases alpha and epsilon and the autonomously replicating sequence region of budding yeast. Mol. Cell. Biol., 2000, 20(8), 2809-2817. [http://dx.doi.org/10.1128/MCB.20.8.2809-2817.2000]. [PMID: 10733584].
[78]
Feng, W.; Rodriguez-Menocal, L.; Tolun, G.; D’Urso, G. Schizosacchromyces pombe Dpb2 binds to origin DNA early in S phase and is required for chromosomal DNA replication. Mol. Biol. Cell, 2003, 14(8), 3427-3436. [http://dx.doi.org/10.1091/mbc.e03-02-0088]. [PMID: 12925774].
[79]
Hiraga, S.; Hagihara-Hayashi, A.; Ohya, T.; Sugino, A. DNA polymerases alpha, delta, and epsilon localize and function together at replication forks in Saccharomyces cerevisiae. Genes Cells, 2005, 10(4), 297-309. [http://dx.doi.org/10.1111/j.1365-2443.2005.00843.x]. [PMID: 15773893].
[80]
Johansson, E.; Majka, J.; Burgers, P.M. Structure of DNA polymerase delta from Saccharomyces cerevisiae. J. Biol. Chem., 2001, 276(47), 43824-43828. [http://dx.doi.org/10.1074/jbc.M108842200]. [PMID: 11568188].
[81]
Chilkova, O.; Jonsson, B.H.; Johansson, E. The quaternary structure of DNA polymerase epsilon from Saccharomyces cerevisiae. J. Biol. Chem., 2003, 278(16), 14082-14086. [http://dx.doi.org/10.1074/jbc.M211818200]. [PMID: 12571237].
[82]
Karthikeyan, R.; Vonarx, E.J.; Straffon, A.F.; Simon, M.; Faye, G.; Kunz, B.A. Evidence from mutational specificity studies that yeast DNA polymerases delta and epsilon replicate different DNA strands at an intracellular replication fork. J. Mol. Biol., 2000, 299(2), 405-419. [http://dx.doi.org/10.1006/jmbi.2000.3744]. [PMID: 10860748].
[83]
Garg, P.; Stith, C.M.; Sabouri, N.; Johansson, E.; Burgers, P.M. Idling by DNA polymerase delta maintains a ligatable nick during lagging-strand DNA replication. Genes Dev., 2004, 18(22), 2764-2773. [http://dx.doi.org/10.1101/gad.1252304]. [PMID: 15520275].
[84]
Pursell, Z.F.; Isoz, I.; Lundström, E.B.; Johansson, E.; Kunkel, T.A. Yeast DNA polymerase epsilon participates in leading-strand DNA replication. Science, 2007, 317(5834), 127-130. [http://dx.doi.org/10.1126/science.1144067]. [PMID: 17615360].
[85]
Weitzmann, M.N.; Woodford, K.J.; Usdin, K. The development and use of a DNA polymerase arrest assay for the evaluation of parameters affecting intrastrand tetraplex formation. J. Biol. Chem., 1996, 271(34), 20958-20964. [http://dx.doi.org/10.1074/jbc.271.34.20958]. [PMID: 8702855].
[86]
Kamath-Loeb, A.S.; Loeb, L.A.; Johansson, E.; Burgers, P.M.; Fry, M. Interactions between the Werner syndrome helicase and DNA polymerase delta specifically facilitate copying of tetraplex and hairpin structures of the d(CGG)n trinucleotide repeat sequence. J. Biol. Chem., 2001, 276(19), 16439-16446. [http://dx.doi.org/10.1074/jbc.M100253200]. [PMID: 11279038].
[87]
Lormand, J.D.; Buncher, N.; Murphy, C.T.; Kaur, P.; Lee, M.Y.; Burgers, P.; Wang, H.; Kunkel, T.A.; Opresko, P.L. DNA polymerase δ stalls on telomeric lagging strand templates independently from G-quadruplex formation. Nucleic Acids Res., 2013, 41(22), 10323-10333. [http://dx.doi.org/10.1093/nar/gkt813]. [PMID: 24038470].
[88]
Eddy, S.; Tillman, M.; Maddukuri, L.; Ketkar, A.; Zafar, M.K.; Eoff, R.L. Human translesion polymerase κ exhibits enhanced activity and reduced fidelity two nucleotides from G-quadruplex DNA. Biochemistry, 2016, 55(37), 5218-5229. [http://dx.doi.org/10.1021/acs.biochem.6b00374]. [PMID: 27525498].
[89]
Kaguni, L.S.; Clayton, D.A. Template-directed pausing in in vitro DNA synthesis by DNA polymerase a from Drosophila melanogaster embryos. Proc. Natl. Acad. Sci. USA, 1982, 79(4), 983-987. [http://dx.doi.org/10.1073/pnas.79.4.983]. [PMID: 6803240].
[90]
Lemmens, B.; van Schendel, R.; Tijsterman, M. Mutagenic consequences of a single G-quadruplex demonstrate mitotic inheritance of DNA replication fork barriers. Nat. Commun., 2015, 6, 8909. [http://dx.doi.org/10.1038/ncomms9909]. [PMID: 26563448].
[91]
Eddy, S.; Ketkar, A.; Zafar, M.K.; Maddukuri, L.; Choi, J.Y.; Eoff, R.L. Human Rev1 polymerase disrupts G-quadruplex DNA. Nucleic Acids Res., 2014, 42(5), 3272-3285. [http://dx.doi.org/10.1093/nar/gkt1314]. [PMID: 24366879].
[92]
Guo, C.; Fischhaber, P.L.; Luk-Paszyc, M.J.; Masuda, Y.; Zhou, J.; Kamiya, K.; Kisker, C.; Friedberg, E.C. Mouse Rev1 protein interacts with multiple DNA polymerases involved in translesion DNA synthesis. EMBO J., 2003, 22(24), 6621-6630. [http://dx.doi.org/10.1093/emboj/cdg626]. [PMID: 14657033].
[93]
Waters, L.S.; Minesinger, B.K.; Wiltrout, M.E.; D’Souza, S.; Woodruff, R.V.; Walker, G.C. Eukaryotic translesion polymerases and their roles and regulation in DNA damage tolerance. Microbiol. Mol. Biol. Rev., 2009, 73(1), 134-154. [http://dx.doi.org/10.1128/MMBR.00034-08]. [PMID: 19258535].
[94]
Bétous, R.; Rey, L.; Wang, G.; Pillaire, M.J.; Puget, N.; Selves, J.; Biard, D.S.; Shin-ya, K.; Vasquez, K.M.; Cazaux, C.; Hoffmann, J.S. Role of TLS DNA polymerases eta and kappa in processing naturally occurring structured DNA in human cells. Mol. Carcinog., 2009, 48(4), 369-378. [http://dx.doi.org/10.1002/mc.20509]. [PMID: 19117014].
[95]
Song, Q.; Sherrer, S.M.; Suo, Z.; Taylor, J.S. Preparation of site-specific T=mCG cis-syn cyclobutane dimer-containing template and its error-free bypass by yeast and human polymerase η. J. Biol. Chem., 2012, 287(11), 8021-8028. [http://dx.doi.org/10.1074/jbc.M111.333591]. [PMID: 22262850].
[96]
Eddy, S.; Maddukuri, L.; Ketkar, A.; Zafar, M.K.; Henninger, E.E.; Pursell, Z.F.; Eoff, R.L. Evidence for the kinetic partitioning of polymerase activity on G-quadruplex DNA. Biochemistry, 2015, 54(20), 3218-3230. [http://dx.doi.org/10.1021/acs.biochem.5b00060]. [PMID: 25903680].
[97]
Ogi, T.; Lehmann, A.R. The Y-family DNA polymerase kappa (pol kappa) functions in mammalian nucleotide-excision repair. Nat. Cell Biol., 2006, 8(6), 640-642. [http://dx.doi.org/10.1038/ncb1417]. [PMID: 16738703].
[98]
Wickramasinghe, C.M.; Arzouk, H.; Frey, A.; Maiter, A.; Sale, J.E. Contributions of the specialised DNA polymerases to replication of structured DNA. DNA Repair (Amst.), 2015, 29, 83-90. [http://dx.doi.org/10.1016/j.dnarep.2015.01.004]. [PMID: 25704659].
[99]
Koole, W.; van Schendel, R.; Karambelas, A.E.; van Heteren, J.T.; Okihara, K.L.; Tijsterman, M. A Polymerase Theta-dependent repair pathway suppresses extensive genomic instability at endogenous G4 DNA sites. Nat. Commun., 2014, 5, 3216. [http://dx.doi.org/10.1038/ncomms4216]. [PMID: 24496117].
[100]
Seki, M.; Marini, F.; Wood, R.D. POLQ (Pol theta), a DNA polymerase and DNA-dependent ATPase in human cells. Nucleic Acids Res., 2003, 31(21), 6117-6126. [http://dx.doi.org/10.1093/nar/gkg814]. [PMID: 14576298].
[101]
Singh, B.; Li, X.; Owens, K.M.; Vanniarajan, A.; Liang, P.; Singh, K.K. Human REV3 DNA polymerase zeta localizes to mitochondria and protects the mitochondrial genome. PLoS One, 2015, 10(10)e0140409 [http://dx.doi.org/10.1371/journal.pone.0140409]. [PMID: 26462070].
[102]
Zhang, H.; Chatterjee, A.; Singh, K.K. Saccharomyces cerevisiae polymerase zeta functions in mitochondria. Genetics, 2006, 172(4), 2683-2688. [http://dx.doi.org/10.1534/genetics.105.051029]. [PMID: 16452144].
[103]
Andersen, P.L.; Xu, F.; Ziola, B.; McGregor, W.G.; Xiao, W. Sequential assembly of translesion DNA polymerases at UV-induced DNA damage sites. Mol. Biol. Cell, 2011, 22(13), 2373-2383. [http://dx.doi.org/10.1091/mbc.e10-12-0938]. [PMID: 21551069].
[104]
Murakumo, Y.; Ogura, Y.; Ishii, H.; Numata, S.; Ichihara, M.; Croce, C.M.; Fishel, R.; Takahashi, M. Interactions in the error-prone postreplication repair proteins hREV1, hREV3, and hREV7. J. Biol. Chem., 2001, 276(38), 35644-35651. [http://dx.doi.org/10.1074/jbc.M102051200]. [PMID: 11485998].
[105]
Ohashi, E.; Murakumo, Y.; Kanjo, N.; Akagi, J.; Masutani, C.; Hanaoka, F.; Ohmori, H. Interaction of hREV1 with three human Y-family DNA polymerases. Genes Cells, 2004, 9(6), 523-531. [http://dx.doi.org/10.1111/j.1356-9597.2004.00747.x]. [PMID: 15189446].
[106]
Nair, D.T.; Johnson, R.E.; Prakash, L.; Prakash, S.; Aggarwal, A.K. Rev1 employs a novel mechanism of DNA synthesis using a protein template. Science, 2005, 309(5744), 2219-2222. [http://dx.doi.org/10.1126/science.1116336]. [PMID: 16195463].
[107]
Swan, M.K.; Johnson, R.E.; Prakash, L.; Prakash, S.; Aggarwal, A.K. Structure of the human Rev1-DNA-dNTP ternary complex. J. Mol. Biol., 2009, 390(4), 699-709. [http://dx.doi.org/10.1016/j.jmb.2009.05.026]. [PMID: 19464298].
[108]
Yeom, M.; Kim, I.H.; Kim, J.K.; Kang, K.; Eoff, R.L.; Guengerich, F.P.; Choi, J.Y. Effects of twelve germline missense variations on DNA lesion and G-quadruplex bypass activities of human DNA polymerase REV1. Chem. Res. Toxicol., 2016, 29(3), 367-379. [http://dx.doi.org/10.1021/acs.chemrestox.5b00513]. [PMID: 26914252].
[109]
McCulloch, S.D.; Kokoska, R.J.; Kunkel, T.A. Efficiency, fidelity and enzymatic switching during translesion DNA synthesis. Cell Cycle, 2004, 3(5), 580-583. [http://dx.doi.org/10.4161/cc.3.5.893]. [PMID: 15118407].
[110]
Lone, S.; Townson, S.A.; Uljon, S.N.; Johnson, R.E.; Brahma, A.; Nair, D.T.; Prakash, S.; Prakash, L.; Aggarwal, A.K. Human DNA polymerase kappa encircles DNA: implications for mismatch extension and lesion bypass. Mol. Cell, 2007, 25(4), 601-614. [http://dx.doi.org/10.1016/j.molcel.2007.01.018]. [PMID: 17317631].
[111]
Beagan, K.; Armstrong, R.L.; Witsell, A.; Roy, U.; Renedo, N.; Baker, A.E.; Schärer, O.D.; McVey, M. Drosophila DNA polymerase theta utilizes both helicase-like and polymerase domains during microhomology-mediated end joining and interstrand crosslink repair. PLoS Genet., 2017, 13(5)e1006813 [http://dx.doi.org/10.1371/journal.pgen.1006813]. [PMID: 28542210].
[112]
Newman, J.A.; Cooper, C.D.; Aitkenhead, H.; Gileadi, O. Structure of the helicase domain of DNA polymerase theta reveals a possible role in the microhomology-mediated end-joining pathway. Structure, 2015, 23(12), 2319-2330. [http://dx.doi.org/10.1016/j.str.2015.10.014]. [PMID: 26636256].
[113]
Lambert, S.; Carr, A.M. Impediments to replication fork movement: stabilisation, reactivation and genome instability. Chromosoma, 2013, 122(1-2), 33-45. [http://dx.doi.org/10.1007/s00412-013-0398-9]. [PMID: 23446515].
[114]
Krasich, R.; Copeland, W.C. DNA polymerases in the mitochondria: a critical review of the evidence. Front. Biosci. (Landmark Ed.), 2017, 22, 692-709. [http://dx.doi.org/10.2741/4510]. [PMID: 27814640].
[115]
Nelson, J.R.; Lawrence, C.W.; Hinkle, D.C. Thymine-thymine dimer bypass by yeast DNA polymerase zeta. Science, 1996, 272(5268), 1646-1649. [http://dx.doi.org/10.1126/science.272.5268.1646]. [PMID: 8658138].
[116]
Northam, M.R.; Moore, E.A.; Mertz, T.M.; Binz, S.K.; Stith, C.M.; Stepchenkova, E.I.; Wendt, K.L.; Burgers, P.M.; Shcherbakova, P.V. DNA polymerases ζ and Rev1 mediate error-prone bypass of non-B DNA structures. Nucleic Acids Res., 2014, 42(1), 290-306. [http://dx.doi.org/10.1093/nar/gkt830]. [PMID: 24049079].
[117]
Lawrence, C.W.; Maher, V.M. Mutagenesis in eukaryotes dependent on DNA polymerase zeta and Rev1p. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2001, 356(1405), 41-46. [http://dx.doi.org/10.1098/rstb.2000.0001]. [PMID: 11205328].
[118]
Bianchi, J.; Rudd, S.G.; Jozwiakowski, S.K.; Bailey, L.J.; Soura, V.; Taylor, E.; Stevanovic, I.; Green, A.J.; Stracker, T.H.; Lindsay, H.D.; Doherty, A.J. PrimPol bypasses UV photoproducts during eukaryotic chromosomal DNA replication. Mol. Cell, 2013, 52(4), 566-573. [http://dx.doi.org/10.1016/j.molcel.2013.10.035]. [PMID: 24267451].
[119]
García-Gómez, S.; Reyes, A.; Martínez-Jiménez, M.I.; Chocrón, E.S.; Mourón, S.; Terrados, G.; Powell, C.; Salido, E.; Méndez, J.; Holt, I.J.; Blanco, L. PrimPol, an archaic primase/polymerase operating in human cells. Mol. Cell, 2013, 52(4), 541-553. [http://dx.doi.org/10.1016/j.molcel.2013.09.025]. [PMID: 24207056].
[120]
Mourón, S.; Rodriguez-Acebes, S.; Martínez-Jiménez, M.I.; García-Gómez, S.; Chocrón, S.; Blanco, L.; Méndez, J. Repriming of DNA synthesis at stalled replication forks by human PrimPol. Nat. Struct. Mol. Biol., 2013, 20(12), 1383-1389. [http://dx.doi.org/10.1038/nsmb.2719]. [PMID: 24240614].
[121]
Zhao, F.; Wu, J.; Xue, A.; Su, Y.; Wang, X.; Lu, X.; Zhou, Z.; Qu, J.; Zhou, X. Exome sequencing reveals CCDC111 mutation associated with high myopia. Hum. Genet., 2013, 132(8), 913-921. [http://dx.doi.org/10.1007/s00439-013-1303-6]. [PMID: 23579484].
[122]
Wanrooij, S.; Fusté, J.M.; Farge, G.; Shi, Y.; Gustafsson, C.M.; Falkenberg, M. Human mitochondrial RNA polymerase primes lagging-strand DNA synthesis in vitro. Proc. Natl. Acad. Sci. USA, 2008, 105(32), 11122-11127. [http://dx.doi.org/10.1073/pnas.0805399105]. [PMID: 18685103].
[123]
Wong, T.W.; Clayton, D.A. Isolation and characterization of a DNA primase from human mitochondria. J. Biol. Chem., 1985, 260(21), 11530-11535. [PMID: 4044569].
[124]
Schiavone, D.; Jozwiakowski, S.K.; Romanello, M.; Guilbaud, G.; Guilliam, T.A.; Bailey, L.J.; Sale, J.E.; Doherty, A.J. PrimPol is required for replicative tolerance of G quadruplexes in vertebrate cells. Mol. Cell, 2016, 61(1), 161-169. [http://dx.doi.org/10.1016/j.molcel.2015.10.038]. [PMID: 26626482].
[125]
Kobayashi, K.; Guilliam, T.A.; Tsuda, M.; Yamamoto, J.; Bailey, L.J.; Iwai, S.; Takeda, S.; Doherty, A.J.; Hirota, K. Repriming by PrimPol is critical for DNA replication restart downstream of lesions and chain-terminating nucleosides. Cell Cycle, 2016, 15(15), 1997-2008. [http://dx.doi.org/10.1080/15384101.2016.1191711]. [PMID: 27230014].
[126]
Bailey, L.J.; Bianchi, J.; Hégarat, N.; Hochegger, H.; Doherty, A.J. PrimPol-deficient cells exhibit a pronounced G2 checkpoint response following UV damage. Cell Cycle, 2016, 15(7), 908-918. [http://dx.doi.org/10.1080/15384101.2015.1128597]. [PMID: 26694751].
[127]
Dong, D.W.; Pereira, F.; Barrett, S.P.; Kolesar, J.E.; Cao, K.; Damas, J.; Yatsunyk, L.A.; Johnson, F.B.; Kaufman, B.A. Association of G-quadruplex forming sequences with human mtDNA deletion breakpoints. BMC Genomics, 2014, 15, 677. [http://dx.doi.org/10.1186/1471-2164-15-677]. [PMID: 25124333].
[128]
Bharti, S.K.; Sommers, J.A.; Zhou, J.; Kaplan, D.L.; Spelbrink, J.N.; Mergny, J.L.; Brosh, R.M. Jr DNA sequences proximal to human mitochondrial DNA deletion breakpoints prevalent in human disease form G-quadruplexes, a class of DNA structures inefficiently unwound by the mitochondrial replicative Twinkle helicase. J. Biol. Chem., 2014, 289(43), 29975-29993. [http://dx.doi.org/10.1074/jbc.M114.567073]. [PMID: 25193669].
[129]
Bailey, L.J.; Doherty, A.J. Mitochondrial DNA replication: a PrimPol perspective. Biochem. Soc. Trans., 2017, 45(2), 513-529. [http://dx.doi.org/10.1042/BST20160162]. [PMID: 28408491].
[130]
Lyonnais, S.; Tarrés-Solé, A.; Rubio-Cosials, A.; Cuppari, A.; Brito, R.; Jaumot, J.; Gargallo, R.; Vilaseca, M.; Silva, C.; Granzhan, A.; Teulade-Fichou, M.P.; Eritja, R.; Solà, M. Corrigendum: The human mitochondrial transcription factor A is a versatile G-quadruplex binding protein. Sci. Rep., 2017, 7, 45948. [http://dx.doi.org/10.1038/srep45948]. [PMID: 28383057].
[131]
Martínez-Jiménez, M.I.; Lahera, A.; Blanco, L. Human PrimPol activity is enhanced by RPA. Sci. Rep., 2017, 7(1), 783. [http://dx.doi.org/10.1038/s41598-017-00958-3]. [PMID: 28396594].
[132]
Guilliam, T.A.; Brissett, N.C.; Ehlinger, A.; Keen, B.A.; Kolesar, P.; Taylor, E.M.; Bailey, L.J.; Lindsay, H.D.; Chazin, W.J.; Doherty, A.J. Molecular basis for PrimPol recruitment to replication forks by RPA. Nat. Commun., 2017, 8, 15222. [http://dx.doi.org/10.1038/ncomms15222]. [PMID: 28534480].
[133]
Guilliam, T.A.; Doherty, A.J. PrimPol-Prime Time to Reprime. Genes (Basel), 2017, 8(1)E20 [http://dx.doi.org/10.3390/genes8010020]. [PMID: 28067825].
[134]
Kamath-Loeb, A.; Loeb, L.A.; Fry, M. The Werner syndrome protein is distinguished from the Bloom syndrome protein by its capacity to tightly bind diverse DNA structures. PLoS One, 2012, 7(1)e30189 [http://dx.doi.org/10.1371/journal.pone.0030189]. [PMID: 22272300].
[135]
Piazza, A.; Cui, X.; Adrian, M.; Samazan, F.; Heddi, B.; Phan, A.T.; Nicolas, A.G. Non-Canonical G-quadruplexes cause the hCEB1 minisatellite instability in Saccharomyces cerevisiae. eLife, 2017, 6, 6. [http://dx.doi.org/10.7554/eLife.26884]. [PMID: 28661396].
[136]
Musumeci, D.; Amato, J.; Zizza, P.; Platella, C.; Cosconati, S.; Cingolani, C.; Biroccio, A.; Novellino, E.; Randazzo, A.; Giancola, C.; Pagano, B.; Montesarchio, D. Tandem application of ligand-based virtual screening and G4-OAS assay to identify novel G-quadruplex-targeting chemotypes. Biochim. Biophys. Acta, Gen. Subj., 2017, 1861(5 Pt B), 1341-1352. [http://dx.doi.org/10.1016/j.bbagen.2017.01.024]. [PMID: 28130159].
[137]
Rocca, R.; Moraca, F.; Costa, G.; Nadai, M.; Scalabrin, M.; Talarico, C.; Distinto, S.; Maccioni, E.; Ortuso, F.; Artese, A.; Alcaro, S.; Richter, S.N. Identification of G-quadruplex DNA/RNA binders: Structure-based virtual screening and biophysical characterization. Biochim. Biophys. Acta, Gen. Subj., 2017, 1861(5 Pt B), 1329-1340. [http://dx.doi.org/10.1016/j.bbagen.2016.12.023]. [PMID: 28025082].
[138]
Salvati, E.; Botta, L.; Amato, J.; Di Leva, F.S.; Zizza, P.; Gioiello, A.; Pagano, B.; Graziani, G.; Tarsounas, M.; Randazzo, A.; Novellino, E.; Biroccio, A.; Cosconati, S. Lead discovery of dual G-quadruplex stabilizers and Poly(ADP-ribose) polymerases (PARPs) inhibitors: a new avenue in anticancer treatment. J. Med. Chem., 2017, 60(9), 3626-3635. [http://dx.doi.org/10.1021/acs.jmedchem.6b01563]. [PMID: 28445046].

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy