Abstract
The continuing HIV epidemic has driven advancements in antiretroviral therapy. New therapeutic targets have been identified over the past years, one of which has been the Integrase enzyme. This is responsible for integrating HIV pro-DNA into the host cell genome and has proved a successful drug target.
Efforts have also been made to improve the pharmacokinetic parameters of current drug therapy and utilise these techniques in maximising drug therapeutic effect whilst minimising adverse events. An exciting example of new technologies is that of nanotechnology where drugs can be specifically targeted to certain tissues and drug delivery can be improved by utilising biological molecules and structures.
Pre-exposure prophylaxis is also an area of much interest currently both on an individual and population level. Compliance is however a major issue with daily medication to prevent HIV acquisition as has been demonstrated with contraceptive agents. However if long acting compounds can be developed, compliance can be improved.
The patent drug currently being developed through nanotechnology as an analogue of Dolutegravir, GSK1265744 LAP (Long Acting Parenteral) has shown promise as a Long Acting Integrase Inhibitor with potential action both as a therapeutic agent but also in pre-exposure prophylaxis. The favourable pharmacokinetic profile and therapeutic efficacy in comparison to other compounds of the same class demonstrate it to be a promising advance. However given current limitations in study material, further randomised studies with long term follow up are required to fully evaluate the value of the patent drug GSK1265744 LAP in action in both seropositive and seronegative individuals.
Keywords: GSK 744, HIV, patent drug, parenteral, pre exposure prophylaxis, nanotechnology.