Generic placeholder image

Current Neurovascular Research

Editor-in-Chief

ISSN (Print): 1567-2026
ISSN (Online): 1875-5739

Combination of Local Transplantation of In Vitro Bone-marrow Stromal Cells and Pulsed Electromagnetic Fields Accelerate Functional Recovery of Transected Sciatic Nerve Regeneration: A Novel Approach in Transected Nerve Repair

Author(s): Rahim Mohammadi and Sirvan Mahmoodzadeh

Volume 12, Issue 3, 2015

Page: [222 - 231] Pages: 10

DOI: 10.2174/1567202612666150605121829

Price: $65

Abstract

Effect of combination of undifferentiated bone marrow stromal cells (BMSCs) and pulsed electromagnetic fields (PEMF) on transected sciatic nerve regeneration was assessed in rats. A 10 mm nerve segment was excised and a vein graft was used to bridge the gap. Twenty microliter undifferentiated BMSCs (2 107 cells /mL) were administered into the graft inBMSC group with no exposure to PEMF. In BMSC/PEMF group the whole body was exposed to PEMF (0.3 mT, 2Hz) for 4h/day within 1-5 days. In PEMF group the transected nerve was bridged and phosphate buffered saline was administered into the graft. In authograft group (AUTO), the transected nervesegments were reimplanted reversely and the whole body was exposed to PEMF. The regenerated nerve fibers were studied within 12 weeks after surgery. Behavioral, functional, electrophysiological, biomechanical, gastrocnemius muscle mass findings, morphometric indices and immuonohistochemical reactions confirmed faster recovery of regenerated axons in BMSC/PEMF group compared to those in the other groups (P<0.05). The use of undifferentiated BMSCs with whole body exposure to PEMF improved functional recovery. Combination of local transplantation of in vitro bone-marrow stromal cells and pulsed electromagnetic fields could be considered as an effective, safe and tolerable treatment for peripheral nerve repair in clinical practice.

Keywords: Nerve regeneration, sciatic, undifferentiated BMSC, PEMF, functional recovery.


Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy